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Abstract: In this paper, we use a simplified quantum counter to implement Grover’s
algorithm-based quantum circuits to tackle the NP-hard exact cover problem (ECP). The
ECP seeks a subcollection of sets such that every element is covered by exactly one set.
Leveraging Grover’s algorithm, our quantum circuits achieve a quadratic speedup, query-
ing the oracle O(

√
N) times, compared to O(N) for classical methods, where N = 2n is the to-

tal number of unstructured input instances and n is the number of input (quantum) bits. For
the whole quantum circuit, the simplified quantum counter saves (4mb− 4m)⌊π/4

√
N/M⌋

quantum gates and reduces the quantum circuit depth by (2mb)⌊π/4
√

N/M⌋ compared
to Heidari et al.’s design, where b = ⌊log n⌋+ 1 is the number of counting qubits used in a
counter. Experimental results obtained using IBM Qiskit packages confirm the effectiveness
of our quantum circuits.

Keywords: exact cover problem; Grover’s algorithm; oracle; quantum circuit; quantum
counter; quantum search

MSC: 68Q12; 81P68

1. Introduction
Quantum computers operate on quantum bits (or qubits), harnessing phenomena

such as quantum superposition, quantum entanglement, and quantum tunneling [1,2] to
perform computations. Classical computers utilize bits for computing, which can only
represent either 0 or 1 at any given time. Unlike a bit, a qubit can exist in a superposition
of both 0 and 1; it collapses to either 0 or 1 only when measured. As a result, with the
superposition of n qubits, it is possible to represent and operate on all 2n states simulta-
neously. In contrast, n classical bits can represent and operate on only one of 2n states at
a time. The computational power of quantum computers thus scales exponentially with
the number of qubits, surpassing the computational capabilities of classical computers
and hence achieving quantum supremacy [3].

Some quantum computers, like IBM Q [4], Google Sycamore [5], and Rigetti Ankaa [6],
are classified as universal, whereas others, such as D-Wave Advantage [7] and QuEra
Aquila [8], are non-universal. Universal quantum computers utilize quantum gates to
create quantum circuits to tackle a wide range of problems. In contrast, non-universal
quantum computers employ alternative methods instead of quantum gates to address
specific challenges. For instance, D-Wave Advantage uses quantum annealing, a mechanism
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that exploits quantum tunneling to traverse the energy landscape and identify the lowest
global energy state [9] to address various combinatorial optimization problems [2].

In this paper, we focus on universal quantum computers that use quantum circuits
composed of quantum gates to address problems. Numerous quantum algorithms based
on quantum circuits composed of quantum gates have been proposed in the literature, in-
cluding the well-known Deutsch–Jozsa algorithm [10], Shor’s algorithm [11], and Grover’s
algorithm [12], which are elaborated below.

In 1992, Deutsch and Jozsa proposed the Deutsch–Jozsa algorithm [10], which ad-
dresses the problem of determining whether a given oracle or black-box function f (x) is a
balanced function or a constant function, where x is the input consisting of n qubits. If f (x)
returns 0 for all inputs or 1 for all inputs, then f (x) is a constant function. In contrast,
if f (x) returns 0 for half of the inputs and 1 for the other half, then f (x) is a balanced
function. When executed on a quantum computer, the Deutsch–Jozsa algorithm can solve
the problem with just one invocation of the oracle or black-box function. In contrast,
a classical algorithm requires 2n−1 + 1 invocations of the oracle in the worst case to ad-
dress the same problem. This demonstrates that the Deutsch–Jozsa quantum algorithm
offers an exponential speedup compared to classical algorithms designed to address the
same problem.

