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Abstract

This paper proposes a quantum algorithm, named Dicke state quantum search (DSQS), to
set qubits in the Dicke state |D}!) of D states in superposition to locate the target inputs or
solutions of specific patterns among 2" unstructured input instances, where # is the number
O(n*) for min(k,n — k) < n/2. Compared to Grover’s
algorithm, a famous quantum search algorithm that calls an oracle and a diffuser O(v/2")

of input qubits and D = (}) =

times, DSQS requires no diffuser and calls an oracle only once. Furthermore, DSQS does
not need to know the number of solutions in advance. We prove the correctness of DSQS
with unitary transformations, and show that each solution can be found by DSQS with an
error probability less than 1/3 through O(1¥) repetitions, as long as min(k, n — k) < n/2.
Additionally, this paper proposes a classical algorithm, named DSQS-VCP, to generate
quantum circuits based on DSQS for solving the k-vertex cover problem (k-VCP), a well-
known NP-complete (NPC) problem. Complexity analysis demonstrates that DSQS-VCP
operates in polynomial time and that the quantum circuit generated by DSQS-VCP has
a polynomial qubit count, gate count, and circuit depth as long as min(k,n — k) < n/2.
We thus conclude that the k-VCP can be solved by the DSQS-VCP quantum circuit in
polynomial time with an error probability less than 1/3 under the condition of min(k, n —
k) < n/2. Since the k-VCP is NP-complete, NP and NPC problems can be polynomially
reduced to the k-VCP. If the reduced k-VCP instance satisfies min(k,n — k) < n/2, then
both the instance and the original NP /NPC problem instance to which it corresponds can be
solved by the DSQS-VCP quantum circuit in polynomial time with an error probability less
than 1/3. All statements of polynomial algorithm execution time in this paper apply only to
VCP instances and similar instances of other problems, where min(k, n — k) < n/2. Thus,
they imply neither NP C BQP nor P = NP. In this restricted regime of min(k,n — k) < n/2,
O(n*), and our DSQS
algorithm samples from it without asymptotic superiority over exhaustive enumeration.

the Dicke state subspace has a polynomial size of D = (}) =

Nevertheless, DSQS may be combined with other quantum algorithms to better exploit
the strengths of quantum computation in practice. Experimental results using IBM Qiskit
packages show that the DSQS-VCP quantum circuit can solve the k-VCP successfully.

Keywords: Dicke state; Grover’s algorithm; NP-complete problem; oracle; quantum search;
vertex cover problem
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1. Introduction

Quantum computers manipulate quantum bits, or qubits, which harness quantum
phenomena such as superposition, entanglement, and tunneling [1,2] for computations.
Unlike classical bits, which are confined to a state of either 0 or 1, qubits can exist in a
superposition, representing both 0 and 1 simultaneously until measured. This character-
istic allows for n qubits to represent and process all 2" possible states at once, whereas n
classical bits are restricted to represent and process one of those 2" states at a time. Thus,
the computational power of quantum computers increases exponentially with the number
of qubits. Quantum computers can therefore surpass classical computers, finishing com-
putations that classical computers can never complete, achieving what is called quantum
supremacy [3]. This has driven the development of numerous quantum algorithms, such
as the Deutsch—Josza algorithm [4], Shor’s algorithm [5], and Grover’s algorithm [6].

Grover’s algorithm [6] is a quantum search algorithm proposed by Grover in 1996.
It is designed to identify a specific target input or solution from a set of N unstructured or
unsorted inputs. Grover’s algorithm uses the concept of amplitude amplification to search
for the target input, employing an oracle to invert the phase of the target input state and a
diffuser to amplify its amplitude to be much larger than others. It is shown that Grover’s
algorithm can identify the target input with high probability by repeating the oracle and
the diffuser O(v/N) times. In 1998, Boyer et al. [7] demonstrated that if the number M
(1 < M < N) of target inputs or solutions is known in advance, then repeating the oracle

and the diffuser Vf \/ ]I\\]AJ times enables Grover’s algorithm to find all M solutions with

high probability. In 1997, Bennett et al. showed that any oracle-based quantum algorithm
needs to call an oracle at least O(v/N) times to identify a target input from N unstructured
inputs with high probability [8]. This establishes that Grover’s algorithm is theoretically
optimal oracle-based quantum search algorithm.

This paper proposes a quantum algorithm, named Dicke state quantum search (DSQS),
to set qubits in the Dicke state |[D}}) of D states in superposition to identify all M target
inputs or solutions of special patterns from 2" unstructured input instances, where # is
the number of input qubits, and D = (}) = O(n*), provided that min(k,n — k) < n/2.
Compared to Grover’s algorithm, which calls an oracle and a diffuser O(\/27 ) times, DSQS
requires no diffuser and calls an oracle only once. Moreover, DSQS does not need to
know the number M of solutions in advance. The correctness of DSQS is proven with
unitary transformations. We also show that DSQS can locate every single solution with a
probability of error less than 1/3 through O(1¥) repetitions for min(k, n — k) < 1/2. This
does not conflict with the assertion that Grover’s algorithm is the optimal oracle-based
quantum search algorithm. The reason for this is that DSQS sets qubits into the Dicke state
|D}}), reducing the search space for the oracle to D states, where exactly k out of n qubits
are in the state |1), and the remaining qubits are in the state |0). Grover’s algorithm calls
an oracle O(v/2") times to find solutions with high probability in a single repetition. (In
practice, multiple repetitions are required to identify the solutions with a probability that
approximates the theoretical value.) DSQS calls an oracle once to locate solutions with
a probability of 1/D through one repetition. Afterwards, DSQS locates solutions with
high probability through O(1¥) repetitions, the order of which is polynomial as long as
min(k,n — k) < n/2.

This paper also proposes a classical algorithm, named Dicke state quantum search—
vertex cover problem (DSQS-VCP), to construct a quantum circuit based on DSQS to
solve the k-vertex cover problem (k-VCP) [9]. The k-VCP is also referred to as the vertex
cover problem (VCP) for simplicity. It is a known NP-complete (NPC) problem, which
is a decision problem that determines whether at least one solution satisfies specified
conditions [10]. For an NPC problem, it is unlikely that a classical algorithm exists to solve
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the problem in polynomial time for all cases. DSQS-VCP addresses the NPC challenge and
tries to solve the search version of the k-VCP by generating a quantum circuit, named the
DSQS-VCP quantum circuit, to identify all solutions satisfying the given conditions of the
k-VCP in polynomial time with bounded error for specific cases.

We analyze the time complexity of DSQS-VCP and further decompose the DSQS-VCP
quantum circuit into components consisting solely of H, T, and CX gates, which are basis
gates in a universal gate set. We also analyze the complexity of this decomposed circuit in
terms of the qubit count, gate count, and circuit depth. The overall complexity analysis
reveals that DSQS-VCP can generate a quantum circuit based on DSQS using |D}/) to solve
the k-VCP in polynomial time with a probability of error less than 1/3 for min(k,n — k) <
n/2. Since the k-VCP is NP-complete, NP and NPC problems can be polynomially reduced
to the k-VCP. If the reduced k-VCP instance satisfies min(k,n — k) < n/2, then both
the instance and the original NP/NPC problem instance to which it corresponds can be
solved by the DSQS-VCP quantum circuit in polynomial time with an error probability
less than 1/3. We further conduct two experiments using IBM Qiskit [11] packages to
implement and run DSQS-VCP quantum circuits to identify all solutions to the example
k-VCP instances successfully. The instances are for small # and k, such as (n =5,k = 1,2,3)
and (n =7,k = 2,3,4), all of which satisfy the condition min(k,n — k) < n/2.

Overall, this paper presents the DSQS algorithm and constructs DSQS-VCP quantum
circuits to solve with polynomial complexity VCP instances and similar instances of other
problems when min(k,n — k) < n/2 holds. However, this implies neither NP C BQP
nor P=NP. In the restricted regime of min(k, n — k) < n/2, the Dicke state subspace has
a polynomial size of D = (}) = O(n¥), and DSQS samples from it without asymptotic
superiority over exhaustive enumeration. Nevertheless, DSQS may be paired with other
quantum algorithms to better exploit the strengths of quantum computation, which is not
within the scope of this paper.

