Part 1: Theoretical foundations in distributed computing

Ch. 5 Theoretical foundations

A distributed system is (1) a collection of processes that are (2) spatially separated and (3) do not share a common memory and communicate with one another by (4) exchanging messages with (5) arbitrary delays.

5.2 Inherent limitations of a distributed system

A view is said to be coherent if all the observations of different processes are made at the same physical time.

A global state of a distributed system consists of the local states of all the processes and messages in transit.

Absent of shared memory implies absent of a global clock.

Impact: It is impossible to have a coherent global state.

5.3 Lamport logical clock

(: happen before

1) a (b two events occur at the same process

2) a (b for sending event and receiving event of a

3) if a (b and b (c then a (c

(is a transitive relation.

(may be referred to as causally affect.

Concurrent events

 a || b if (not a (b) and (not b (a)

For any two events: either a (b or b (a or a || b.

Fig. 5.2 p. 101.

General assumption: no two events occur at the same time.

Reason: no referencing global time to prove two events occurred at the same time.

Logical clock:

Each process I maintains an integer variable X.i.

[IR1] An event occurs at Pi: X.i = X.i + 1

[IR2] When Pi receives a message with time stamp (TS,j) from Pj:

 X.i = max(X.i, TS) + 1

Each event on Pi has an associated time stamp (TSi,I).

TSi is the X.i right after the event (after applying [IR1] or [IR2].

Total ordering: Any two time stamps of different events can be totally ordered.

(TSi,I) < (TSj,j) if (TSi < TSj) or ((TSi = TSj) and (I < j))

Logical time is a discrete virtual time.

Pi waits for a specific logical time (e.g. X.i = 5) is risky because X.i may jump over 5 (from X.i < 5 to X.i > 5.

5.3.1 Limitations of Lamport's logical clock.

Two events a and b with time stamps TSa and TSb

If a (b then TSa < TSb

The reverse is not necessary true.

But, most of the time, we like:

If TSa < TSb then a (b.

Events a and b may not be causally related because each clock may independently advance due to local events.

5.4 vector clocks

Vector clocks has the desirable property:

Two events a and b with time stamps TSa and TSb

 a (b iff TSa < TSb

Vector clock:

Each process I maintains a vector of an integer variables X[1..n].i.
X[i].i : the logical clock of process i.

X[j].i : j =/ I, Pi’s best guess of logical time of Pj.

Best guess: Pi knows directly from Pj or indirectly from other process.

Implementation rules:

[IR1] An event occurs at Pi: X[I].i = X[I].i + 1

[IR2] When Pi receives a message with time stamp (TS,j) from Pj:

 X[I].i = X[I].i + 1

For all k =/ I, X[k].i = max(X[k].i, TS[k])
Note: Sending and receiving a message is treated as an event.

Each event on Pi has an associated time stamp (TSi,I).

TSi is the X.i right after the event (after applying [IR1] or [IR2].)

Assertion: At any instant: for all I and j X[I].i >= X[I].j

Fig. 5.5 p.105

TSa and TSb of events a and b.

Equal =: TSa = TSb iff For all I, TSa[I] = TSb[I]

=/ : TSa =/ TSb iff Exists I, TSa[I] =/ TSb[I]

<=: TSa <= TSb iff For all I, TSa[I] <= TSb[I]

<: TSa < TSb iff TSa <= TSb and TSa =/ TSb

</:

Concurrent ||: TSa ||TSb iff TSa </ TSb and TSa </ TSb

Note: <= is a transitive relation, but || is not.

For example, [5,3] || [2,6] and [2,6]||[6,4] but [5,3] < [6,4]

For any two events, a and b

Either a and b are causally related (TSa < TSb or TSb < TSa)

Or a and b are concurrent.

Vector clocks: a (b iff TSa < TSb

5.5 causal ordering of messages

If send(M1) (send(M2)

Then for every recipient Pi of both M1 and M2,

 Receivei(M1) (Receivei(M2).

Fig. 5.4 p.106

It’s important that every process in charge of updating a replica receives and updates the object in the same order to maintain its consistency.

Abstraction:

Pi maintains message history X.i that Pi knows.

1. When Pi sends m to Pj:

Put X.i on m, and send m.

X.i = X.i + m

2. Arrival of m at Pj:

If Deliveredj(X.j) includes ToPj(X.i(m))

Then deliver m

Else put m in buffer.

3. After Pj delivers m:

X.j = X.j + X.i(m) + m

Check buffer for possible delivery.

Implementation:

How to implement H.i, Deliveredj(H.j), ToPj(H.i(m)).