In 1994, Shor proposed Shor’s algorithm [11], which can solve the semiprime factor-
ization problem (SFP) to factorize a large semiprime N with polynomial time complexity
of O((log N)2(log log N) (log log log N)). This time complexity represents an exponential
speedup compared to the time complexity of the state-of-the-art classical algorithm, the Gen-
eral Number Field Sieve (GNFS), which has time complexity of O(e1.9(log N)1/3(log log N)2/3

).
Furthermore, Shor’s algorithm can also solve the discrete logarithm problem (DLP) with
polynomial time complexity. However, so far, no classical algorithm can solve the DLP with
polynomial time complexity. It is known that the mainstream public-key cryptosystems,
such as Rivest–Shamir–Adleman (RSA), Diffie–Hellman (DH), and ElGamal, rely on the
computational difficulty in solving the SFP or the DLP. Thus, if Shor’s algorithm is imple-
mented and run on a quantum computer with a sufficient number of reliable qubits, it can
rapidly solve the SFP and DLP to break mainstream public-key cryptosystems. Therefore,
Shor’s algorithm is considered a groundbreaking algorithm and has a profound impact on
everyday life.

In 1996, Grover proposed Grover’s algorithm [12], a quantum search algorithm used
to find a specific input, called the “target input”, from N unstructured inputs. Note that we
also use “solution” to refer to the “target input” in the following. Grover’s algorithm is
based on the concept of amplitude amplification. It assumes an “oracle” to invert the phase
of a state representing the target input. It also assumes a diffusion operator or “diffuser”
that can amplify the amplitude of the target input. Consequently, with O(

√
N) calls to the

oracle along with the diffuser, Grover’s algorithm can identify the target input with a high
probability. In contrast, a classical search algorithm requires O(N) oracle calls to locate the
target input from unstructured inputs in both the average case and the worst case. This
implies that Grover’s algorithm is quadratically faster than the classical search algorithm
in terms of oracle calls. In 1997, Bennett et al. proved that any quantum algorithm
needs O(

√
N) oracle calls to find a specific solution from N unstructured inputs [13],

thus establishing Grover’s algorithm as the optimal quantum algorithm for unstructured
data searching. Furthermore, in 1998, Boyer et al. deduced that, for a situation with M
(1 ≤ M≪ N) target inputs, T = ⌊π/4

√
N/M⌋ oracle calls are required to find all M target

inputs with a high probability [14].
Several research studies [15–24] have designed quantum circuits based on Grover’s

algorithm to address different problems. The problems addressed include the k-coloring
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problem, the maximum clique problem, the list coloring problem, the pure Nash equilib-
rium finding problem in graphical games, the Hamiltonian cycle problem, the vertex cover
problem, the dominating set problem, and the exact cover problem. These algorithms offer
a quadratic speedup in terms of oracle calls when compared to the classical sequential
search algorithm.

This paper is an extension of the research in [24], seeking to implement quantum cir-
cuits based on Grover’s algorithm to address the exact cover problem (ECP) [25], as defined
below. Given a universal set U of m elements and a collection C of n sets, where each set
is a subset of U, the ECP is to determine if there exists a subcollection C′ ⊆ C such that
each of m elements is covered by (or belongs to) exactly one set in C′. The ECP has been
shown to be NP-hard and NP-complete in [25]. It is thus likely that there exists no classical
algorithm to address the ECP with polynomial time complexity in the worst case. The ECP
is useful because many complex problems, such as the 3-satisfiability problem and the
Hamiltonian cycle problem, can be reduced to the ECP for solutions [25].

Our quantum circuit implementations use a simplified quantum counter, rather than
the existing quantum counter proposed by Heidari et al. in [26], to reduce the number of
quantum gates and shorten the circuit depth. As will be shown later, for a quantum counter
with b counting qubits, the number of gates is reduced by 2b− 2, and the quantum circuit
depth is reduced by b. This is particularly advantageous in the current noisy intermediate-
scale quantum (NISQ) era [27], where quantum computers have a limited number of qubits,
low quantum gate fidelity, and short decoherence times. Specifically, quantum counters
are used to build the oracle to check if every element is covered by exactly a set exactly
once. If so, a solution is found, and the phase of the qubit state representing the solution is
flipped. Then, the probability amplitude of this state is amplified through the diffuser.