The remainder of this paper is organized as follows. Some background knowledge is
introduced in Section 2. The concept of DSQS is elaborated, and its correctness is shown in
Section 3. The DSQS-VCP algorithm is introduced, and its generated quantum circuit is
analyzed in Section 4. The results of experiments based on IBM Qiskit packages are shown
in Section 5. Finally, Section 6 concludes this paper.

2. Background
2.1. Grover’s Algorithm

In 1996, Grover introduced a quantum search algorithm known as Grover’s algo-
rithm [6]. This algorithm is designed to locate a specific target input or solution within a
set of N unstructured or unsorted input instances. By iteratively applying an oracle and
a diffuser O(v/N) times, Grover’s algorithm achieves a high probability of successfully
identifying the solution. In contrast, classical algorithms typically require O(N) oracle calls
on average, and, in the worst case, to locate the target input within unstructured input
instances. This highlights the quadratic speedup provided by Grover’s algorithm in terms
of oracle call efficiency.

The quantum circuit of Grover’s algorithm is depicted in Figure 1 [12], which illus-
trates two primary components: the oracle and the diffuser. These two components are
collectively referred to as the Grover iterator, which is executed O(+/N) times throughout
the algorithm.

The oracle, denoted Uy in Figure 1, plays a crucial role in identifying the target input
by flipping its phase. Its definition is provided below.



Mathematics 2025, 13, 3005

4 0of 28

07)

U |x) = {_|'x> R = ) (1)

x) otherwise

In Equation (1), the target input is denoted |x*). The oracle operates by flipping the
phase of the state |x) if and only if |x) matches |x*); otherwise, it leaves the state unchanged.

Diffuser
Oracle -~ & X
0) —H [~ H HH [ A
: Uy : 210 (0| — 1 : :
0) —H H CTH— - A=
Grover Iterator

(repeating O(+/N ) times, N=2")
Figure 1. The quantum circuit of Grover’s algorithm.

The diffuser, on the other hand, is responsible for adjusting the probability amplitudes
of quantum states by inverting them about their average value; it is an inversion around
amplitude mean operation. Grover’s algorithm leverages the oracle and the diffuser to
iteratively refine the quantum state of the system. Initially, the qubits are prepared in a
uniform superposition state. When the oracle is applied, it flips the phase of the target
input, effectively assigning it a negative probability amplitude. The diffuser then amplifies
the amplitude of the target input and meanwhile reduces the amplitudes of all other inputs.
Repeating the Grover iterator O(v/N) times significantly increases the amplitude of the
target input while diminishing those of non-target inputs, allowing for the algorithm to
identify the solution with high probability. Grover’s algorithm, which repeats the oracle and
the diffuser O(v/N) times, has been shown in [8] to be the optimal oracle-based quantum
search algorithm.

Grover’s algorithm can also handle scenarios involving multiple target inputs. In 1998,
Boyer et al. demonstrated that when M target solutions exist and M is known beforehand,

performing the oracle and the diffuser {Z v/ AI\/[IJ times ensures that all solutions can be

identified with high probability. To estimate the number of solutions M in a given problem,
Brassard et al. introduced the quantum counting algorithm in [13]. This algorithm employs
quantum phase estimation (QPE) with t counting qubits and a total of 2! — 1 Grover iterator
repetitions [14]. However, this approach may result in large gate counts and deep quantum
circuits, posing challenges for practical implementation.

Numerous research papers [12,15-24] are proposed in the literature to build quantum
circuits based on Grover’s algorithm to solve various NP-hard and NP-complete problems.
The solved problems include the k-coloring problem, the maximum clique problem, the
list coloring problem, the pure Nash equilibria finding problem in graphical games, the
Hamiltonian cycle problem, the dominating set problem, the exact cover problem, and
the vertex cover problem. Readers are referred to [12] for descriptions of all the above-
mentioned research results.

2.2. The Vertex Cover Problem

The vertex cover problem (VCP) is a well-known decision problem. It is also known
as the k-vertex cover problem (k-VCP). As shown in [9], the VCP is NP-complete (NPC),
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meaning it is unlikely that a classical algorithm exists to solve it in polynomial time for
any cases.

The problem definition is as follows. Given an undirected graph G(V,E) with n
vertices and m edges, the k-VCP or the VCP associated with k (1 < k < n) asks whether
there exists a vertex subset V' C V with |V’| < k such that every edge (u#,v) € E is covered
by V', ie., u € V' and/or v € V. In this context, a vertex subset V' is called a k-vertex
cover (or a vertex cover with size k) if its size is k and covers all edges in the graph. Simply
put, the k-VCP determines whether a vertex cover of size k or smaller exists for a given
graph. If so, it answers “yes”; otherwise, it outputs “no”.

For example, Figure 2 illustrates two vertex covers with size 2 for an undirected graph
with 5 vertices and 4 edges. In the case of k = 1, the output of the k-VCP for this graph
is “no”. However, in the case of k > 2, the output of the k-VCP for this graph is “yes”.
For another example, Figure 3 illustrates three vertex covers with size 3 for an undirected
graph with 7 vertices and 7 edges. In the cases of k = 1 and k = 2, the output of the k-VCP
for this graph is “no”. However, in the case of k > 3, the output of the k-VCP for this graph
is “yes”.

OO O==0

€ €1

(2 (=)
83 e3

Figure 2. Two vertex covers for an undirected graph with five vertices and four edges: (left) the
vertex subset {vg, v3} is a 2-vertex cover; (right) the vertex subset {v1,v3} is also a 2-vertex cover.

Figure 3. Three vertex covers for an undirected graph with seven vertices and seven edges: (top)
the vertex subset {vg, v, v3} is a 3-vertex cover; (middle) the vertex subset {vq,v,,v3} is another
3-vertex cover; (bottom) the vertex subset {v1, v3,v4} is yet another 3-vertex cover.
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The original VCP or k-VCP is a decision problem that determines whether a given
graph has a vertex cover of size k or smaller. However, this paper also considers the
search-version k-VCP, which outputs all vertex covers of size k (i.e., all k-vertex covers) for
a given graph. Throughout this work, the term “k-VCP” may refer to either the decision
version k-VCP or the search version k-VCP, depending on the context.

2.3. The Dicke State

The concept of Dicke states was introduced by Dicke in 1954 [25]. A Dicke state,
denoted |D}}), is a special type of entangled quantum state of n qubits, where exactly k
qubits are in |1) and the rest are in |0). In other words, it is the equal (or symmetric)
superposition of all n-qubit states |x) with Hamming weight wt(x) = k, where wt(x) stands
for the number of bits set to 1 in binary string x [26]. The Dicke state is defined as follows:

1
|DIZI>:HT) )3 [x) - @
k) x={0,1}", wt(x)=k

The number D of possible in-superposition states in |D) is D = (}) = 2

= R
For example, | D3) = \/g(|0111> +(1011) + |1101) + |1110)) is an equal superposition of
D = (g) = 4 states.

For1 < k < n/2, k! can be considered as a constant. We therefore obtain the following

D= (1’:) _ n(n—1)~~];!(n—k+1) et = O() 3)

Equation (3):

In Equation (3), ¢ = w < 1for1 < k < n/2. By Equation (3), D = O(n)
grows polynomially with n for 1 < k < n/2. However, for k near n/2, D = (J) reaches its
maximum value. By using Stirling’s approximation for factorials (i.e., n! ~ v/27n (%)n) [27],

we have the following Equation (4):

(wr2) = Grareorn = 55) @

In Equation (4), D = O (\2/—%) grows exponentially in n, with a polynomial correction
factor of ﬁ for k = n/2. In summary, D grows polynomial with #, as long as min(k, n —
k) < n/2,ie., either k = O(n/Inn) or (n —k) = O(n/Inn). In contrast, D grows
exponentially with n when k = n/2. For intermediate k, D transits between polynomial and
exponential growth, depending on k/n. It is notable that min(k, n — k) < n/2 is required
for the proposed DSQS algorithm to solve problems in polynomial time with bounded
error. Therefore, we assume min(k, n — k) < n/2 in this paper when k is not specified.
Generating Dicke states deterministically is a challenging task. In [26], Bartschi and
Eidenbenz proposed a quantum circuit capable of efficiently preparing the Dicke state | D} ).
This quantum circuit requires O(kn) quantum gates, has a depth of O(n), does not rely on
ancillary qubits, and is compatible with the linear nearest neighbor (LNN) architecture. The
overall circuit is based on a recursive decomposition based on an initial state |0)®(" k) |1>®k
to produce the final state | D}!). The recursive decomposition is described in Equation (5)

—k k
D9 = /"= o0+ Eipym. ®)

Equation (5) indicates that the preparation of |[D}}) can be achieved by combining the

as follows.

state | D}’ !) along with |0) and the state [D}"|') along with |1), while applying appropriate
Y-rotation R, transforms to adjust the probability amplitudes.
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By the recursive decomposition, Bartschi and Eidenbenz showed that the Dicke state
|D}!) preparation quantum circuit can be built based on two basic constructs, as depicted
in Figure 4. Note that the boundary condition of the Dicke state decomposition is D} = |1)

and D} = |0). Also note that a Y-rotation Ry (2 cos~! \/Z) gate transforms the state |0) to

the state \/% |0) + \/g |1) to make qubits have proper probability amplitudes obeying
the Dicke state superposition.