B-S-S protocol (messages are broadcast) p107

S-E-S protocol (messages are point to point) p107

B-S-S protocol (messages are broadcast) p107

Each process Pi maintains a vector X[1..n].i: the message history that Pi knows.

X[I].i: # messages Pi has sent.

X[j].i: # messages sent from Pj that Pi has delivered.

1. when broadcast a message m, Pi does:

 put X.i on m

 X[I].i++

2. Pj receives a message m with X.i(m) on it from Pi.

 If

(a) X[i].j = X[I].i(m) and

(b) X[k].j >= X[k].i(m), for all k, k =/ i.

Then deliver m

Else put m in the buffer.

3. After Pj delivers m:

 Pi: X[I].j ++

Check for deliverable messages in the buffer.

2(a) ensures that Pj has delivered the message M’ from Pi.

2(b) ensures that Pj has delivered all the messages M2” received by Pi before Pi sends m.

S-E-S protocol (messages are point to point) p107

Pi maintains a matrix X[1..n,1..n].i

X[j,k].i : #messages Pk has sent to Pj in the message history X.i.

X[I,j].i : #messages from Pj to Pi and Pi has delivered.

4. When Pi sends m to Pj:

Put X.i on m, and send m.

X[j,I].i = X[j,I].i + 1

5. Arrival of m at Pj:

If

(a) X[j,I].j = X[j,I].i(m)

(b) X[j,k].j >= X[j,k].i(m), for all k /= I,

Then deliver m

Else put m in buffer.

6. After Pj delivers m:

X.j = X.j + X.i(m) + m

Check buffer for possible delivery.

Implementation of X.j = X.j + X.i(m) + m:

For all j,k, j /= I, X[j,k].j = max(X[j,k].j, X[j,k].i(m))

X[j,I].j = X[j,I].j + 1.

Part 2: Termination detection and distributed snapshots
5.6 global state

local state of pi : Lsi

Global state GS = {LS1.LS2, …, LSn}.

send(mij) : sending event of m from pi to pj.

Recv(mij) : receiving event of m from pi to pj.

Send(mij) belongs to LSi iff time(send(mij)) < time(Lsi).

Recv(mij) belongs to LSj iff time(recv(mij)) < time(LSj).

Lsi includes all sending and receiving events in the history before time(Lsi).

Transit(Lsi,LSj) = {mij | send(mij)εLSi and recv(mij) /εLSj}
Inconsistent(Lsi,LSj) = { mij | send(mij) /εLSi and recv(mij)εLSj}
Consistent GS iff for all I,j, Inconsistent(Lsi,LSj) is empty.

Fig. 5.8 p.111

In a consistent GS, for every received message its corresponding sending event is recorded.

Transitless GS iff for all I,j transit(Lsi,LSj) is empty.

Strongly consistent GS: consistent and transitless.

5.6.1 Chandy-Lamport’s consistent GS recording algorithm.

A distribute algorithm (distributed snapshots) to capture a consistent global state.

Assumptions:

(a) no FIFO channels

(b) messages can not trans-pass markers.

Flooding of markers

Marker goes through each channel only once.

A process records its state when it receives the marker for the first time, after recording the process floods the marker.

Consistence proof:

For every message m, Pi m (Pj,

Recv(mij) ε LSj implies send(mij) ε Lsi.

Two cases to consider:

Case 1: The first marker reaching Pj is from Pi.

Pi marker ((m Pj)

 By (b), Pi sends m first then (taking the snapshot) sends the marker.

 Hence, send(mij) ε Lsi.

Case 2: The first marker reaching Pj is not from pi.

 Pi marker ((m Pj) (marker Pk

Then: Pi marker ((m Pj) (Pk

 As in Case 1, Pi sends m first then (taking the snapshot) sends the marker.

This ends the proof.

Fig. 5.9 p. 113.

Distributed snapshots is useful in detecting stable properties (such as termination, deadlock).

A predicate P is a stable property

if P is true now, P is always true in the future.

Si: a coherent global state. (the algorithm starts at Si).

St: a coherent global state. (the algorithm ends at St).

Sc: a recorded global state. (distributed snapshots).

Seq: an actual sequence of events that bring the system from Si to St.

That is, Si (Seq(St (this really happens)

There is a proof for the conclusion:

(1) If the recorded state Sc is a consistent global state

Then there exists a permutation of Seq: (seq1,Seq2) such that:

 Si (Seq1 (Sc (Seq2 (St. (this only theoretically happens).

(2) If a stable property P is true in the recorded state Sc

Then P is also true at St.

Conclusion:

If (1) the recorded state Sc is a consistent global state and

(2) a stable property P is true in the recorded state Sc,

Then P is also true at St and any state follows St.

