
Refactoring Design Models for Inductive Verification
�

Yung-Pin Cheng
Dept, Info. and Comp. Education

National Taiwan Normal Univ.
162 Hoping E. Rd., Taipei 106

Taiwan
+886 2 23622841 ext 33

ypc@ice.ntnu.edu.tw

�������	��
��
�

Systems composed of many identical processes can some-
times be verified inductively using a network invariant, but
systems whose component processes vary in some system-
atic way are not amenable to direct application of that method.
We describe how variations in behavior can be “factored out”
into additional processes, thus enabling induction over the
number of processes. The process is semi-automatic: The
designer must choose from among a set of idiomatic trans-
formations, but each transformation is applied and checked
automatically.

���������������
Refactoring, Network Invariants, Parameterized System, Com-
positional Analysis, Concurrency

� ��� �	�����! "�#��$%� �

When applying finite-state verification methods to a system
with many identical processes, one would prefer to perform
an inductive verification that applies to arbitrary size instances
of the system. A popular approach to verifying systems pa-
rameterized by size is to construct a so-called network in-
variant and then check if the invariants pass the test of an
induction framework (explained in section 2) such as those
used by Wolper [24] and Kurshan [14].&

Effort supervised by Michal Young, Dept. of Comp. and Info. Sciences, Uni-
versity of Oregon and sponsored by the Defense Advanced Research Projects Agency
and Rome Laboratory, Air Force Materiel Command, USAF, under agreement num-
ber F30602-97-2-0034. The U.S. Government is authorized to reproduce and distribute
reprints for Governmental purposes notwithstanding any copyright annotation thereon.
The views and conclusions contained herein are those of the authors and should not
be interpreted as necessarily representing the official policies or endorsements, either
expressed or implied, of the Defense Advanced Research Projects Agency, Rome Lab-
oratory, or the U.S. Government.

The induction framework, however, assumes the behav-
iors of a process are constant, i.e., the finite-state machines
representing the behaviors are fixed – with constant transi-
tion relations and number of states. This assumption could
be true for some hardware systems, some protocols in which
processes communicate by a shared bus, or linearly struc-
tured systems in which processes only communicate with its
right or left neighbor. However, in many other application
domains, one or more of the individual processes varies in
some systematic way depending on the size of the system.

Standard induction frameworks cannot be directly ap-
plied to systems in which individual process behaviors are
parameterized by system size. We describe how models of
such systems can be transformed by refactoring to make
induction applicable. The transformations “factor out” the
variations in behavior into additional processes. Each refac-
toring step maintains equivalence between the original pro-
cesses and compositions of the factor processes, so that the
final refactored model is equivalent (weakly bisimilar) to the
original model. Refactoring can be useful for improving the
complexity of compositional state-space analysis in general
[4], and is particularly useful for enabling inductive analysis.

This paper is organized as follows: We review the induc-
tive finite-state verification in Section 2. In section 3, we
describe the refactoring technique and its application to an
example system. In section 4, we illustrate how the refac-
tored example system can be verified inductively. Section 5
is a discussion. Section 6 and section 7 end the article with
related work and conclusions.

' �(� �� "�
�	$)� �

Typically, to apply automatic finite-state verification tech-
niques, a system is modeled as several finite-state machines

which communicate among themselves or with their envi-
ronment. A feasible model for verification is one that has
constant number of finite-state machines and constant tran-
sition relation and number of states in each finite-state ma-
chine. However, in practice, systems may be parameterized
by size. They can be parameterized by the number of iden-
tical components, the number of data values (e.g., the length
of a bounded buffer), or the number of control commands
(e.g., a protocol that allows retransmission of messages over
a lossy channel at most * times). Let a system + of size ,
be denoted as +.- and let all +/- form a family 021435+.-�6
7-98;: .
Let < be some property of interest. The problem of verify-
ing a parameterized system is to answer whether every +=- in
0 satisfies < . This problem was shown to be undecidable in
general [1].

Although the problem is undecidable in general, specific
families may be solvable. A popular approach is using the
induction framework described by Wolper [24] and Kurshan
[14]. The framework can be generally described as follows:
Consider the family 0 above and let > be some identical
component. We assume + -@?=: 1A+ -CB9B > for ,ED2F , where ’ B9B ’
is some composition operator. Let G be a preorder relation
[12] over processes, and < be a property of interest, such that

HJI GLKNM/O H K B 1P<QMSR I B 1P<UT
If we can find a process >�*/V , such that

>�*/V B 1L< (1)

+=:�GW>�*/V (2)

>�*/VYXZ>[G\>�*/V!] (3)

we can use the fact that parallel composition is monotonic
with respect to the preorder to infer from (3) that

>�*/VYXZ>^G_>�*/V
H >�*/V B@B >�M B@B >`G_>�*/V

...

>�*/V B9B > B@B�abaca5B9B >[G\>�*/V!T (4)

Finally, we infer from (2) and (4) that

+d: B9B > B9B	acaca5B9B >[G\>�*/V!T (5)

Hence, using and the assumption +d-@?=:e1f+/- B@B > and (1), we
conclude that every +d- in 0 satisfies < . A process >�*/V satis-
fying the above induction step is called a network invariant.
In general, a network invariant may not exist due to the un-
decidability.

Parameterization, however, can affect models in two ways:

Sn
S

P P P P P P1 2 n 1 2 nT T T1 2 n

(a) (b)

Figure 1: (a) The system gNh before refactoring. (b) The
system gih after refactoring.

1. Models add/remove processes when the system size is
increased/decreased.

2. The behaviors (transition relation and number of states)
of processes grow/shrink when the system size is in-
creased/decreased.