Figure 5 shows the quantum circuit using the two basic constructs recursively for Dicke
state | D3) preparation. Figure 6 shows the quantum circuit implemented with IBM Qiskit
packages to generate the Dicke state | D3). Figure 7 shows the quantum circuit to measure
qubits in the Dicke state |Dj). Figure 8 shows the measurement results of the quantum
circuit of the Dicke state | D}). From the measurement results, we can observe that qubits
are in equal (or symmetric) superposition of D = (é) = 4 states |0111),]1011), |1101), and

|1110) with the probability amplitude of \/g = \/g and the probability density of 3 = 1.

/
/
4 1
/ n—1 Ry| 2cos n
/
n—-I1+1
R,| 2cos™?! 1
n-1 y n .
N N
h—gp U n—d D
(a) The first basic construct. (b) The second basic construct.

Figure 4. The two basic constructs used to build the Dicke state | D}) preparation quantum circuit.

|0) 3 2 1
4 3 2
1 2 1
|1) . : O——D
1
|1) < D——DD——D
|1)-D——D-D——D] 4

Figure 5. An example of the quantum circuit for the Dicke state |D‘31) preparation, where a \/; gate

is a shorthand for a Y-rotation Ry (2 cos™! \/g ) gate.
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Figure 6. The quantum circuit implemented with IBM Qiskit packages to generate the Dicke

state [D}).
do
q1
g2
ds
C
Figure 7. The quantum circuit implemented with IBM Qiskit packages to measure qubits in the Dicke
state |D3).
0.259
0.251 0.247 0242
0.24
>
£
3 0181
[1v]
a
2
o
L0121
7]
G
5
o
0.06
0.00 -
~ ~ ~ =]
g g g =)

Figure 8. The measurement results of the quantum circuit of the Dicke state |D§>.

3. DSQS
3.1. The DSQS Quantum Circuit

Figure 9 shows the quantum circuit of the proposed DSQS algorithm. As shown
in Figure 9, the quantum circuit uses 21 + 1 qubits, a Dicke state |D}!) preparation gate
and an oracle Uy. All 21 + 1 qubits are in |0) initially. They include n working qubits (or
input qubits) xo, ..., x,_1 grouped as register x, one response qubit (or decision qubit) y
as register y, and n mirror qubits x{,, ..., x],_; grouped as register x’ to reflect the states of
qubits in register x.
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o 0H M i |
Register x : : i \ID}) i : i . E
(n qubits) T i Ur ] ) :
Wl
Register y Y |0) ; : ; ;
10— A
Register x’ : T ' i i
(n qubits) . o ;- ] i
-1|0) 4 | ——DHAF
[o) [11) [P2) l13)

Figure 9. The quantum circuit of the proposed Dicke state quantum search (DSQS) algorithm.

Initially, n working qubits x, ..., x,_1 in |0) are used to span the search space. They
are transformed into the Dicke state |D}}) with a Dicke state gate. The resulting state is
an equal superposition of states where exactly k qubits are in |1), and the remaining n — k
qubits are in |0). The total number of such possible in-superposition states is D = (}).
Subsequently, the oracle is applied to the working qubits xy, ..., x,_1 in register x and the
qubit y in register y, performing the unitary transformation Uy of the oracle as defined in
the next subsection.

3.2. The DSQS Oracle

The DSQS oracle Uy is a unitary transform that operates on the n working qubits
(or input qubits) xo, ..., x,_1 in register x and the decision qubit y in register y. Let T be
the set of all target inputs or solutions to a given problem, and let f(x) be the function
corresponding to the oracle Uy for the given problem to satisfy the following definition:

flx) = 1, ifx € T(ie., xis a target input) ©)
0, otherwise
The oracle Uy is then defined as
[X)|lyo1), ifxeT
Uslx)ly) = [0y @ f(x)) = , )
|x)|y ®0), otherwise

When y = 0, the equation simplifies to

Uy [x) [y) = Up |x)[0) = |x) [f(x)) = {x>|1>, ifxeT o

|x)|0), otherwise

Specifically, the initial state of qubit y is |0). If the quantum state of the working qubits
Xo,...,Xy—1 in register x corresponds to a target input or solution in set T, then the oracle
Uy sets qubit y to [y @ f(x)) = |1). Otherwise, qubit y remains [y @ f(x)) = |0).

Let the total number of solutions be M. Therefore, there are M states of register
x matching with solution states corresponding to target inputs in T. Before the oracle
operation Uy, qubits xo, ..., x,1 are in the Dicke state |D}) in equal superposition of a
total of D = () possible states, and qubit y is |0). Therefore, the oracle Uy flips the state of
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y to [1) for M solution states out of the D states of |D}}), while leaving y in state |0) for the
remaining D — M non-solution states. We therefore have the following Equation (9):

D-M M
Y CELy AT ©)

In Equation (9), we have that the probability amplitude of qubit y being |1) is v/M/D.
Thus, the probability density P of qubit y being |1) is M/D. We then obtain the follow-
ing equation:

M = PD (10)

We can measure register y to estimate the probability density P of y being |1). Let the
estimated probability density be P’. According to Equation (10), we can estimate the total
number of solutions M by multiplying P’ with D, as shown in Equation (11).

M=PD (11)

In Equation (11), we can see that if the DSQS quantum circuit consists only of register
x with n qubits and register y with a single qubit, it can also function as a quantum circuit
for estimating the total number of solutions M.

However, DSQS performs more tasks, as described below. DSQS takes a qubit x; from
register x and the qubit y as the two control qubits of a Toffoli, or controlled—controlled-X
(CCX, or C2X) gate, with one qubit xg from register x’ as the target qubit, where 0 < i <
n — 1. This setup ensures that the solution states of register x of n working qubits are
reflected on register x’ of n mirror qubits x(’), s, x,’kl, whereas the non-solution states are
all reflected as |0)®

By measuring the results of register x’, we can identify the solutions to the given search

n . .
on mirror qubits.

problem. If the measurement outcome is the all-zero state with a probability of 1, it indicates
that the problem has no solution. Conversely, non-all-zero outcomes, each occurring with a
probability of 1/ D, correspond to valid solutions to the problem. Meanwhile, the all-zero
state occurs with a probability of (D — M)/D, where M is the number of solutions and
D = (}) is the number of possible states in the Dicke state |D}!). The correctness of DSQS
will be demonstrated in the next subsection.

3.3. The DSQS Correctness

The correctness for the DSQS quantum circuit using the Dicke state |D}}) with D = (})
states in superposition to identify all solutions to a given problem is proven by the
unitary transformations below. Refer to Figure 9 for the placement of quantum states
[$0) , - - ., |3) within the quantum circuit. Note that we use x € DS} as the shorthand for
x = {0,1}", wt(x) = k.