Safety property: bad things never happen.

Liveness property: good things eventually happen.

5.7 cuts of a distributed computation.

Cut: a set {c1, c2, …, cn} where ci is the cut event of Pi.

A cut C can be a zig-zag line that connects the cut events.

Fig. 5.10, p. 114.

Inonsistent cut events ci and cj:

A cut is consistent if there exists no two inconsistent cut events.

Consistent cut:

For all ci, cj: not exists ei, ej: (ci (ei (ej (cj).

Or.

For all ci, cj: not (ci (cj).

That is,

No two cut events are causally related.

Every two cut events are concurrent.

A set of concurrent cut events forms a consistent cut and vice versa.

Vector time of a cut:

VTC = sup (VTc1, VTc2, …. VTcn)

Where sup is a component-wise maximum operation.

VCT[I] = max((VTc1[I], VTc2[I], …. VTcn[I]).

Thm 5.2: A cut is consistent iff

VTC = (VTc1[1], VTc2[2], …, VTcn[n]).

5.8 termination detection

Model:

States of processes: active or idle.

An Active process may send messages to other processes.

An idle process becomes active on receiving a message.

An active process may become idle at any time.

Termination:

for all process I, I is idle, and for every channel h, h is empty.

Control messages C: those messages for termination detection.

Basic messages B: those messages for the computing.

Huang’s algorithm:

Controlling agent (CA): the process monitoring the computation.

CA has a weight.

A process has a weight.

Basic messages has weights, control messages has weights, too.

CA or each process maintains a weight W >=0.

Rule 1:

CA or active process may send a message:

Divide W into W1 and W2. (W,W1,W2 all > 0)

W = W1.

Send B(DW=W2) .

Rule 2:

P receives B(DW).

W = W + DW.

If P is idle, then P becomes active.

Rule 3:

An active process can become idle:

Send C(DW=W) to CA.

W = 0.

Rule 4:

On receiving C(DW), CA does:

W = W+DW

If W = 1 then conclude the termination.

Proof:

A: the set of weights of all active processes.

B: the set of weights of all basic messages in transit.

C: the set of weights of all control messages in transit.

Wc: weight of CA.

Invariants:

P1: Wc + Σ W of A, B, C = 1

P2: for all W in A, B, C: W > 0

Hence,

Safety property: No false termination.

Wc = 1 and P1 impliesΣW of A, B, C = 0.

ΣW of A, B, C = 0 and P2 implies all W = 0, then implies all processes are idle and all channels are empty.

Liveness property: True termination is detected eventually.

(All W in A: W = 0 and B is empty) and (control messages are eventually delivered to CA, i.e. C eventually becomes empty.)

Hence, eventually, Wc = 1.

Part 3. Distributed mutual-exclusion and quorum structures

Two classes of distributed mutual-exclusion algorithms:

1. token based (how to search the token)

2. permission based.

6.6 Lamport's algorithm

assume: fifo-channels.

The algorithm is on p.125

Messages types:

Request: REQ(TS, I)

Reply: RPY(TS,I)

Release: RLS(TS,I)

Time stamp of REQ is used as request id.

Time stamps of RPY and RLS are not related to the time stamp of REQ.

Each process maintains a priority request queue: REQ(TS,I) …..

Entering CS conditions:

[L1] Pi has received a message (not necessary a RPY) with time stamp larger than the time stamp of its own request.

[L2] Pi's request is at the top of its request queue.

Correctness:

Theorem 6.1.

The proof is by contradiction.

Assume: Pi and Pj are in C.S..

Their requests for the C.S. are REQ(TSi,I), REQ(TSj,j).

Without loss of generality, assume: REQ(Tsi,I) < REQ(TSj,j). -----(1)

By [L1] from Pj, there is a message X(Tsi,I),

 such that REQ(TSj,j) < X(Tsi,I). ------(2)

By (1) and (2), REQ(Tsi,I) < X(TSi,I)

Therefore, by FIFO channels assumption, when Pj receives X(TSi,I), Pj must already receive REQ(TSi,I).

By [L2], REQ(TSj,j) can not be at the top of the queue.

Performance:

Message complexity: 3(N-1) messages per C.S.

Synchronization delay: T.

Can fifo-channels assumption be removed?

Can message complexity be reduced?

6.7 Ricard-Agrawala algorithm

Assume: non fifo-channels.

Message complexity: 2(N-1).

Synchronization delay: T

Release messages are merged into reply messages.

The algorithm is on p. 128.

R1: Pi sends a REQ(TSi,I) to all other processes to request.