In the literature, systems shown to pass induction frame-
work mostly vary by size in first way. However, there are
many systems whose parameterization affects models in sec-
ond way or both. The induction framework used by Wolper
and Kurshan can not be directly applied to systems with pa-
rameterized behaviors unless it happens that those variations
are consistent with the preorder relation. When X is paral-
lel composition, and G is one of the usual order relations in
process algebra, this will not generally be the case.

Consider, for example, a system consisting of one con-
trol process and many identical slave processes. Let the
system be gNh 1j+ h X I : TcTcTkX I h , where + h ’s behav-
iors are parameterized by * and processes

I - communicates
with + h by a private channel indexed with , . In Fig. 1(a),
we show the example’s communication structure, where a
solid line represents a communication with a private chan-
nel between processes. While increasing * by F , glh be-
comes gih�?=: 1m+ h#?;: X I : TcTbTnX I h X I h#?=: . Note that
+/hPo1p+/h#?=: , so g h#?;:qo1 g h_X I h�?=: . g h#?=: now makes a
cycle through *irsF interactions over *truF private channels,
rather than * .

Suppose we found a putative invariant >�*/V for the family
3 gi- 657-@8=: . To complete the induction, we would next need to
show that >�*/VvX I h#?;: Gw>�*/V . Recall that if this holds, we
can infer from it with (2) to obtain (5). But, from (5) to the
conclusion that every + - satisfies < , we need the assumption
gi-@?=: 1 gi-xB@B > . This is where the induction framework will
usually fail for parameterized systems like 3 gl- 6
7-98;: .

What we can do to fit such a system into the induction
framework is “factor” the single process + h (as in Fig. 1)
into a much smaller fixed process + , independent of * , and

several identical y/-z]z,{1|F to * , with transition labels re-
named according to , . Each y.- communicates with the cor-
responding process

I - . This refactoring can be done in a
way that maintains behavioral equivalence, i.e., the behav-
ioral equivalence relation, + h is weakly bisimilar to

H +mX
y : XtTcTbT!XUy h M . (The next section describes how such refac-
toring can be partly automated.) So, after refactoring,

gih 1 H +LX�y : X�TcTcT!XUy h M�X I : XnTcTbT}X I h T
If +/h#?;:E1 H +~XZyd:NXtTbTcT/XZy/h�X�y/h#?=:	M , an increase of * by
1 would result in a system

g h#?=:�1 H +\X�yd:tXnTcTcT�XUy/h�X�y�h�?=:	M�X I :iX�TcTbT}X I h�X I h#?=:5]
Note that, when * is increased by one, a pair of processes
3by h#?=:] I h#?=: 6 is added in the new structure.

Using the new structure of gNh , we can apply the induc-
tion framework to verify a system with an arbitrary number
of
I - larger than * . If we transform safety properties into

a deadlock detection problem (see [5, 25]), then we can use
refactoring to inductively verify safety properties.

� � �#��
��#������$ �"�

Since finding a network invariant is in general undecidable,
no one is able to find a fully automated solution that is guar-
anteed to work for arbitrary systems. A conventional wis-
dom is that the network invariant can be refined from a base
system (e.g., +=: in family 35+.-�6 7-98=:), but the refinement is a
creative endeavor which usually requires manual interven-
tion and is hard to automate. Likewise, refactoring models
to enable induction is a creative task that requires experience
and an understanding of the the system to be analyzed. The
designer must choose from among a set of idiomatic trans-
formations and apply them in a right order. Nonetheless, tool
support is possible for bookkeeping, helping the user recog-
nize and apply potential transformations, and verifying that
each step is sound. Although tool support cannot completely
shield the user from understanding the finite-state model, it
can hide many details of the transformations and checking.

Fig. 2 and 3 show the views of a refactoring opera-
tion provided by a prototype refactoring tool we have con-
structed. The topological view in Fig. 2 shows the overall
communication structure of the model being refactored, as
represented by a description in the ACME interchange for-
mat for software architecture descriptions [9]. Some opera-
tions, like grouping processes into subsystems and rearrang-
ing the hierarchy of scopes, can be performed directly at the

Figure 2: Topological view of an example using the proto-
type tool.

Figure 3: A view of the process graph of a process, which is
about to be decomposed. Highlighted regions of the process
graph have been selected for moving to a new process.

topological level, with renamings and other simple transfor-
mations on the underlying processes being performed auto-
matically.

Decomposing a single process requires more complex
manipulations of its process graph1 which require additional
guidance from the user. We have built a tool which provides
process-graph view of an individual process (Fig. 3) and al-
lows the designer to select portions of the process graph to
be removed and incorporated in a new process. The newly
created process will result in a structure modification that
will be shown in the window of topological view.

Identifying parts of the process graph currently is a man-
ual operation, but the main transformation is automated. Note
that the size of the process graph that must be manipulated
by the user does not depend on the size of the overall sys-
tem, since it represents only a single component process.
Prospects for further automation are discussed in section 7.�

More precisely, these process graphs are labeled transition systems with CCS se-
mantics [16, 17].