[$o) = 10)"[0) [0)*" (12)

ly1) = D}) [0)[0)°"

= (Vg = 1] 0o (13)
xEDSZ

$2) = Uf(<\/g %SHI@) |0>) j0)°"
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= (\ED )3 IX>) |£(2)) 10)" (14)

CCX )10 (15
V5 L, 0 venio
) ,—f<z|o®”+z|x>

x¢T x€T
\/ |o yer 1/ Y lx) (16)
xeT

In Equation (15), CCX; stands for a CCX gate with qubits x; and y as control qubits
and with x/ as the target qubit. In Equation (15), different registers are entangled. Therefore,
measuring only a subset of registers (e.g., x{, ..., x,_;) and discarding the rest is formally
equivalent to taking a partial trace over the unmeasured registers. In Equation (16), for
register x’ in state |ih3) (denoted |ip3) ), its probability amplitude of |0)“" is /(D — M)/D,
and its probability amplitude of |x) is V1/D,wherex € T, 0 < x < 2" —1,and T is the set
of all M target inputs or solutions. Therefore, DSQS makes register x’ have a probability
density of 1/ D for each solution state corresponding to a solution, and a probability density
of (D — M) /D for the all-zero state |0)®”. If the problem has no solution, i.e., M = 0, the
all-zero state |0)*" has a probability density of (D — M)/D = D/D = 1.

3.4. The DSQS Error Probability

Bernstein and Vazirani introduced the complexity class of bounded-error quantum
polynomial time (BQP) [28] in 1993. Specifically, BQP is defined as the class of decision
problems solvable by a quantum Turing machine (QTM) [29] in polynomial time with an
error probability that is less than 1/3. The QTM [29] was proposed by Deutsch in 1985; it is
a quantum version of the classical Turing machine (TM) [30] proposed by Turing in 1936. A
classical computer can be considered a TM, whereas a quantum computer is a QTM. Note
that the error bound of 1/3 in BQP originates from the convention adopted by the classical
probabilistic complexity class BPP (bounded-error probabilistic polynomial time) [31]. The
choice of 1/3 is not mandatory. In practice, any constant less than 1/2 can be used, as it
guarantees a success probability greater than 1/2. This is important because when the
success probability exceeds 1/2, it can be boosted arbitrarily close to 1 by repeating the
algorithm and taking a majority vote.

The Chernoff bound shows that the probability of majority error decreases exponen-
tially in the number of repetitions.

Some algorithms, such as Shor’s algorithm, are believed to place problems, such
as integer factorization and discrete logarithms, in BQP because the algorithms run in
polynomial time to solve problems with bounded error on a quantum computer. While
Grover’s algorithm also operates with bounded error, it does not place problems in BQP.
This is because Grover’s algorithm finds all solutions to a problem among 2" input instances
by calling the oracle and diffuser O(v/2") times. The number of calls is exponential in the
input size n, where n is the number of qubits defining the search space.

With the help of Dicke state | D}’), the proposed DSQS algorithm can locate all solutions
of specific patterns to a given problem among 2" input instances by calling only the oracle
just once. However, it still does not place problems in BQP. This is because the probability
of error not to locate a single solution is D 1, which is not less than 1/3, where D = (6)-
Nonetheless, we show below that DSQS can locate all solutions with a probability of error
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less than 1/3 by performing O(1¥) repetitions, the order of which is polynomial, as long as
min(k,n — k) < n/2.

As previously mentioned, the proposed DSQS does not utilize a diffuser for ampli-
tude amplification. Instead, it maintains the probability amplitude of a solution state

corresponding to a solution to be 4/ %. This results in a probability density of % for a

solution state. Therefore, all solution states have the probability amplitude of |/ M with the

probability density of 4. In contrast, a non-solution state corresponding to a non-solution
has a probability amplitude and a probability density of 0, with the exception that the

all-zero state has a probability amplitude of |/ 2 _DM and the probability density of 2 o

Here, we assume the all-zero state is also a non-solution state without loss of generality. In
practice, DSQS completely shifts the probability amplitudes of all non-solution states to the
all-zero state. Thus, when we run DSQS and perform a single measurement, each solution
state has, independently, a % probability of being observed, whereas the all-zero state has a
% probability of being observed and the other non-solution states have no probability
of being observed. Consequently, in the absence of noise, any measured result other than
the all-zero combination can be considered a reflection of a solution.

Due to the Dicke state, the size of the search space for oracle processing is reduced
from 2" to D = (}) = O(n¥) for min(k,n — k) < n/2. This reduction allows for DSQS
to ensure that the probability of not observing a single solution is smaller than % after a
polynomial number of repetitions. We present the following lemma and theorem:

Theorem 1. The probability that a single solution is not observed by DSQS using the Dicke state
|D}!) becomes less than % after O(n*) repetitions for min(k,n — k) < n/2.

Proof. The probability that a single solution is observed in one repetition of DSQS using
Dicke state |D}) is {5, where D = (}) = O(n*) for min(k, n — k) < n/2. The probability of
error that a single solution is not observed in one repetition of DSQS is therefore %. Since
D = O(n*) for min(k,n — k) < n/2, we assume D < cn* with ¢ being a positive constant.
Without loss of generality, we assume D = cn* for ¢ > 0.

Let € be the probability of error that a single solution is not observed in t consecutive
repetitions of DSQS. We obtain

e (D—l)t
D

D-1\'_1
D 3
Taking the natural logarithm on both sides, we obtain
In b-1 t <In !
D 3

t-In D-1 <1n1
D 3

Substituting D = cn* into ln(g) , we obtain

We aim for € < %, leading to
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The above equation derivation uses the Taylor expansion approximation, In(1 —z) =
2 3 .
—z—% —% — .-~ —z, where we assume z = ﬁ — 0 for large n and higher-order terms

are negligible. Thus, we obtain

1 <1 1
P — ni
cnk 3
Ini
F> f’ = 'nk
T onk

Here, ¢ = —cIn § = 1.0986¢ for ¢ > 0 and min(k,n — k) = O(n/ Inn).

The above derivation shows that after ¢'n* = O(n*) repetitions of DSQS using the
Dicke state |Dj}’), the probability that a single solution is not observed is less than % for
min(k,n —k) =O(n/Inn). O

4. DSQS-VCP

In this section, we present an algorithm to generate a quantum circuit based on DSQS
using Dicke states to solve the k-VCP. The algorithm is named DSQS-VCP, and the generated
quantum circuit is referred to as the DSQS-VCP quantum circuit. Below, we first introduce
the DSQS-VCP algorithm and then present its complexity analysis.

4.1. The DSQS-VCP Algorithm

The DSQS-VCP algorithm, whose pseudo-code is shown in Algorithm 1 below, can
generate a quantum circuit based on DSQS using the Dicke state to solve the k-VCP by
finding all k-vertex covers for a given undirected graph G = (V,E), where the vertex
set V.= {vg,...,v,_1} is of size n and the edge set E = {ey,...,e,_1} is of size m. The
quantum circuit is designed to identify all vertex covers of size k for the graph G.

The DSQS-VCP algorithm first prepares a quantum circuit QC containing 2n 4- 1 qubits
in |0) initially. The qubits consist of n working qubits xj, . .., x,,_1, grouped into a register
x, with each qubit corresponding to a vertex in V. QC also contains 2m qubits fy, ..., fom—1
serving as qubits associated with the controlled quantum flag (CQF) gates used by the
m edges, where each edge uses two qubits for its associated quantum flag gates, as will
be explained later. In addition, QC contains a qubit y as a register y, and n mirror qubits
Xy oo s X1,
measurement results of mirror qubits.

grouped into a register x’, as well as n classical bits grouped as cb to store the

First of all, QC applies a |D}!) gate to working qubits to make them in the Dicke state
|D}!). Note that the |D}!) gate may be labeled as D(1, k) in practical implementations later.
Afterwards, QC employs many CQF gates, as introduced below. The CQF gate is inspired
by the concept of controlled quantum semaphore (CQS) gate proposed in [22]. The function
of the CQF gate, which has two flag qubits, is to verify whether a given vertex subset S,
specified by the state of register x, covers a specific edge e = (u,v), that is, to check whether
u € Sand/orv € S. If so, the first flag qubit, which is initially |0), will be flipped to |1);
otherwise, it remains in |0). Note that the second flag qubit functions merely as an ancillary
qubit to assist the first flag qubit to be set properly.