The ECP is solved with high probability by calling the oracle along with the diffuser
⌊π/4

√
N/M⌋ = O(

√
N) times, where N = 2n is the total number of possible input in-

stances, and M, 1 ≤ M ≪ N, is the number of solutions to the ECP. This provides a
quadratic speedup compared to classical sequential search algorithms that need to call the
oracle O(N) times. We will later show that the oracle quantum circuit uses m quantum
counters twice, with each counter having b = ⌊log n⌋ + 1 counting qubits, where m is
the number of elements in the universal set given in the ECP. Thus, each single quantum
circuit to address the ECP saves (4mb− 4m)⌊π/4

√
N/M⌋ quantum gates and its circuit

depth is reduced by (2mb)⌊π/4
√

N/M⌋, which is a significant improvement. We conduct
three experiments using the IBM Qiskit packages [28] to implement and execute quantum
circuits, successfully solving the ECP for validation purposes.

The contribution of this paper is fourfold. First, we propose using a simplified quan-
tum counter, rather than the existing quantum counter proposed by Heidari et al., to im-
plement quantum circuits, which reduces the number of quantum gates and shorten the
quantum circuit depth. Second, we design quantum circuits based on Grover’s algorithm
using the simplified quantum counter to address the ECP. Third, we analyze the number of
quantum gates saved and the reduction in the quantum circuit depth for a single quantum
circuit that is employed to address the ECP using the simplified quantum counter. Fourth,
we implement and execute the designed quantum circuits with IBM Qiskit packages,
successfully solving the ECP for correctness validation.

The remainder of this paper is organized as follows. Some background knowledge is
introduced in Section 2, and related works are described in Section 3. Our quantum circuit
design is elaborated in Section 4. The results of three experiments based on IBM Qiskit
packages are shown in Section 5. Finally, some concluding remarks are given in Section 6.



Mathematics 2025, 13, 90 4 of 31

2. Background Knowledge
2.1. Exact Cover Problem

The exact cover problem (ECP) is a decision problem, as defined below. Given a uni-
versal set U = {u0, u1, . . . , um−1} with m elements, and a collection C = {s0, s1, . . . , sn−1}
of n sets, where each set is a subset of U, the ECP is to determine whether or not there exists
a subcollection C′ ⊆ C such that C′ is an exact cover of U, i.e., every element in U is covered
by (or belongs to) exactly one set in C′. The ECP is useful because many intricate problems,
such as the 3-satisfiability problem and the Hamiltonian cycle problem, can be reduced to
the ECP for solution [25]. However, the ECP has been shown to be NP-hard [25]. It is thus
unlikely that there exists any classical algorithm to address the ECP with polynomial time
complexity in the worst case.

The original ECP is a decision problem that involves deciding whether there exists
an exact cover of U. Nonetheless, this paper aims at the extended version of the ECP to
find all exact covers of U. Please note that when we refer to the ECP in this paper, we are
specifically referring to the extended ECP.

For example, given a universal set U = {u0, u1, u2} of three elements and a collection
C = {s0 = {u0}, s1 = {u1}, s2 = {u2}, s3 = {u0, u1, u2}} of four sets, the ECP has
two solutions, which are the two exact covers of U, namely C′ = {s0, s1, s2} and C′′ = {s3}.

2.2. Grover’s Algorithm

Lov Kumar Grover proposed Grover’s algorithm [12] in 1996. This is a quantum
search algorithm designed to find a target data item from N unstructured or unsorted
data. Specifically, Grover’s algorithm aims to find the “target input” or “solution” that
corresponds to the target data item out of N input instances. Assuming the existence of
an oracle that can check whether or not an input instance is the target input, Grover’s
algorithm can locate the target input from N unstructured data entries by calling the oracle
O(
√

N) times. In contrast, classical algorithms typically require O(N) oracle calls to find
the target data item from N unstructured data in the average case and the worst case. This
indicates that Grover’s algorithm achieves a quadratic speedup in terms of oracle calls
when compared to classical algorithms.

The quantum circuit of Grover’s algorithm is shown in Figure 1. There are two major
components in the circuit, namely the oracle and the diffusion operator (or diffuser),
as described below. The oracle and diffuser form the so-called “Grover iterator” and
typically iterate multiple times.

The oracle is represented as U f in Figure 1 to identify the target input and invert its
phase. It is defined as follows:

U f |x⟩ =

− |x⟩ if |x⟩ = |x∗⟩
|x⟩ if |x⟩ ̸= |x∗⟩

(1)

In Equation (1), |x∗⟩ is the target input. The oracle flips the phase of an input |x⟩
only when |x⟩ = |x∗⟩ (that is, the input |x⟩ is equal to the target input |x∗⟩); otherwise, it
does nothing.