����� � �#��
��
������$ ���
\�����`�"���u�������}����
��c ����s��� � �	���k�������
�����

In this section, a remote temperature sensor system (RTSS)
(described originally by Sanden [21] and adapted by Yeh and
Young [26]) is refactored and is verified (see section 4) by
the induction framework. The remote temperature sensor
system is a software-driven system that periodically reports
the temperatures of an array of furnace devices. The system
is parameterized by the arbitrary number of furnaces. Let
the number of furnaces be �!* and the furnaces be indexed
from � to �!*���F . The overall structure of the system is
shown in Fig. 4. The furnaces, shown on top-right portion
of the figure, are located at a remote site. Requests sent from
client to the sensor system use a simple ACK/NAK proto-
col. An example run is as follows: Initially, task UI sends a
request (containing a furnace index) for each furnace. The
request is packed into a control packet and delivered over a
lossy channel. To ensure the packet is transmitted reliably,
alternating bit protocol is used, which is implemented by the
five tasks in CP subsystem. The five tasks are located either
at client side or remote site. Once the packet arrives mod-
ule FPACK, the task INTR alerts the furnace specified in the
control packet. The alert may be lost but must get through at
first time as an initialization. Once a furnace is initialized by
first alert, it reads the temperature from THERMOMETER
periodically or whenever an alert is received. After reading
the temperature, it sends the temperature and its furnace in-
dex back to UI by data packets over alternating bit protocol
again (see DP). While �!* is small, the system can be com-
posed compositionally by a hierarchy (UI (CP CP INPUT)
(FPACK THERMOMETER) (DP DP INPUT)).

The general strategy of refactoring is to identify any pro-
cesses whose structure depends on the size of the overall sys-
tem and to refactor each of those processes into an invariant
part and one or more variant parts, where such that the vari-
ation is in the number of variant parts rather than their struc-
ture. In this case, INTR, TINTR, tasks in CP MODULE and
tasks in DP MODULE differ depending on the size of the
system, so each of those processes must be refactored.

In principle, every process with behavior differing by
system size must be refactored. However, for systems which
are well-structured, like the furnace system described here,
their modules may yield simple external behaviors. For ex-
ample, CP MODULE (which is obtained by composing (CP
CP INPUT) compositionally) though contains 6 tasks, its
external behavior is simple and regular with respect to sys-
tem size. Fig. 5 shows the external behavior of CP MODULE
with 2 furnaces. In this case, instead of refactoring the 6

original tasks of CP MODULE, we choose to refactor CP MODULE’s
external behaviors. This action can be easily justified by that
our refactoring is equivalence preserving (explained later).
The simplicity of CP MODULE’s interface behaviors makes
a good example for describing refactoring. Thus, we skip the
tedious steps of refactoring 6 original tasks and show how
CP MODULE’s interface behavior is refactored.

To avoid any confusion, please note that in practice the
external behavior of a module may not be simple, regular,
and manageable. If that is the case, the module’s external
behavior is not suitable for refactoring (since refactoring is
a partially automated process). A module which yields no
simple interface behaviors often results from bad structur-
ing, i.e., task interactions in the module cannot be effectively
hidden and minimized. In this case, refactoring must operate
on original tasks. Next, we break the original structure and
find a better structure to group tasks into modules (recall that
tool support for the restructuring is shown in Fig. 2). On the
other hand, if a module yields simple interface behavior, it
can save us the effort of refactoring at original tasks. Conse-
quently, complexity of refactoring complicated systems can
be reduced in this way.

��������� ��� �����#��
��
�����z$ ��� ���E��� �����l���!�
In Fig. 5, the process graph inside the box is of CCS se-
mantics. The label name -send(0) is a result of symbolic
expansion of an Ada statement accept send(i), where i=0,1.
It should not be understood as a value is passed by the edge.
Therefore, for every value of , , a sequence of actions
-send(i).call(i).callend is added to the process graph.

We label an edge with prefix ’–’ to mean the action is
at callee (or server) side. The edge call end models the do
block of an accept statement. The accept call(i) statement
in INTR has a do block. So, whenever CP MODULE is-
sues call(i), it must wait for the do block in INTR to com-
plete, which is then modeled by call end in CP MODULE
and -call end at the end of do block. The box and ports are
to illustrate its interfaces to task UI and task INTR.

The overall goal of refactoring is to recognize and sepa-
rate parts of a process that have essentially been duplicated
for dealing with different parts of the system. There is con-
trol structure in the original program that is parameterized
by processes that a particular process or module is commu-
nicating with. This control structure by symbolic expansion
becomes variation in the structure of the process or mod-
ule. That is the kind of variation that can be removed, if
we can transform it into extra processes instead. For exam-
ple, one simple goal of refactoring for induction is to make

se
n

d
acknak

X
p

in
_

ch
an

ac
k

n
ak

xp_ack

re
cv

ca
ll

al
er

t

readtemp

rs
it

re
cv

in
_

ch
an

xp_ack

ac
k

n
ak

x
p

acknak
se

n
d

dt_int

req

re
ad

te
m

p

UI

XP
OUT XO XI

ACK
IN

ACK
OUT

CP

CP

INPUT

DP

INPUT
XI

ACK
OUT

DP

XO

ACK
IN

XP
OUT

INTR

FPACK

FURNACES

TERMOMETER

DEVICES
DP_MODULE

CLIENT

TINTR

REMOTE FURNACE SYSTEM

CP_MODULE

Figure 4: The overall structure of the remote temperature
sensor system.

CP MODULE independent of �!* . To accomplish the goal,
we need four subsequent transformations below:

� ��
 � �������z�`
��	$)� �v� � ��� � ������¡%
"�}��¡%$ �"�
The first transformation for refactoring CP MODULE is to
help recognition of the variant parts which essentially deal
with different furnaces. In CP MODULE, -send(0) and call(0)
can be easily classified as linked to furnace 0, -send(1) and
call(1) can be easily classified as linked to furnace 1, but
call end can not. In this example, we intend to classify
call end into either linked to furnace 0 or linked to furnace 1
so that CP MODULE can become a clean, simple task (later
shown in Fig. 9) and irrelevant to �!* . The intended classi-
fication involves renaming call end to either call end(0) or
call end(1). However, such kind of relabeling is not sup-
ported by the relabel operator (a.k.a. [a/b]) in CCS. We need
a relabeling that is less strict.