Figure 10 shows the block diagram of the CQF gate along with its detailed quantum
circuit. The CQF gate, denoted Flag in Figure 10, has one control qubit, ctrl, and two flag
qubits, f; and f;, 1, all initially in |0). Table 1 shows all the possible combinations of gate
inputs (i.e., ctrl, fy, and f;41) and gate outputs (i.e., ctrl’, f;, and f; ;) of the gate. Note
that f, .1 = |0) initially and always remains in |0), so there is no input combination of
fri1 = |1) in Table 1. On the contrary, f;, remains unchanged if ctrl is |0), and it is definitely
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|1) if ctrl is |1). The CQF gate is synthesized directly from the truth table with the fewest
possible qubits and MCX gates.

ctrl —?—

S —o — =

Flag

S, - 9_

Figure 10. (left) Block diagram of a CQF gate, denoted Flag, and (right) its detailed quantum circuit.

Table 1. State transition of a CQF gate, (ctrl, fy, fyy1) — (ctrl', fi, fi 1), with ctr] as the control qubit.

ctrl fn fh+1 ctrl’ fi fiaa
0 0 0 0 0 0
0 1 0 0 1 0
1 0 0 1 1 0
1 1 0 1 1 0

An edge e = (v;,v;) uses two consecutive CQF gates with flag qubits f; and fj,, 1, as
well as control qubits x; and Xj, 0 <i,j <n—1,asshown in Figure 11. Note that the two
flag qubits are in |0) initially. The possible states of fj, and fj, ;1 are shown in Table 2. The
reader can verify that if the control qubit x; is |0), then both qubits f; and f;,1 remain in
|0). In contrast, if the control qubit x; is |1), then both qubits f;, and f,, are first set to |1).
Afterwards, qubit f;, 1 is reset to |0) by an X gate. Consequently, if the CQF gate is applied
again with the control qubit x; in |1), then qubit f}, is set to [1) and f} 1 is first set to [1)
and then reset to |0). Specifically, starting from the initial state of |fj, 11 f,) = |00), the flag
qubit fj, finally remains in |0) only if x; = |0) and x; = |0). For the case of x; = |1) and
xj = |1) and the cases of either x; = |1) or x; = |1), the flag qubit f, is definitely in [1).
Note that x; = [1) (resp., x; = 1)) means that vertex v; (resp., v;) is included in the vertex
subset corresponding to the state of the working qubits. So, we just check whether the flag
qubit f, is [1) or not. If f}, is [1), then the edge e is covered by v; and/or v;.

X @

K ?

fi o —0 —
Flag Flag

ﬁ1+1 -1 — | —

Figure 11. Two consecutive CQF (or Flag) gates using two flag qubits f;, and f;, 1 are employed to
checkif an edge e = (v;,v;) is covered by vertex v; and/or vertex v;, where x; (resp., x;) of |1) indicates
that v; (resp., v)) is included in the vertex subset corresponding to the state of working qubits.

After using 2m CQF gates to check if each of m edges is covered by at least one vertex,
QC employs an MCX gate to check if all edges are covered by at least one vertex. The MCX
gate takes the flag qubits fy, f2,. .., fam—2 as control qubits and takes the response qubit y as
the target qubit. Therefore, if all edges are covered by at least one vertex, then the response
qubit y is |1), meaning that the associated quantum state corresponds to a solution (i.e., a
k-vertex cover) of the given k-VCP. Afterwards, n CCX gates are used to reflect the state of
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qubit x; on qubit x} with the ith CCX gate taking qubit x; and qubit y as the control qubits
and taking qubit x/ as the target qubit, where 0 <i < n — 1.

Table 2. State transition of two consecutive CQF gates, (x;, X}, fi, fu+1) — (xf, x;,f}’l,flgﬂ), with x;
and x; as the first and the second control qubits, respectively.

X X;j fu fna x] x§ fi fra
0 0 0 0 0 0 0 0
0 1 0 0 0 1 1 0
1 0 0 0 1 0 1 0
1 1 0 0 1 1 1 0

Finally, measuring the n mirror qubits x{, ..., x],_; can reveal the solutions to the given

k-VCP. If the measurement results are all zeros with probability 1, then the k-VCP has no
solution. Otherwise, any non-all-zero result is a solution to the given k-VCP. As described
earlier, if there are M solutions, then each non-all-zero measurement result is supposed to
have a probability of 1/D to be observed, and the all-zero measurement result is obtained,
(D — M)/D, where D = (}) = O(n¥) for min(k,n — k) = O(n/ Inn).

Algorithm 1 DSQS-VCP

Input: A k-vertex cover problem (k-VCP) instance:
a given positive integer k and a given undirected graph G = (V, E), where the vertex
set V.={vp,...,v,_1} is of size n and the edge set E = {ey, ..., e,_1} is of size m.
Output: QC: a quantum circuit based on DSQS using the Dicke state |D}/) to solve the
k-VvCP
1: QC < a quantum circuit with
n working qubits x, ..., x,_1 in |0),
2m flag qubits fo, ..., fam—1 in |0),
1 decision qubit y in |0),
n ancilla qubits x{, ..., x],_; in |0), and
n classical bits grouped as cb

2: Add a |D}}) gate on 1 qubits xo, ..., x,_1 to make them in the Dicke state |D}})
3:1+0

4: foreach edge e = (v;,v;) € Edo

5. Add a CQF gate with x; as the control qubit, and f; and f;, as the flag qubits
6:  Add a CQF gate with x; as the control qubit, and f; and f; 1 as the flag qubits
7: <+ 1+2

8: end for

9: Add an MCX gate with fy, f2, ..., fam—2 as control qubits and y as the target qubit
10: fori < Oton—1do
11:  Add a CCX gate with x; and y as control qubits and x/ as the target qubit
12: end for

—_
W

: Measure qubits x6, s, xzfl and store the results on classical bits grouped in cb
: return QC

—_
'S

4.2. The DSQS-VCP Complexity Analysis

Below, we analyze the time complexity of the DSQS-VCP algorithm. First of all,
DSQS-VCP applies a |D}}) gate to working qubits. According to [26], a |D}}) gate has O(kn)
basis gates, which implies that the time complexity to add the O(kn) basis gates in the
quantum circuit to realize the |D}) gate is also O(kn). Then, we analyze the other parts of
DSQS-VCP. The most computationally intensive part of DSQS-VCP lies in two main loops.
The first loop adds two consecutive CQF gates for every edge of totally m edges. The time
complexity of the first loop is O(m). The second loop adds a CCX gate for every vertex
of totally n vertices. The time complexity of the second loop is O(n). Thus, the total time
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complexity of the two DSQS-VCP main loops is O(m + n). Consequently, the overall time
complexity of DSQS-VCP to generate a quantum circuit is O(m + kn), which is polynomial.

Below, we analyze the circuit complexity of the DSQS-VCP quantum circuit QC in
terms of the qubit count, gate count, and circuit depth. In general, QC uses 2m 4 2n + 1
qubits, including n working qubits xy,...,x,_1 of register x, a total of 2m flag qubits
fo, -, fam—1 of CQF gates, a qubit y of register y, and n mirror qubits x{,...,x),_; of
register x’.

We first analyze the number of quantum gates and the circuit depth. The high-level
gates are a |D}) gate, 2m CQF gates, an m-control-qubit Toffoli (C"X) gate, and n CCX
(C2X) gates. According to [26], a |D}) gate costs O(kn) gates and O(17) depth. Based on
Figure 10, a CQF gate uses two CX gates and two X gates with constant depth inside the
CQF gate quantum circuit. Thus, 2m CQF gates cost O(1m) gates and O(m) depth.

Below, we analyze the C"X gate and the n C>X gates. Numerous studies have tried
to decompose the C"X gate into gates in a selected universal basis gate set. Note that a
universal basis gate set is a finite set of quantum gates that can be combined to approximate
any quantum operation (or gate). For example, the set of an H gate, a T gate, and a CX
gate (i.e.,, H, T, CX) is a widely used universal basis gate set. The authors in [32] selected
H, T, and CX gates as the basis gates to decompose a C"X gate into 32m — 96 = O(m) T
gates and 24m — 72 = O(m) CX gates with the circuit depth 216m — 648 = O(m), along with
an extra ancilla qubit. The authors in [33] show that a CCX gate can be decomposed into
a constant number of H, T, and CX gates without any extra ancilla qubit with a constant
depth. Therefore, the C"X gate and the n C2X gates cost O(m + n) basis gates and O(1m + n)
depth with an extra ancilla qubit.