The diffusion operator or diffuser was proposed by Grover in [12]. It is an inversion-
about-amplitude-mean (IAAM) operation and was proven to be capable of achieving the
probability amplitude inversion about the mean of the probability amplitudes of quantum
states, as shown at the bottom of Figure 2. Please refer to [12] for the proof details.
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Figure 1. The quantum circuit of Grover’s algorithm.

Figure 2. An illustration of the application of the diffusion operator (or diffuser) of Grover’s algorithm.

In the following, we discuss the implementation of the diffuser, which is represented
as Us below.

Us = H⊗n(2|0n⟩⟨0n| − I)H⊗n (2)

In Equation (2), |0n⟩ represents the n× 1 matrix (1, 0, . . . , 0)T, ⟨0n| represents the 1× n
matrix (1, 0, . . . , 0), |0n⟩⟨0n| stands for the outer product of (1, 0, . . . , 0)T and (1, 0, . . . , 0),
and I is the n× n identity matrix, with diagonal elements being 1 and other elements being
0. Note that the operation of 2|0n⟩⟨0n| − I can be achieved by applying the X gate (or NOT
gate), the multi-controlled Z gate (or MCZ gate), and again the X gate to all input qubits,
as will be employed in this paper to implement the quantum circuit of Grover’s algorithm.
Below, we explain why this implementation can realize 2|0n⟩⟨0n| − I.

First, note that |0n⟩⟨0n| represents the outer product of an n× 1 matrix and a 1× n
matrix, resulting in an n× n matrix, as shown below:

|0n⟩⟨0n| =


1 0 · · · 0
0 0 · · · 0
...

...
. . . 0

0 0 0 0

 (3)

Thus, we can derive the following equation:

2|0n⟩⟨0n| − I = 2


1 0 · · · 0
0 0 · · · 0
...

...
. . . 0

0 0 0 0

− I
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=


2 0 · · · 0
0 0 · · · 0
...

...
. . . 0

0 0 0 0

−


1 0 · · · 0
0 1 · · · 0
...

...
. . . 0

0 0 0 1



=


1 0 · · · 0
0 −1 · · · 0
...

...
. . . 0

0 0 0 −1

 (4)

This transformation matrix applies a phase flip to all states except |0n⟩. If we multiply
this transformation matrix by −1, the resulting matrix applies only a phase flip to the
state |0n⟩, as shown in the matrix on the right-hand side below. Note that multiplying the
transformation matrix by −1 results in a global phase flip, which is unobservable, does not
affect the measurement outcomes for the final qubit states, and can therefore be ignored.

−1 ·


1 0 · · · 0
0 −1 · · · 0
...

...
. . . 0

0 0 0 −1

 =


−1 0 · · · 0
0 1 · · · 0
...

...
. . . 0

0 0 0 1

 (5)

By applying X gates to each qubit to exchange the probability amplitudes of |0⟩ and |1⟩,
the above matrix becomes one that applies a phase flip to the |1n⟩ state. This phase flip for
|1n⟩ can be implemented using a multi-controlled Z gate [MCZ], where the target qubit is
the last (or the most significant) qubit and all other qubits are control qubits. The transform
matrix of the MCZ gate is shown below:

[MCZ] =


1 0 · · · 0
0 1 · · · 0
...

...
. . . 0

0 0 0 −1

 (6)

Finally, by applying X gates to each qubit again, we restore the original qubit states,
except that a phase flip has been applied to the state |0n⟩.

Thus, we obtain the following transformation of 2|0n⟩⟨0n| − I:

2|0n⟩⟨0n| − I = −1 · X⊗n[MCZ]X⊗n (7)

Note that multiplying the transformation matrix by −1 results in a global phase flip,
which is unobservable. As it does not affect the measurement outcomes for the final qubits,
it can be ignored. Therefore, we can construct the quantum circuit for the diffusion operator
Us = H⊗n(2|0n⟩⟨0n| − I)H⊗n of n qubits as follows:

1. Apply an H gate to each of n qubits;
2. Apply an X gate to each of n qubits;
3. Apply a multi-controlled Z (MCZ) gate to n qubits, with the most significant qubit as

the target qubit and all other qubits as control qubits;
4. Apply an X gate to each of n qubits;
5. Apply an H gate to each of n qubits.