Recall that call end is an artifact of modeling Ada’s ac-
cept/do semantics. So, a call end is paired to a particular
call(i). Using this as guidance, we can relabel CP MODULE
into Fig. 6. Since action names in CCS are in pairs, we need
to rename -call end in INTR as well. Consequently, the in-
terface between CP MODULE and INTR is changed.

To justify the relabeling, we introduce a notion of equiv-
alence. Since CP MODULE and INTR are modified by this
relabeling, CP MODULE and INTR are viewed as a sub-
system. The equivalence we propose is that the subsystem’s
behavior remains equivalent (weakly bisimilar) before and
after the transformation. It can be expressed by the follow-

call(0)

call(1)

call_end

-send(0)

-send(1)

CP_MODULE

call(0)call(1)

call_end

-send(0)-send(1)

call_end

INTRUI

Figure 5: The module behavior of CP MODULE.

ing equation:

¢(£¥¤ ¦¨§ª©�«;¬}­E®)® ¯c°�±¥²=³#´=µC¶�·c¸9¸ ¹zº�»b¼¥½
¢�£¥¤ ¦¨§ª©�«;¬!­�®)® ¯c°�±;²;³#´dµC¶�·b¸¾¸ ¹xº�»5¢@¿	³�ÀÁ¶�·b¸¾¸ ¹xº�»
¢ Âx³J¼cÀ

where ’ Ã ’ is the weak bisimulation of CCS and ’ Ä ’ is the re-
striction operator of CCS. Verifying the equation can assure
the correctness of our relabeling strategy.

The relabeling above seems ad hoc and lack of general-
ity. In general, whether a set of edges can be relabeled safely
(according to our notion of equivalence) can be determined
easily. Using the above case as an example, a simple algo-
rithm is:

1.Mark every edge call end with

a distinct and unique number.

2.Mark every edge -call end with

a distinct and unique number

3.Perform Å9Æ=Ç È�ÉdÊ�Ë�Ì�ÍÏÎ)Î Ð�ÑZÒ}Ó/Ô and monitor

the rendezvous during composition.

If (an edge call end rendezvous

with an edge -call end) then

merge their number into a set

or

merge the sets to which their

number already belong into a

bigger set.

end if.

The algorithm may partition all the numbers into disjoint
sets. Let the marked edges be partitioned like their asso-
ciated numbers. Thus, the edges in a disjoint set will not
rendezvous with edges in other sets. So, trivially, relabel-
ing edges of a disjoint set altogether is safe. Once we know
which set of edges can be relabeled safely, it is then up to the
designers to determine what relabeling is needed.

� ��
 � �������z�`
��	$)� �q��� �Ï� ���eÕÏ� �
�Ö�$)�����������}�Y�!���c$ �	$)� �
The second transformation is to decompose CP MODULE
by extracting away the behavior linked to furnace 0. The ex-
tracted behavior is then wrapped into a new process. With

call(0)call(1)

call_end(1)

-send(0)-send(1)

call_end(0)

call(0)

call(1)-send(0)

-send(1) call_end(0)

call_end(1)

CP_MODULE

-call_end

-call_end(0) -call_end(1)
OR

In INTR

Figure 6: CP MODULE after edge relabeling transfor-
mation. In this transformation, call end is renamed as
call end(0) or call end(1) in INTR and CP MODULE.

the new process introduced into the system, the synchroniza-
tion structure of the system is changed, thus, enabling the in-
duction framework or compositional analysis that is doomed
by bad as-built structure.

The first step of behavior decomposition is to identify the
behavior to be extracted. In Fig. 6, we use a shaded area to
mark the behavior to be removed. Usually, this is where hu-
man assistance is needed. After segments of behavior have
been properly identified and marked, the rest of the transfor-
mation is automatic. Functions of the transformation include
purging the marked behaviors from CP MODULE, wrap-
ping the marked behaviors into a new task, and inserting new
communications to preserve equivalence. Fig. 7 illustrates
the result of this transformation. The new task created by
this transformation is CP SUB0. Edge labels highlighted by
grey background are the new communications inserted by
the transformation. In UI, every edge labeled send(0) is re-
placed by two edges, labeled as get(0) and send(0).

In Fig. 7, -send(0) is redirected to CP SUB0 but -send(1)
still remains in CP MODULE. If nothing is done to con-
strain the two tasks, it is possible for -send(0) and -send(1)
to accept rendezvous before the other one completes its ser-
vice —- which is not equivalence preserving. To remedy
the problem, in UI, every send(0) is guarded by get(0), in
CP MODULE, -get(0) and -release(0) (which behave like
a semaphore of value 1) are inserted to fill the vacant ar-
eas preoccupied by the marked behaviors, and in CP SUB0,
release(0) is appended at the end of marked behavior. So,
whenever a -send(0) is called, the caller must acquire -get(0)
first to lock CP MODULE. Once CP MODULE is locked,
attempts to rendezvous with -send(1) would be impossible.
Next, -send(0) is redirected to CP SUB0 to complete the
marked behavior. Finally, after CP SUB0 completes the marked
behavior, CP SUB0 releases CP MODULE by invoking re-
lease(0).