From all of the above-mentioned analysis results, we conclude that the DSQS-VCP
quantum circuit QC uses totally 2m + 2n + 2 = O(m + n) qubits and O(m + kn) gates with
O(m + n) depth. We can see that the qubit count, the gate count, and the circuit depth of
QC are all polynomial.

Constructing quantum circuits to solve intractable problems, particularly NPC prob-
lems such as the k-VCP, is challenging due to the need to encode combinatorial constraints
into oracle operations, often resulting in high complexity in terms of qubit usage, gate
count, and circuit depth. The DSQS-VCP algorithm proposed in this section addresses this
challenge by systematically generating a DSQS-based quantum circuit for solving instances
of the k-VCP. Our analysis demonstrates that the resulting quantum circuit, including the
oracle component that enforces the problem constraints, has a polynomial complexity with
respect to the problem size in terms of construction time complexity, qubit usage, gate
counts, and circuit depth. Notably, a significant portion of the overall circuit corresponds
to the oracle implementation. This highlights the practical advantage of the DSQS algo-
rithm, which requires only a single oracle invocation per execution, effectively reducing
the cumulative cost associated with complex oracle constructions and their repetitions.

5. Experimental Results

This section shows two experiments using IBM Qiksit packages to implement and
run DSQS-VCP quantum circuits based on DSQS using the Dicke state |D}}) to successfully
find all solutions to given k-VCP instances. The experiments rely on IBM Aer Simulator
with n¥ or 5000 shots (repetitions) per experiment, where 7 is the number of input qubits.
Since this paper primarily addresses the proof of principle and complexity analysis of
DSQS and DSQS-VCP, we do not conduct experiments to execute DSQS-VCP quantum
circuits on real quantum computers. The details of the experiments are described in the
following subsections.
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5.1. The First Experiment

The first experiment is to implement and run the DSQS-VCP quantum circuit to find
all solutions to the k-VCP defined below. Given an undirected graph G = (V,E) withn =5
vertices vy, ...,v4in V and m = 4 edges ¢, . .., e3 in E, as shown in Figure 2, the k-VCP is
associated with different k values, such as 1, 2, and 3.

Figure 12 shows the DSQS-VCP quantum circuit to find all solutions to the k-VCP with
k = 1 in the first experiment. The quantum circuit has n = 5 working qubits xy,...,xs
for vertices vy, ..., vy in vertex set V. With a Dicke state |D}') = |DJ) preparation gate, the
working qubits are set to | D7) state to form the space of D = (}) = (i;) = 5 possible input
instances. Note that the quantum circuits for k = 2 and k = 3 are all the same, except that they
use different Dicke state preparation gates. As mentioned earlier, an edge e = (v;, v;) uses
two consecutive CQF gates (denoted “Flag” gates in Figure 12) having two flag qubits and
two different control qubits, x; and x;, to check whether the edge e is covered by v; and/or
vj. For example, in the DSQS-VCP quantum circuit of the first experiment, two flag qubits fo
and f in |0) are initially used to check the coverage of the edge ¢y = (v, v1) by vertices vy
and/or v1. It is required to check whether the flag qubit fj is |1) or not to determine if edge ¢y
is covered by vy and/or v1. The coverage of edges ey, .. ., e3 can be checked similarly.

e2 e3 check sol. measure

FIagI Flag
1 1

FIagI Flag
1 1

FIagI Flag
1 1

o
+ o
© e
o e
o e
© -
4 LT

Figure 12. The DSQS-VCP quantum circuit to find all solutions to the k-VCP in the first experiment.

The decision qubit y, which is initially |0), then serves as the target qubit of an MCX gate
that takes the first flag qubit of all 2m = 8 quantum flag gates as its control qubits. Therefore,
if all of the first flag qubits are |1), then qubit y is flipped from |0) to |1). This means that the
bit combination corresponding to the quantum state is a solution to the given k-VCP.

Afterwards, n = 5 CCX gates, each of which takes qubits y and x; as two control qubits
and qubit x] as the target qubit, are appended to the quantum circuit. This is intended
to reflect the quantum states of working qubits x, ..., x,_1 corresponding to solutions
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on mirror qubits x(’), eeey x;l_l, where 0 < i < n —1 = 4. Therefore, the mirror qubits are
in the superposition of all quantum states corresponding to all M solutions and the state

|0)®". Tt is notable that the quantum state corresponding to a solution has a probability
amplitude of \/g and the quantum state |0)“" has a probability amplitude of ,/ %,

where D = () = (3) = 10. It is easy to check whether the given k-VCP has no solution. If
so, the mirror qubits x{, ..., x],_; are definitely in |0)*" with a probability amplitude of 1.

Figures 13-15 show the histogram of the measurement results of the DSQS-VCP
quantum circuit to find all solutions to the k-VCP for k = 1, 2, and 3 in the first experiment.
In Figure 13, there is only one outcome 00000 with a probability of 1 for k = 1 with either
nk = 51 = 5 shots or 5000 shots, which means the k-VCP has no solution for the case of
k = 1. Note that we only present one diagram in Figure 13, as diagrams with 5 shots and

5000 shots are the same.

1.0

1.00

=

“

u
|

0.50

Quasi-probability

0.25

0.00 -

=]
S
8

Figure 13. Histogram of the measurement results of the DSQS-VCP quantum circuit to find all
solutions to the k-VCP for k = 1 with n* = 5! = 5 and 5000 shots in the first experiment.
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Figure 14. Histogram of the measurement results of the DSQS-VCP quantum circuit to find all
solutions to the k-VCP for k = 2 in the first experiment.

From Figure 14a,b, we can observe that there are M = 2 outcomes, 10001 and 10100,
with probabilities of approximately 1/D = 1/10 for n* = 52 = 25 shots and 5000 shots,
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Quasi-probability

where D = (}) = (3) = 10. More shots lead to probabilities that are closer to 1/D = 1/10.
Specifically, they correspond to two solutions, {vy, v1} and {v;,v4}, to the given k-VCP
for k = 2. The solutions correspond to two-vertex covers of the graph in the given k-VCP.
There are totally D — 2 = 8 non-solutions among D = 10 input instances, indicated by the
outcome 00000 with a probability that is approximately 8/10.

From Figure 15a,b, we can observe that there are M = 6 outcomes, 01110, 10011, 10101,
10110, 11001, and 11100, with probabilities of approximately 1/D = 1/10 for nk =53 =125
shots and 5000 shots, where D = () = (g) = 10. More shots lead to probabilities that are
closer to 1/D = 1/10. Specifically, they correspond to all the six three-vertex covers of the
graph in the given k-VCP. There are, in total, D — M = 4 non-solutions among D = 10
input instances, indicated by the outcome 00000, with a probability of approximately 4/10.
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Figure 15. Histogram of the measurement results of the DSQS-VCP quantum circuit to find all
solutions to the k-VCP for k = 3 in the first experiment.

5.2. The Second Experiment

The second experiment is to implement and run the DSQS-VCP quantum circuit to
find all solutions to the k-VCP defined below. Given a undirected graph G = (V, E) with
n = 7 vertices vy,..., 06 in V and m = 7 edges ¢y, ..., ¢ in E, as shown in Figure 3, the
k-VCP is associated with different k values, such as 2, 3, and 4.

Figure 16 shows the DSQS-VCP quantum circuit to find all solutions to the k-VCP with
k = 2 in the second experiment. The quantum circuit has n = 7 working qubits xo, ..., xg
for vertices vy, . .., vg in vertex set V. With a Dicke state |D}') = |Dj) preparation gate, the
working qubits are set to | D7) state to form the space of D = (}) = (Z) = 21 possible input
instances. Note that the quantum circuits for k = 3 and k = 4 are all the same, except that
they use different Dicke state preparation gates. As mentioned earlier, an edge e = (v;,v;)
uses two consecutive CQF gates (denoted “Flag” gates in Figure 16) having two flag qubits
and two different control qubits, x; and x;, to check whether the edge e is covered by v;
and/or v, where 0 < i,j < n — 1. For example, in the DSQS-VCP quantum circuit of the
second experiment, two flag qubits, fp and f1 in |0), initially are used to check the coverage
of edge ey = (vg, v1) by vertices vy and/or v1. It is required to check whether the flag qubit
fo is |1) or not to determine if edge ey is covered by vy and/or v;. The coverage of edges
e1,-..,e can be checked similarly.
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Figure 16. The DSQS-VCP quantum circuit to find all solutions to the k-VCP in the second experiment.