Grover’s algorithm has six major steps, each of which is elaborated below. Note
that we assume that there are n working qubits to represent a total of N = 2n states
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corresponding to N = 2n input instances. We also assume that there are a total of M target
inputs or solutions, where M≪ N.

Step 1: Prepare n working qubits in the state |0⟩ as input qubits, so that the input qubits are
of the state |0n⟩ (or |0⟩⊗n).
Step 2: All qubits undergo H gates to achieve a uniform superposition state, given by
H⊗n|0⟩⊗n = 1√

N ∑N−1
x=0 |x⟩ = |+⟩⊗n, where N = 2n.

Step 3: All qubits in uniform superposition undergo the oracle to perform the phase
inversion of the target inputs. Thus, the phase of every qubit state representing a target
input is flipped and its amplitude becomes negative.
Step 4: All qubits undergo the diffuser to perform the inversion-about-amplitude-mean
(IAAM) operation, so that the amplitude of every qubit state representing a target input
becomes positive and larger than those of qubit states not representing target inputs.

Step 5: Repeat Step 3 and Step 4 a total of
⌊

π
4

√
N
M

⌋
times, where N = 2n is the number of

possible input instances, M is the number of target inputs or solutions, and M≪ N.
Step 6: Measure the qubits and take the states with significant occurrence probabilities
as solutions.

In summary, Grover’s algorithm iteratively modifies the states of the qubits, as shown
in Figure 2. Initially, the qubit states exhibit uniform superposition. Then, the oracle is
applied, which inverts the phase of the qubit states corresponding to solutions, creating
negative probability amplitudes. This is followed by the diffuser, which performs the
inversion-about-amplitude-mean operation. Thus, the amplitude of the qubit state cor-
responding to a solution becomes positive and significantly larger than the amplitudes
of the qubit states that do not correspond to any solution. In fact, the amplitudes of the
non-solution qubit states are decreased by the diffuser. After the qubits undergo a suit-
able number of iterations via the Grover iterator that contains the oracle and the diffuser,
the amplitude of the qubit state corresponding to a solution becomes significantly large,
while the amplitude of every non-solution qubit state becomes noticeably small or even
approaches zero.

2.3. Quantum Counting Algorithm

According to [14], Grover’s algorithm can find the target input with a high probability

if the Grover iterator containing the oracle and the diffuser repeats the iteration
⌊

π
4

√
N
M

⌋
times, where N is the total number of possible input instances and M is the number of target
inputs (or solutions). However, we face the challenge in which the number of solutions is
not known in advance. To address this challenge, this study utilizes the quantum counting
algorithm [29,30] to estimate the number of solutions to the given problem.

The quantum counting algorithm (QCA) is based on the technique of quantum phase
estimation (QPE) to derive the phase θ of the Grover iterator G to estimate the number M
of solutions. The quantum circuit of the QCA is illustrated in Figure 3 [30] and explained
below. In Figure 3, Register 1 is composed of t qubits, which are used as the counting qubits
for QPE. Generally, increasing the number t of counting qubits allows for the more accurate
estimation of the actual value of M. Moreover, Register 2 consists of n + 1 qubits, serving
as the working qubits for the controlled Grover iterators, represented as G20

, G21
, . . . , G2t−1

in Figure 3. The reason for using n + 1 working qubits is that the Grover iterator originally
requires n qubits to form the space of 2n input instances, along with one additional qubit
serving as an auxiliary qubit for the phase kickback.

The inverse Fourier transform (denoted as FT† in Figure 3) is finally applied to the
t counting qubits to transform their states from the Fourier basis of |+⟩ and |−⟩ into the
computation basis of |0⟩ and |1⟩. This is for the purpose of measuring the counting qubits.
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After measuring the counting qubits, the measurement results can be used to derive the
phase θ of the Grover iterator, where θ is represented as a radian within the range of [−π, π].
According to [30], the phase θ, the number M of solutions, and the total number N of input
instances are related by the following Equation (8), which allows us to easily derive M
from θ and N:

M = N × sin2
(

θ

2

)
(8)

Figure 3. The quantum circuit of the quantum counting algorithm proposed in [29].