How equivalence is preserved by this transformation? The
same notion of equivalence in transformation I is applied.
Here, UI, CP MODULE are modified. So, (UI CP MODULE)

call(1)

call_end(1)

-send(1)

-get(0)

-release(0)

-send(0)

call(0)call_end(0)

release(0)
call(0)

call(1)

call_end(0)

call_end(1)

release(0)

-send(0)

-get(0)

-send(1)send(0)

send(0)get(0)

CP_MODULE

CP_SUB0

In UI

Figure 7: CP MODULE after Transformation II. CP SUB0
is the new process created by the transformation. -send(0),
call(0), call end(0) are all redirected to CP SUB0. Every
send(0) in UI is guarded by new communication get(0).

is viewed as a subsystem. In this view, send(0) and send(1)
are internal and restricted. Similarly, after refactoring, we
view (UI CP MODULE CP SUB0) as a subsystem. In this
view, send(0),send(1),get(0), and release(0) are internal and
restricted. The following equation can be verified to justify
the transformation:

×(Ø�Ù5Ú)Ú ÛdÜ Ý�Þ=ß�Ø�à�á=â�ã/äCå�æ�ç�èb×¾é�â�êÁåzæ�ç�èb×�ëzâJì;í
×�Ø�Ù5Ú)Ú Û=Ü Ý�Þdß�Ø/à�áÏÚ)Ú Û=Ü î"Ø�ï=éCâ ã�äCå�æ�ç�èb×¾éCâ�ê�å�æ�ç�èb×�ë�â�ê ð	æ�ñ�×¾é�â�êÁò�æ�ó9æ�ôcå�æC×¾é�âJì	õ

ö¥÷�ø�ù�ú�û�ü�÷zý`ø�þ	ÿ)ü}ù�����������ù��
	���
"ø���ÿ%ü�÷������#ü}ý��!ü"úcÿ þ	ÿ)ü!ù
The third transformation is the same as transformation II,
only the marked behavior is those linked to furnace 1. The
result of this transformation is shown in Fig. 8, in which
CP MODULE behaves as a pure semaphore. To this stage,
all the behaviors linked to furnaces are redirected to CP SUB0
or CP SUB1 respectively.

ö¥÷�ø�ù�ú�û�ü�÷zý`ø�þ	ÿ)ü}ù�����������ý`ø���
�ü�÷��[úcÿ9ý����%ÿ � �#ø�þ	ÿ)ü}ù
Despite the simple behavior, CP MODULE in Fig. 8 is
still parameterized by !#" . To make it independent of !#" ,
we need the forth transformation. But before that, let’s re-
view CCS’s rendezvous semantics. In CCS, if there are two
processes both ready to communicate by action $ but there
is only one process ready to communicate by co-action %$,
the first two processes compete for the rendezvous. This
is known as two-way rendezvous, as opposed to multi-way
rendezvous of CSP. This important characteristic allows us
to further simplify the semaphore in Fig. 8. Result of the

-get(0)

-release(0)

-send(0)

call(0)
call_end(0)

release(0)
call(0)

call_end(0)

release(0)

-send(0)

-get(0)

-get(1)send(1)

send(1)get(1)

CP_MODULE

CP_SUB0

-send(1)

call(1)call_end(1)

release(1)
call(1)

call_end(1)

release(1)

-send(1)

CP_SUB1

-get(1)

-release(1)
In UI

Figure 8: CP MODULE after Transformation III.

simplification is shown in Fig. 9, where get(i) and release(i)
are all renamed to new names get and release respectively.
CP MODULE now only have two ports but each port may
have more than one process attached. For example, port re-
lease is now attached by CP SUB0 and CP SUB1. Using the
same notion of equivalence as before, the following equation
can be verified to justify this simplification:
&('�)+*,* -/. 02143�'#5�647�849�:<;�=�&?>@7�AB:<;�=�&(CD7�ABEF;�G?;DHJID;@&�>F7�A�E@;�GK;DH<ID;@&LC�7BM/N

&('�)+*,* -/. 02143O'�5�647�8 9D:<;�=�A�E@;�G?;DH<ID;@M

PRQ�S�T/UWV�X#Y[Z<\^]W_`Za]�\�ScbWdfe�g hjilk�mRn�o
At last, CP MODULE in Fig. 9 holds a structure amenable
to the induction framework. First, CP MODULE is inde-
pendent of p#q ; that is, its process graph no longer varies
by p#q . Second, this structure is meant to be extended eas-
ily: While p#q is increased, we simply add another identi-
cal process CP SUB2 and attach its release port to that of
CP MODULE. These two properties enable induction frame-
work. Nonetheless, not all the process graphs can be refac-
tored to have the two properties since verification of param-
eterized system is undecidable in general.

r�sut�s�v PwQ�Sx\�Syd�VW_`Z[b�\DzKU�{|bWdw}�~�P��
In remote temperature sensor system, the greatest challenge
to refactoring is INTR’s process graph. The reason why
INTR is worth noting is that its process graph grows expo-
nentially as p#q increases. In this subsection, we show that

-send(0)

call(0)call_end(0)

release
call(0)

call_end(0)-send(0)

-get

CP_MODULE

CP_SUB0

-send(1)

call(1)call_end(1)

release

call(1)

call_end(1)

-release

-send(1)

CP_SUB1

-get
-release

get(0)

get

get(1)

get

In UI

(1)

(2)

Figure 9: CP MODULE after Transformation IV, where
get(0) and get(1) are merged into one get. So are release(0)
and release(1).

INTR can still be refactored to hold the above two elegant
properties.