The decision qubit y, which is initially |0), then serves as the target qubit of an MCX
gate that takes the first flag qubit of all 2m = 14 quantum flag gates as its control qubits.
Therefore, if all of the first flag qubits are |1), then qubit y is flipped from |0) to |1). This
means that the bit combination corresponding to the quantum state is a solution to the
given k-VCP.

Afterwards, n = 7 CCX gates, each of which takes qubits y and x; as two control qubits
and qubit x] as the target qubit, are appended into the quantum circuit. This is intended
to reflect the quantum states of working qubits xy, ..., x,_1 corresponding to solutions
into mirror qubits x6, ceey x;_l, where 0 <i < n —1 = 6. Therefore, the mirror qubits are
in the superposition of all quantum states corresponding to all M solutions and the state
|0)®". Tt is notable that the quantum state corresponding to a solution has a probability

amplitude of \/g and the quantum state |0)®" has a probability amplitude of 1/ %,

where D = (}) = (;) = 21. It is easy to check whether the given k-VCP has no solution. If
so, the mirror qubits x(, ..., x],_; are definitely in |0)*" with a probability amplitude of 1.

Figures 17-19 show histograms of the measurement results of the DSQS-VCP quantum
circuit to find all solutions to the k-VCP for k = 2, 3, and 4 in the second experiment. In
Figure 17, there is only one outcome, 0000000, with a probability of 1 for k = 2 with either
nk = 72 = 49 shots or 5000 shots, which means the k-VCP has no solution for the case of
k = 2. Note that we only present one diagram in Figure 17, as diagrams with 49 shots and
5000 shots are the same.
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Figure 17. Histogram of the measurement results of the DSQS-VCP quantum circuit to find all
solutions to the k-VCP for k = 2 with n* = 72 = 49 and 5000 shots in the second experiment.
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Figure 18. Histogram of the measurement results of the DSQS-VCP quantum circuit to find all
solutions to the k-VCP for k = 3 in the second experiment.

In Figure 18a,b, we can observe that there are M = 3 outcomes, 0001101, 0001110,
and 0011010, with probabilities of approximately 1/D = 1/ (g) = 1/35 ~ 0.0285. More
shots lead to probabilities that are closer to 1/D = 1/35. Specifically, they correspond to
three solutions, {vg, v2,v3}, {v1,v2,v3}, and {v1,v3,v4}, to the given k-VCP for k = 3. The
solutions correspond to three-vertex covers of the graph in the given k-VCP. There are a
total of D — 3 = 32 non-solutions among D = 35 input instances, indicated by the outcome
0000000 with a probability of approximately 32/35 ~ 0.9142.

In Figure 19a,b, we can observe that there are M = 10 outcomes, 0001111, 0011011,
0011101, 0011110, 0101101, 0101110, 0111010, 1001101, 1001110, and 1011010, with proba-
bilities of approximately 1/D =1/ (Z) = 1/35 =~ 0.0285. More shots lead to probabilities
closer to 1/D = 1/35. Specifically, they correspond to all the ten four-vertex covers of the
graph in the given k-VCP. There are, in total, D — M = 25 non-solutions among D = 35
input instances, indicated by the outcome 0000000, with a probability of approximately
25/35 =~ 0.7142.
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Figure 19. Histogram of the measurement results of the DSQS-VCP quantum circuit to find all
solutions to the k-VCP for k = 4 in the second experiment.

6. Conclusions

This paper first proposes a quantum search algorithm, named DSQS, as a general
quantum algorithm to set qubits in the Dicke state |D}/) to identify all target inputs or
solutions of specific patterns from unstructured input instances by calling an oracle only
once. DSQS improves Grover’s algorithm, which needs to repeat an oracle and a diffuser

{Z II\\],IJ = O(+/2") times to find all M solutions out of N = 2" inputs with high probabil-

ity, where 7 is the number of input qubits to span the search space. Furthermore, Grover’s
algorithm requires prior knowledge of the number M of solutions, whereas DSQS operates
without this prerequisite. We prove the correctness of DSQS by unitary transformations
and show that DSQS can locate every single solution with an error probability less than
1/3 through O(nk) repetitions for min(k,n — k) < n/2.

Our research result does not conflict with the assertion that Grover’s algorithm is the
optimal oracle-based quantum search algorithm. This is because that DSQS sets qubits
into the Dicke state |D}') of D in superposition states, reducing the number of search
states for the oracle to be D = (}) = O(n¥) under the condition of min(k, n — k) < n/2.
Grover’s algorithm calls an oracle and the diffuser O(1/2") times to find solutions with
high probability through one repetition. In contrast, DSQS calls an oracle once to locate
solutions with a probability of 1/D through one repetition. Afterwards, DSQS can locate
solutions with high probability through O(1¥) repetitions for min(k,n — k) < n/2.

This paper also proposes a classical algorithm, named DSQS-VCP, to generate a
quantum circuit based on DSQS using the Dicke state |D}) to solve the search version
k-VCP by locating all solutions to the k-VCP. We analyze the time complexity of DSQS-VCP
and decompose its generated quantum circuit into components consisting of only H, T, and
CX gates, which are basis gates of a universal gate set. This decomposed circuit is shown
to have a polynomial qubit count, gate count, and circuit depth. The overall complexity
analysis reveals that DSQS-VCP can generate a quantum circuit based on DSQS using the
Dicke state |D}!) to find all k-VCP solutions in polynomial time with a probability of error
less than 1/3 for min(k,n — k) < n/2. Since the k-VCP is NP-complete, NP and NPC
problems can be polynomially reduced to the k-VCP. If the reduced k-VCP instance satisfies
min(k, n — k) < n/2, then both the instance and the original NP/NPC problem instance to
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which it corresponds can be solved by the DSQS-VCP quantum circuit in polynomial time
with an error probability less than 1/3.

We conducted experiments using IBM Qiskit packages to implement and run the
proposed QSDS-VCP quantum circuits, successfully identifying all solutions to the example
k-VCP instances. The instances are for small n and k, such as (n = 5,k = 1,2,3) and
(n = 7,k = 2,3,4), all of which satisfy the condition min(k,n — k) < n/2. However,
these experiments were performed using IBM Qiskit simulators and do not consider
real-device conditions such as qubit decoherence, gate noise, or connectivity constraints.
As this paper focuses on theoretical aspects and proof of principle, experiments on real
quantum computers were not conducted. In the future, we plan to extend this work with
implementations on real quantum computers and conduct detailed error resilience analysis
to assess the algorithm’s performance under realistic noise models. Additionally, we intend
to continue exploring theoretical aspects, particularly investigating how to use the first
half of the DSQS quantum circuit that contains only registers x and y to estimate the
total number M of solutions. We aim to derive the error bound of the estimation of M
and then determine the minimum number of repetitions required for DSQS to identify
all M solutions with high probability. Furthermore, we plan to explore whether certain
NP and NPC problems can be reduced to k-VCP satisfying min(k,n — k) < n/2, so that
they can be solved in polynomial time with an error probability less than 1/3 via the
DSQS-VCP quantum circuit. We also seek to design algorithms similar to DSQS-VCP to
directly generate quantum circuits based on DSQS using the Dicke state |D}!) for solving
certain NP and NPC problems in polynomial time with an error probability less than 1/3
for min(k,n — k) < n/2.

The paper [34] proposes an improved Grover’s algorithm by using a diffuser tailored
for the Dicke state to exploit quantum interference for amplifying the probability ampli-
tudes of the solution states. In the Dicke state |D}’), the number of in-superposition states is
givenby D = (}), which is of O(n*) under the condition of min(k, n — k) < n/2. Therefore,
a total of R = | §+/D/M] Grover iterators, each of which is composed of an oracle and a
diffuser, are required to find all M solutions with high probability. This reduces the required
repetitions of the Grover iterator from O(1/2") in the original Grover’s algorithm to only
O(Vnk) as long as min(k, n — k) < n/2. However, the improved Grover’s algorithm still
requires prior knowledge of the number M of solutions to accurately determine the optimal
number R of Grover iterator repetitions. According to [7], Grover’s algorithm suffers from
the “overshooting problem”, in which repeating the Grover iterator over R times causes
the probability amplitudes of the solution states to decrease.