R2: Pj blocks a reply for REQ(TSi,I) when

(1) Pj is requesting, REQ(TSj,j) < REQ(TSi,I), or

(2) Pj is in the C.S.; otherwise, sends a reply.

R3: Pi enters c.s. when it get a reply (like a permission) from all other processes.

R4: Pi sends blocked replies when it exits from c.s..

The execution of the c.s. follows the order of the time stamps of the requests.

Correctness:

Theorem 6.2.

Two requests: REQ(TSi,I) < REQ(TSj,j). ----- (a)

There are only two cases when Pi sends REQ(TSi,I):

(1): Pi has received REQ(TSj,j). Then, REQ(TSj,j) < REQ(TSi,I), a contradiction to (a).

(2): Pi will receive REQ(TSj,j). Then, when Pi receives REQ(TSj,j), by (a), Pi blocks the reply unless it exits from the c.s.

Therefore, Pi must enter c.s. then exist from it for REQ(TSi,I) first before Pj can enter c.s.

The algorithm is claimed to be optimal because 2 messages seems necessary between Pi and Pj for Pi requests and exits from c.s..

The problem: is it necessary that Pi must request to Pj and inform Pj from exiting c.s.

6.8.Maekawa's algorithm.

Two differences from previous algorithms:

(1) Request set of a process does not include all other processes.

(2) A process can only send out a reply (permission) at a time.

The construction of request sets

M1: (I,j, Ri (Rj ((
M2: (I, Pi (Ri

M3: (I, |Ri| = K

M4: Each process belongs to K request sets.

M1 is for safety property.

M2 is to reduce messages.

M3: request sets are equal in size (the same work for entering c.s.)

M4: all processes have the same responsibility in granting permission.

The grid structure is an example.

The algorithm is on p.131.

R2: Granting c.s.: Pj sends out its permission to Pi when its permission is on hand otherwise pending the REQ.

R5: Pj sends permission to the pending REQ.

The algorithm is deadlock-prone because the pending of REQs.

Performance

|Ri| = (N

3(N per c.s.

Syn Delay: 2T

(1) return permission (2) send permission to the pending REQ.

Handling of deadlock:

FAILED message: indicating that Pi cannot grant the request because the request has lower priority.

INQUIRE message: asking a site to yield the permission.

YIELD message: yielding a permission.

Maximum # of messages per c.s.: 5 (N

Pi REQ Pj INQUIRE Pk YIELD Pj GRANT Pi RELEASE Pj

Part 5 Checkpointing and recovery
Backward recovery (vs. forward recovery).

State-based approach (vs. operational approach).

Single process ckpting and recovery is simple, straightforward.

Ckpting and recovery in distributed computing is complicated.

12.6

orphan messages

(having receiver but no sender)

lost messages

(having sender but no receiver)

live locks

(message in transit may cause this problem.)

12.7 Consistent set of ckpts

 Consistent ckpts Consistent snapshots

No orphan messages

 Strongly consistent ckpts Strongly consistent snapshots

 No orphan messages and

 No lost messages.

 A simple method for consistent ckpting.

 Each process takes a ckpt after every message sent.

 The set of the latest ckpts is consistent.

 Simple but expansive.

12.8 synchronous ckpting and recovery

Synchronous Coordinated ckpting.

The algorithm.

Assume: FIFO channels, no process fails during the execution of the alg.

Stable storages are available.

Two phases:

The first phase: recursively asking the cohorts to take tentative ckpts.

The second phase: after all tentative ckpts are taken successfully, recursively make the tentative ckpts permanent.

Optimization: minimize the number of ckpts taken.
-1: the smallest label (sequence number)

Last_label_recv(Y(X) = m.l (if m exists since last ckpt) or –1.

First_label_sent(Y(X) = m.l (if m exists since last ckpt) or -1.

ckpt_cohortX = {Y| last_label_recv(Y(X) > -1}

When X takes a ckpt, X must ask those Y in ckpt-cohortX to check if taking a ckpt is necessary.

If last-label-recv(Y(X) >= first-label-sent(Y(X) > -1

Then Y must take a ckpt.

12.8.2 the rollback recovery alg.

Assume: the ckpting and recovery are not concurrently invoked.

Consider: minimize the number of processes rollbacked.

See fig. 12.8 p. 313.

Two phases:

1st phase: prepare to rollback.

2nd phase: rollback.

m is the last message sent before the last permanent ckpt.
last_label_sent(x(y) = m.l

rollback_cohort.x = {y| x can send messages to y.}

Note: when failure occurs process x might not know whether it has sent messages to y or not after the last ckpt.

When x prepares to rollback, x must ask those y in rollback_cohort.x to prepare rollback by sending a request with last_label_sent(x(y) on the request.