The abstract behavior of INTR with 2 furnaces is illus-
trated below (written in an Ada-like language called PAL[25]):

task
)F�����

is

furnace id t := 2 ;

fFirst: array[furnace id t] of boolean;

entry call(i: furnace id t);

begin

for fid in furnace id t loop

fFirst[i] := TRUE;

end loop;

loop

accept call(i) do

if fFirst[i] = TRUE then

furnace[i].Alert;

fFirst[i] := FALSE;

else

select

furnace[i].alert;

else

null; // time out

end select;

end if;

end call;

end loop;

end
)F�����

;

As shown by the code, when INTR accepts -call(i) from
CP MODULE, INTR alerts the ith furnace. The alert can
be lost but not the first time. Otherwise, a deadlock would
be presented as an artifact of incomplete modeling of task
activation. So, a boolean array fFirst[] is added to remedy

-call(0) alert0

-call_end(0)

-call(0)
alert0

-call_end(0)
τ

-call(1) alert1

-call_end(1)

-call(1)
alert1

-call_end(1)
τ

A0

B0

A1

B1

A0

B0

B0

A0

A1

B1

B1

A1

state 0

state 1
state 2

state 3

INTR:

Figure 10: The process graph of INTR.

this situation. However, the remedy causes process graph of
INTR to grow exponentially because INTR must bookkeep
the alerted condition of each furnace, which induces �W� ç of
combinations.

The process graph of INTR of 2 furnaces is shown in Fig.
10. At the left, we use �f���@�����@����� and ��� to represent seg-
ments of behaviors, where � is to emulate timeout (caused
by loss of alert). At the right is the process graph of INTR
constituted by these segments. There are four major states
in the graph. At each major state, INTR can accept -call(0)
or -call(1). If -call(0) is accepted, the control goes to ���
(if the furnace has never been alerted) or ��� (if the furnace
is alerted already). For example, state 0 means no furnaces
have been alerted before. State 1 means furnace 0 has been
alerted at least once, but furnace 1 has not. So, with 2 fur-
naces, there are � major states; with 3 furnaces, there are �
major states; and so forth.

To decompose INTR, the same transformation in trans-
formation II & III is used, only input is more complicated.
This time, the behavior linked to furnace 0 is distributed over
four segments (����� and �����). They should be extracted
away and then wrapped into a new task all together. So,
after the segments with behaviors linked to furnace 0 are
identified and marked, the transformation purges the marked
segments from INTR. Next, -get(0) and -release(0) are in-
serted to fill every vacant area the marked segments left. Fi-
nally, wrapping the segments into a new process is tricky be-
cause segments can be disconnected or not reachable from
initial state (see Fig. 11). A new type of communication
called patch may be inserted to reconnect the major states
and preserve equivalence. Patch is meant to coordinate the
refactored INTR and the new process. Image the refactored
INTR and the new process are up and running. When refac-
tored INTR changes it current state from 1 to 3 (via ���), the
new process must do so immediately so that when -call(0)
is redirected to the new process, the right segment is used.

A0

B0

B0

A0

state 0

state 1

state 2

state 3

-p02

-p13

INTR_SUB0:

Figure 11: The new process with patches inserted.

-call(0)

alert0

-call_end(0)release

-call(0) alert0

t

-get -release

alert0

-call(0)

-call_end(0)

release

INTR_SUB0

INTR

-get

-call(1)

alert1

-call_end(1)release

-call(1) alert1

t alert1

-call(1)

-call_end(1)

INTR_SUB1

Figure 12: The refactored INTR.

So, a patch will be inserted between state 1 and state 3 in
refactored INTR and the new process as a coordinator. Fig.
11 shows the result of inserting patches -p02 and -p13 into
the new process. Accordingly, in INTR, a p02 is inserted be-
tween segment A1 and state 2 and a p13 is inserted between
segment A1 and state 3.

The decomposition transformation, however, does not con-
sider the repeated behavior patterns while inserting patches.
For instance, in the new process, ��� and �l� repeat more
than once. It is not always necessary to switch between ma-
jor states if the redirected behaviors are the same. For ex-
ample, at state 1 and state 3, the redirected behaviors are
the same �l� . A variant of weak bisimulation minimization2

is used to minimize the new process. The variant consid-
ers patches differently so that repeated patterns can be mini-
mized and some patches can be reduced. In the INTR case,�

Pure weak bisimulation minimization does not work because it treats the patches
as normal actions.

Task name Names of tasks after refactoring

CP MODULE CP MODULE,CP SUB0, CP SUB1

INTR INTR,INTR SUB0, INTR SUB1

TINTR TINTR,TINTR SUB0,TINTR SUB1

DP MODULE DP MODULE,DP SUB0,DP SUB1

UI UI,UI SUB0, UI SUB1

Device[i] (not refactored)

Furnace[i] (not refactored)

Table 1: The task names of refactored RTSS.

both patches in Fig. 11 are reduced. The same notion of
equivalence-preserving is used to justify the minimization.
The final result of refactored INTR is shown in Fig. 12.

� ��� ��$ � �! ��
�	$)� � ��� �;�f���

The tasks of refactored RTSS are summarized in Table 1. In
second column, task names in bold-italic font are semaphore
tasks which are independent of �!* . Let

Æ 8 ÆdÇ È�ÉdÊ�Ë�Ì�ÍÏÎ)Î Ð�ÑZÒ}ÓQÎ)Î Ò!Ð�ÑUÒ!ÓQÎ)Î ÊªÇ ÈeÉ=Ê�Ë�Ì�Í�Î)Î Ë�Ða���� 8 ÆdÇ �"Ë�� - Î)Î Ð�ÑZÒ}Ó ��Ë � - Î)Î Ò}Ð�ÑZÒ!Ó �"Ë�� - Î)Î ÊªÇ �"Ë�� - Î)Î Ë�Ð �"Ë�� - �
and

Ó � 8 Ê��� -K¡ �F¢ -�£ Î)Î ��¤¦¥ h�§<¡ �@¢ -¨£u©
Let ªny�+Ï+ H F M be the system with 1 furnace (starting from
index 0). We have

ª�yn+ª+ H F5M;1¬« B@B 0/­ B@B ª�­�T
Verification of a safety property is translated into a dead-

lock detection problem [5, 25]. The places to embed induc-
tive safety properties (which holds for arbitrary number of
furnaces) are 0 - and ª - for all , . If no safety property is em-
bedded, the verification problem is equal to check if ª�yn+ª+
is free of deadlock with respect to arbitrary number of fur-
naces.