In the future, we plan to integrate the improved Grover’s algorithm proposed in [34]
with the DSQS algorithm proposed in this paper to leverage the advantages of both methods.
The basic idea of the integrated method is to initially assume an estimated number M = D
of solutions, where 0 < B < 1. With M = BD, we can then assume an estimated optimal
number R = | Z+/D/M] of Grover iterator repetitions without knowing the exact value of
M. When M > M, we have R < R. Thus, we can repeat the Grover iterator only R times,
where R < R, not only to reduce the quantum circuit depth and the number of quantum
gates used, but also to avoid the overshooting problem. After that, we apply the special
oracle of the DSQS algorithm and then determine all solutions through a suitable number
of measurements. Because the diffuser amplifies the amplitudes of the solution states, the
number of measurements or shots required is reduced. We will analytically derive the
appropriate number of measurements by examining the amplitude amplification induced
by the diffuser and conduct experiments to validate our analysis. We will also design an
adaptive algorithm that assumes successive estimated values of the number of solutions,
M, from larger to smaller. Consequently, the corresponding values of R increases, but the
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required number of measurements decreases gradually. The adaptive algorithm stops when
the number of identified solutions exceeds M, enabling the integrated method to adaptively
and efficiently identify solutions. This aims to pursue a resource-efficient optimization
objective: reduce the number of Grover iterator repetitions as much as possible and, at
the same time, minimize the number of shots required by the DSQS quantum circuit, all
without prior knowledge of the number M of solutions.

While we have outlined the integration of DSQS with the improved Grover’s algorithm
proposed in [34], we note that a rigorous theoretical or empirical comparison between the
two standalone approaches has not yet been conducted. Such a comparison—especially in
terms of the qubit count, gate count, circuit depth, and number of shots required to locate
solutions—will be pursued in future work to better position the advantages and trade-offs
of each algorithm.

Knowing the exact number M of solutions can benefit the improved Grover’s algo-
rithm proposed in [34], as it allows for determining the appropriate number of Grover
iterator repetitions to maximize the amplitude of the target states without causing ampli-
tude overshooting. However, in many practical scenarios, M is unknown. One way to
estimate M is by using the quantum counting algorithm [13], which requires 2! — 1 Grover
iterator repetitions when t counting qubits are used. Alternatively, we may estimate M
by using only a portion of the DSQS quantum circuit proposed in this paper—specifically,
the part consisting of the n-qubit register x, the single-qubit register y, one Dicke state
preparation gate, one oracle, and the final measurement on the y register. Although a
formal proof has not yet been established, it is expected that this partial DSQS circuit
can estimate the value of M with low error probability after a number of measurements
proportional to D = (), which is O(n*) and remains polynomial as long as the condition
min(k,n — k) < n/2 is satisfied. In the future, we plan to integrate this partial circuit with
the amplitude amplification mechanism of the improved Grover’s algorithm proposed
in [34] to further reduce the number of measurements required by the partial circuit for the
solution count estimation. We will conduct an in-depth analysis of the relationship between
the number of repetitions of the Grover iterator and the number of measurements needed
to accurately determine the solution count. The goal of this integration is to perform a small
number of Grover iterations while allowing for the partial circuit to accurately estimate the
solution count with significantly fewer measurements.

We briefly recall that BQP (Bounded-error Quantum Polynomial time) is the class of
decision problems solvable by a family of polynomial complexity quantum Turing machines
(quantum circuits) with error bounded by a constant (e.g., a constant e < 1/3) [14,28]. It
is noted that all statements of polynomial complexity in this paper apply only to VCP
instances and similar instances of other problems for which the feasible solution set lies
in a fixed-Hamming-weight Dicke state subspace with a polynomial size of D = (}) =
O(r¥) under the condition of min(k,n — k) < n/2. DSQS samples uniformly from that
subspace of size D, yielding per-shot solution probability 1/D to observe a single solution.
Consequently, the D = O(n¥) repetition bound is required, which is not asymptotically
better than exhaustive enumeration methods. The required shot budgets are therefore
probabilistic demonstrations rather than certificates that all D candidates are examined.
Nevertheless, DSQS may be combined with amplitude amplification algorithms confined
to the Dicke state subspace, such as the improved Grover’s algorithm [34], to boost single-
shot success probabilities of observing a solution. Appendix A shows shows the results
of a preliminary experiment of the method combining DSQS with the improved Grover
algorithm [34] using Dicke states. This experiment, using the same setting as Experiment 1 in
Section 5, indicates that amplitude amplification can significantly enhance the probability of
finding target solutions. Since the correctness of the combined method cannot be validated
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solely by this preliminary experiment, nor can the improvement in success probability be
analytically established, we will conduct a comprehensive exploration covering theoretical
derivations, probability analyses, and experiments across various scenarios. Our goal is to
verify that DSQS can enhance the effectiveness of quantum search algorithms in locating
target solutions.
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Appendix A

This appendix shows the results of a preliminary experiment of the method combining
DSQS with the Dicke state-based Grover’s algorithm [34] to find all solutions to the k-
VCP. This preliminary experiment uses the same experimental setting as Experiment 1
in Section 5. Specifically, the experiment is to solve the k-VCP for an undirected graph
G = (V,E) with n = 5 vertices vy, ...,v4in V and m = 4 edges e, . . ., e3 in E, as shown in
Figure 2, with k = 2.

Figure A1 shows the quantum circuit to find all solutions to the k-VCP with k = 2. The
quantum circuit has n = 5 working qubits xy, ..., x4 for vertices vy, ..., v4 in vertex set V.
With a Dicke state |D}') = |D3) preparation gate, the working qubits are set to |D3) state to
form the space of D = (}) = (g) = 10 possible input instances. An edge e = (v;, v;) uses
two consecutive CQF gates (denoted “F” gates in Figure A1) having two flag qubits and
two different control qubits, x; and xj, to check whether the edge e is covered by v; and/or
vj. An ancilla qubit z, which is set to |—) by an X gate and an H gate, then serves as the
target qubit of an MCX gate that takes the first flag qubit of all 2m = 8 quantum flag gates
as its control qubits. Therefore, if all of the first flag qubits are |1), then qubit z is forced to
trigger the phase kickback effect. The phase of the quantum state that makes the first flag
qubit of all 2m = 8 quantum flag gates is then reversed.

Afterwards, a series of inverse CQF gates (denoted “iF” gates in Figure A1) are applied
in the reverse order of their corresponding CQF gates. The iF gates reset the flag qubits
by uncomputing the auxiliary information, restoring them to |0) and eliminating residual
entanglement, thereby ensuring that only the edge cover constraints contribute to the
subsequent amplitude amplification.

In the subsequent circuit, a diffuser confined to the Dicke state subspace is applied.
According to [34], the diffuser is constructed by an iD(5,2) gate, n X gates, a C"~'Z gate,
n X gates, and a D(5,2) gate, where iD(5,2) denotes the inverse Dicke state construction
gate of | D3). The diffuser performs a reflection about the mean of all states in the Dicke
state subspace, ensuring that the amplitude amplification process is confined to the space
spanned by |D3).

The final part in the quantum circuit is the DSQS algorithm, which ensures that the
measurement yields the states corresponding to the target solutions (whose amplitudes
have already been amplified by the diffuser), while the non-solution states are all mapped
to the all-zero state.
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Figure A2 shows the histogram of the measurement results of the quantum circuit to
find all solutions to the k-VCP with k = 2. We observe that, by leveraging the amplitude
amplification of the improved Grover’s algorithm, the probability of finding a target
solution can be significantly boosted.
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Figure A1. Quantum circuit of combining DSQS with the improved Grover’s algorithm using Dicke
states to find all solutions to the k-VCP in the preliminary experiment.
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Figure A2. Histogram of the measurement results of the method that combining DSQS and improved
Grover’s algorithm using Dicke states to find all solutions to the k-VCP for k = 2 in the preliminary
experiment.
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