If last_label_recv(x(y) > last_label_sent(x(y) then y should prepare to rollback.

That is, if y has received a message that was sent by x after x's last permanent ckpt.

Part 6 Commit protocol and Voting protocol

Ch. 13 fault tolerance

Commit protocol (backward recovery)

Voting protocol (forward approach)

13.3 atomic action: undividable and uninterruptible operations

during the operations:

1. not aware the existence of other processes.

2. not communicating with other processes

3. instantaneous.

Commit: the effect of the action is permanent.

Abort: non of the effect persist. (殘存)

For single process: atomic action.

For multiprocesses: atomic transaction. Global atomicity.

Commit protocol: enforce global atomicity.

Goal: to have all processes agree either to commit or to abort a transaction.

No such protocol under bounded number of messages.

Gray’s two-phase commit protocol (a blocking protocol)

A coordinator + cohorts.

Assume: stable storage available for each process.

Write-ahead log protocol used (write undo&redo log before writing)

p.334 phase 1 phase 2.

p.335 site failures

13.6 Voting Protocol

It is desirable that the sites continue to operate even when other sites have crashed, or at least one portion should continue to operate after the system has partitioned.

Every replica is assigned a certain number of votes.

The algorithm P. 344.

V: total number of votes

R: read quorum

W: write quorum

R+w > v; w > v/2

A non-null intersection between every read quorum and write quorum.

A non-null intersection between every two write quorums.

Version number is used to decide which copy is the most updated.

p. 345

design issues:

how to assign votes

how to select r and w.

Part 7 Security

Ch. 15 Data Security

Terms:

Cryptology: the science of designing & breaking crypto-systems.

Cryptography: 如何利用 密碼學 於實際資訊傳輸

Crypto-analysis: 如何破解

Authentication: to verify whether a user is indeed what he claimed to be.

Authorization: to decide what access rights a specific user has.

Plaintext:

Cipher-text:

Encryption: plaintext – (+key) (cipher-text.

Decryption: cipher-text –(+key) (plaintext.

If the key is the same for both encryption and decryption: symmetric systems.

Otherwise: asymmetric systems.

Protection measure: how difficult in finding the keys.

To be secure & robust: remain secure if the most desirable side information (except the keys) is available.

Cipher-text only attack: no side information.

Known-plaintext attack: p. 406.

Chosen-plaintext attack: p. 407.

Design principles:

 Early: breaking dependencies as much randomness as possible p.407.

 Modern: exhaustive search principles: need exhaustive search for a space to determine the keys.

Conventional system: alphabet char. (another alphabet char.

Modern system: bit string (another bit string.

Open design: only the keys are kept secret. Underlying encryption and decryption techniques are open to the public.

Asymmetric system.

Two keys ke and kd.

Private key system: both ke and kd are kept secret.

Public key system: ke is known to the public and kd is kept secret.

Key distribution problem: a small secret communication channel is required for the private key system.

Ke is usually made public via magazines for the public key system.

15.6.2 RSA method in deriving ke and kd pair.

Plaintext (blocks of integers between 0~n-1

M : 0 ~ n-1

C = M**e mod n (e,n) known to the public.

M = C**d mod n (d,n) kept secret.

Deriving the keys (e,n) and (d,n):

(1) select two large primes p & q

(2) n = p x q

(3) chose a large integer d relatively prime to (p-1)x(q-1)

(4) e is e x d (mod (p-1)x(q-1)) = 1

example 15.1 on p. 414

if n is a sufficiently big number say 200 digits, decomposing n = p x q is almost impossible by using current super computers.

15.6.3 Simple signature.

Encryption with private key

Decryption with public key

15.8.4 Digital signature

properties:

1. unique and not forgable

2. sender not able to deny

3. receipient not able to modify the signature

4. cut and paste signature is impossible

a document M.

person A to sign M

person B to keep the signed M

m = abstraction of M

m is with a fixed size, not depending on the size of M.

s = EskA(m)

s is similar to the personal stamp bound with M.

C = EpkB(M+s)

B = M+s = DskB(C)

當爭議發生時

C.A.: M (m (EpkA (s’
If the s’ is the same with the s then A can not deny.

印鑑證明

印鑑證明之印鑑證明

C.A.

C.A.(C.A.)

i

j

m

M’

M”

k

ej

cj

ci

ei

2

5

1

last-label-recv(Y(X) = 4

Request(4)

Y is deciding to rollback or not.

Request(Last-label-recv(X(Y) = 6)

Last-label-send(X(Y) = 6

8

X prepares to rollback.

大大印

大印

大印

印

印

文件