Let ªny�+Ï+¯® H F5M denote the ª�yn+ª+ H F5M embedded with safety
properties. The base step of the induction is to verify whether
ª�yn+ª+¯® H F M is deadlock free. Note that compositional tech-
niques are used in the verification to mitigate state explo-
sion. To detect if ªny�+ª+�® H F M has deadlock, one simple way
is restricting all the communications, i.e., making them not
observable. If the final process graph is akin to figure (a)
below, then ªny�+ª+ H F M satisfies the property. On the other
hand, if a deadlock state presents in the final process graph
like figure (b) below, ªny�+Ï+ H F5M violates the property.

τ
τ

(a) (b)

τ

To pass the induction step, we need a network invariant.
The ªny�+ª+¯® H F M without exporting any communications, how-
ever, is infeasible for being an invariant. Recall that ports
-get and -release of every task in « are meant to be attached
by additional identical processes. These communications
must be exported so that ªny�+ª+ can be extended to arbi-
trary size. Let >�*/V be ªny�+ª+�® H F M with -get and -release of
semaphore tasks being exported. The induction step is to
verify: H >�*/V B@B 0 -�B@B ª - MÏÃP>�*/V!T
If the equation holds, we conclude the safety property is sat-
isfied with respect to arbitrary number of furnaces. Our ex-
periment shows that >�*/V is an effective network invariant for
ªny�+ª+ .

° �n$ �	�� ����c$%� �

Besides the remote temperature sensor system, some sys-
tems in the literature are also refactored to see if they can
pass the induction verification. The elevator system [20] is
another example worth mentioning. Most of the behavior
of elevator system can be refactored as expected but some
behaviors are not. They are for task initialization and termi-
nation. Their patterns are a sequence of commands which
are issued to elevators one after another. We have not yet
managed to find a way to refactor the patterns into a struc-
ture suitable for induction framework. We choose to ignore
the problematic behaviors (since they are only a minor part
of elevator’s behaviors) and focus on the continuously run-
ning parts. Thus, a network invariant can be constructed and
the induction framework becomes applicable.

± � ��¡%
�������²\���^³

In contrast to network-invariant based approaches, for some
restricted system topologies, whether a parameterized sys-
tem satisfies a (restricted) temporal specification has been
shown to be decidable. So, if the domain is restricted to a
particular topology, the problem can be approached by pro-
jecting infinite state space into finite state space, verifying
the given properties on finite state space, and then conclud-
ing the properties hold in the infinite state space as well. In

the late 80s, non-automatic approaches were proposed by
Clarke et al [3, 6]. Later, systems comprising a single con-
trol process with arbitrary number of identical processes are
studied by German [10] and Emerson [8], both providing
(semi) automatic methods. Other topology with processes
communicating in a ring structure is studied in [7]. They
show there exists a ´ such that the correctness of a ring struc-
ture of size ´ implies the correctness of networks of all sizes.

Decidability of verifying parameterized systems in which
processes communicate by private channels is studied by
Girkar and Moll [11]. They show the problem is undecidable
in general, but assuming a particular topology with a syn-
chronizer and arbitrary number of user processes, the dead-
lock detection problem is decidable.

In invariant-based approaches, finding the network in-
variant often requires human ingenuity and trial-and-error.
Nevertheless, under some particular topology and conditions,
automatic computation for the network invariants is possible
[22, 18, 19, 2]. An attempt to generalize automatic computa-
tion of network invariants is made by Clarke et al [15]. They
use context-free network grammar to describe the topology
of networks and provide a heuristic method to find the in-
variant. The procedure is not guaranteed to find the invariant
and might not terminate, which is consistent with the decid-
ability result. Clarke et al. also introduce a new way of spec-
ifying properties for the invariant-based approaches, making
specifying properties closer to the fashion of temporal logic.

A case study by Valmari and Kokkarinen [23] on lossy
channels is, to our knowledge, the approach closest to that
described here. Valmari and Kokkarinen studied a proto-
col with lossy channels in which the system allows mes-
sages to be retransmitted at most * times – a channel pa-
rameterized by * . The channel’s behaviors resemble the ini-
tialization and shutdown sequences of the elevator example.
They replace the single parameterized channel by the com-
position of * smaller processes called counter cells under
CSP (multi-way rendezvous) semantics [13]. Valmari and
Kokkarinen also adopt compositional analysis to compose
the processes and result in showing a liveness property in
this particular case.

Valmari and Kokkarinen’s method of replacing the chan-
nel’s behaviors with the composition of * processes captures
the spirit of our refactoring, but is rather specialized to the
particular case they considered. It is interesting to note that
Valmari and Kokkarinen’s approach would solve the prob-
lem that forced us to omit startup and shutdown sequences in
our inductive analysis of the elevator system. Unfortunately,
adopting CSP semantics to solve this problem would make
it impossible to apply some of the other transformations that

we used to refactor the elevator system.