2.4. Quantum Counter

Heidari et al., in [26], proposed the quantum circuit of a quantum counter, as shown
in Figure 4. The quantum counter consists of one control qubit labeled “control” and
b counting qubits labeled count0,. . . ,countb−1, initialized with the counter value |0⟩⊗b.
The control qubit is to be fed with a series of qubit states. If the fed state is |1⟩, the counter
value is incremented by 1. In contrast, if the fed state is |0⟩, the counter value remains
unchanged. Notably, when the counter value reaches |1⟩⊗b, further increments reset the
counter value to |0⟩⊗b.

It can be observed that, in the quantum counter proposed by Heidari et al., an X gate
is applied after each controlled X (CX) gate or multi-controlled X (MCX) gate, and b− 1 X
gates are appended at the bottom. This not only increases the number of quantum gates but
also adds to the depth of the quantum circuit. Later, we will demonstrate how to avoid the
need to add all the X gates, while maintaining the proper function of the quantum counter.

Figure 4. The quantum circuit of the controlled quantum counter proposed in [26].

3. Related Work
Numerous research papers in the literature [15–23] have proposed using quantum

circuits based on Grover’s algorithm to address various NP-hard problems. The solved
problems include the k-coloring problem, the maximum clique problem, the list coloring
problem, the pure Nash equilibrium finding problem in graphical games, the Hamiltonian
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cycle problem, the vertex cover problem, and the dominating set problem. Table 1 presents
the relevant information from these papers.

Table 1. Information from research papers using quantum circuits based on Grover’s algorithm to
address various NP-hard problems.

Paper Year Authors Problem Solved

[15] 2020 Saha et al. k-coloring
[16] 2021 Saha et al. k-coloring in d-ary quantum systems
[17] 2021 Haverly and Lopez maximum clique
[18] 2022 Mukherjee list coloring
[19] 2022 Roch et al. pure Nash equilibria in graphical games
[20] 2022 Jiang Hamiltonian cycle
[21] 2023 Jiang and Kao Hamiltonian cycle
[22] 2023 Jiang and Yan vertex cover
[23] 2023 Jiang and Lin dominating set

Below, we briefly describe the research results of the papers listed in Table 1. In [17],
Haverly and Lopez implemented a quantum circuit based on Grover’s algorithm using
IBM Qiskit packages to address the maximum clique problem, i.e., to find the largest fully
connected subgraph of a given graph. The implementation is based on the descriptions
mentioned by Bojic in [31]. Since the maximum clique of a graph may not be unique,
and the number of such cliques is unknown, Bojic employed the method proposed by
Boyer et al. [14] to devise steps to identify at least one maximum clique in a given graph
under the condition that the number of solutions is unknown. These steps are based
on Grover’s algorithm, but Bojic did not demonstrate their implementation. In contrast,
Haverly and Lopez implemented their corresponding quantum circuit using IBM Qiskit
packages and verified that this quantum circuit can indeed produce the maximum cliques
of an example graph.

In [15], Saha et al. designed a quantum circuit based on Grover’s algorithm to address
the k-coloring problem. Given a graph G = (V, E) with the vertex set V and the edge
set E, the k-coloring problem is to assign one of k different colors to each vertex in the
graph, such that no two adjacent vertices (i.e., vertices connected by an edge) share the
same color. The authors proposed the quantum comparator concept to design the oracle of
Grover’s algorithm to address the k-coloring problem. They also proposed a generalized
algorithm to synthesize oracle quantum circuits to address the k-coloring problem for any
unweighted and undirected graph. The algorithm’s output is a quantum circuit netlist in
the form of the quantum assembly (QASM) language, which can be applied to general
NISQ devices. For the purpose of validation, the authors also executed the synthesized
oracle quantum circuit on the IBMQ cloud [32] to correctly solve the k-coloring problem for
an example graph.