µ �Ï� � ��¡¾ ��c$%� � �

Inductive verification using network invariants cannot be di-
rectly applied to systems in which individual component pro-
cesses vary in some systematic way depending on the size of
the system. We have described how models of such systems
can be transformed — refactored — into equivalent models
in which inductive verification can be applied.

Refactored models are composed in a modular and hier-
archical manner to avoid state explosion during an inductive
verification. Refactoring, and verification of the soundness
of transformation steps, is performed locally so that its cost
is not proportional to the size of the system.

� �#������� � �
���

[1] K. R. Apt and D. C. Kozen. Limits for automatic veri-
fication of finite-state concurrent systems. Information
Processing Letters, pages 207–309, 1986.

[2] F. Balarin and A. L. Sangiovanni-Vincentelli. On
the automatic computation of network invariants. In
CAV94, LNCS 818, pages 234–246, 1994.

[3] M. C. Browne, E. M. Clarke, and O. Grumberg. Rea-
soning about networks with many identical finite state
processes. Information and Computation, 81:13–31,
1989.

[4] Y.-P. Cheng and M. Young. Refactoring design mod-
els for compositional analysis and conformance test-
ing. (in preparation).

[5] S. C. Cheung and J. Kramer. Checking safety prop-
erties using compositional reachability analysis. ACM
Transactions on Software Engineering and Methodol-
ogy, 8:49–78, January 1999.

[6] E. M. Clarke and O. Grümberg. Avoiding the state ex-
plosion problem in temporal logic model checking al-
gorithms. In Proceedings of the 6th ACM Symposium
on Principles of Distributed Computing, pages 294–
303, August 1987.

[7] E. A. Emerson and K. S. Namjoshi. Reasoning about
rings. In 22nd ACM Symposium on Principles of Pro-
gramming Languages, pages 85–94, 1995.

[8] E. A. Emerson and K. S. Namjoshi. Automatic ver-
ification of parameterized synchronous systems. In

8th Conference on Computer Aided Verification, LNCS
1102, pages 87–98, 1996.

[9] D. Garlan, R. T. Monroe, and D. Wile. Acme: An ar-
chitecture description interchange language. In Pro-
ceedings of CASCON’97, pages 169–183, Toronto, On-
tario, November 1997.

[10] S. M. German and A. P. Sistla. Reasoning about
systems with many processes. Journal of the ACM,
39(3):675–735, July 1992.

[11] M. Girkar and R. Moll. New results on the analysis of
concurrent systems with an indefinite number of pro-
cesses. In LNCS, volume 836, pages 65–80, 1994.

[12] M. Hennessy. Algebraic Theory of Processes. MIT
Press Series in the Foundations of Computing. The
MIT Press, Cambridge, Massachusetts, 1988.

[13] C. A. R. Hoare. Communicating sequential processes.
Communications of the ACM, 21(8):666–677, August
1978.

[14] R. P. Kurshan and K. L. McMillan. A structural induc-
tion theorem for processes. Information and Computa-
tion, 117:1–11, 1995.

[15] E. M.Clarke, O. Grumberg, and S. Jha. Verifying pa-
rameterized networks. In ACM Transactions on Pro-
gramming Languages and Systems, volume 19, pages
726–750, 1997.

[16] R. Milner. A Calculus of Communicating Systems,
volume 92 of Lecture Notes in Computer Science.
Springer-Verlag, New York, 1980.

[17] R. Milner. Communication and Concurrency. Prentice
Hall, London, 1989.

[18] J.-K. Rho and F. Somenzi. Inductive verification of it-
erative systems. In Proceedings of the 29th Design Au-
tomation Conference, pages 628–633, Anaheim, Cali-
fornia, USA, June 1992.

[19] J.-K. Rho and F. Somenzi. Automatic generation of
network invariants for the verification of iterative se-
quential systems. In Computer Aided Verification, 5th
International Conference, CAV ’93, Elounda, Greece,
June 28 - July 1, 1993, Proceedings. Lecture Notes
in Computer Science, Vol. 697, Springer, 1993, pages
123–137, 1993.

[20] D. J. Richardson, S. L. Aha, and T. O. O’Malley.
Specification-based test oracles for reactive systems.
In Proceedings of the Fourteenth International Confer-
ence on Software Engineering, pages 105–118, Mel-
bourne, Australia, May 1992.

[21] B. Sanden. Entity-life modeling and structured analy-
sis in real-time software design–a comparison. Com-
munications of the ACM, 32(12):1458–1466, Decem-
ber 1989.

[22] A. P. Sistla. Parameterized verification of linear net-
works using automata as invariants. In CAV ’97, LNCS
1254, pages 412–423, 1997.

[23] A. Valmari and I. Kokkarinen. Unbounded verifica-
tion results by finite-state compositional techniques:
F � §�hy¶ states and beyond. In International Conference
on Application of Concurrency to System Design, Pro-
ceedings, pages 75–85, Aizu-Wakamatsu, Fukushima,
Japan, March 1998.

[24] P. Wolper and V. Lovinfosse. Verifying properties of
large sets of processes with network invariants. In
Automatic Verification Methods for Finite State Sys-
tems, Volumne 407 Lecture Notes in Computer Science,
pages 68–80. Springer-Verlag, June 1989.

[25] W. J. Yeh and M. Young. Compositional reachability
analysis using process algebra. In Proceedings of the
Symposium on Software Testing, Analysis, and Verifica-
tion (TAV4), pages 49–59, Victoria, British Columbia,
October 1991. ACM SIGSOFT, ACM Press.

[26] W. J. Yeh and M. Young. Re-designing tasking struc-
ture of ada programs for analysis:a case study. Software
Testing, Verification, and Reliability, 4:223–253, 1994.