In [16], Saha et al. designed a quantum circuit based on Grover’s algorithm to address
the k-coloring problem in d-ary quantum systems with d possible states, where d ≥ 2.
Saha et al. showed that d-state quantum systems use fewer quantum d-state digits to build
quantum comparators than binary quantum systems. They also proposed a generalized
algorithm that can synthesize oracle quantum circuits in d-ary quantum systems to address
the k-coloring problem for a given graph. Finally, the authors used a MATLAB (R2012b)
simulator [33] to simulate a synthesized quantum circuit on a 3-ary quantum system using
seven qutrits (i.e., quantum three-state digits), verifying that it can generate the correct
k coloring for the given graph. Note that, like a qubit that represents a binary quantum
system with two possible states denoted as |0⟩ and |1⟩, a qutrit represents a 3-ary quantum
system with three possible states, typically denoted as |0⟩, |1⟩, and |2⟩.
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In [18], Mukherjee proposed a quantum circuit based on Grover’s algorithm, utilizing
a restricted search space to address the list coloring problem for a given graph, where each
vertex is assigned a list of permissible colors. The objective of the list coloring problem
is to find a valid or proper coloring such that adjacent vertices have different colors,
while satisfying the constraint to choose colors from their respective lists. This additional
constraint makes the problem more complex than the standard graph coloring problem,
as it restricts the set of feasible solutions that need to be explored. Mukherjee used a
restricted version of Grover’s algorithm [34] to deal with the constraint to search only
within the feasible region defined by the color lists. The proposed quantum circuit was
constructed with Python using blueqat-sdk and was simulated on the Amazon Statevector
Simulator for the purpose of validation.

In [19], Roch et al. designed a quantum circuit based on Grover’s algorithm to find the
pure Nash equilibrium (PNE) in graphical games. A graphical game is a specialized model
in game theory where a player’s interactions and payoffs depend only on their neighbors.
In graphical games, the PNE is a situation where each player selects a single strategy that
maximizes their payoff for given strategies of their neighbors, and no player can improve
their payoff by unilaterally changing their strategy. The PNE involves pure strategies
rather than mixed strategies. The former strategies are simpler and allow each player to
explicitly decide on a particular action, whereas the latter allow each player to mix several
pure strategies according to a probability distribution. However, determining the existence
of the PNE is NP-complete (and thus also NP-hard) [35]. Roch et al. created quantum
circuits of the Grover algorithm oracle from a given graphical game by first translating it
into a Boolean satisfiability (SAT) problem, asking if there exists a Boolean assignment to
variables to satisfy a given Boolean formula. Afterwards, the oracle quantum circuit was
built using the methods proposed in [36,37]. Experiments based on IBM Qiskit built-in
functions were performed to validate the proposed quantum circuits.

In [20], Jiang proposed the concept of an “explicit oracle” to implement the quantum
circuit of Grover’s algorithm to address the Hamiltonian cycle problem. Given a graph,
the Hamiltonian cycle problem is to find a cycle that goes through every vertex once and
exactly once. Jiang classified the oracles as implicit and explicit. He defined an oracle as
implicit if it checks whether an input instance meets the solution conditions to determine
whether the instance is a solution. In contrast, he defined an oracle as explicit if it directly
compares an input instance against specific known patterns to determine whether it is a
solution. That is, the explicit oracle is built with knowledge of explicit solution patterns
in advance, so the quantum circuit can be built easily by inverting the phase of the qubit
states associated with the known solution patterns. However, the quantum circuit is
based on known solution patterns, so it cannot be applied to the solution of practical
application problems whose solution patterns are not known in advance. The main goal
of the quantum circuit is to demonstrate the execution process of Grover’s algorithm for
educational purposes. The paper presents two quantum circuits that are built and executed
with IBM Qiskit packages to validate their correctness in generating Hamiltonian cycles for
fully connected graphs of four and five vertices.

In [21], Jiang and Kao built the oracle quantum circuit of Grover’s algorithm to
generate all possible solutions to the Hamiltonian cycle problem for a given undirected
graph. Their concept is to implement the quantum circuit of an implicit oracle to check
if the edge set S associated with a quantum state meets the following conditions: (C1)
if the number of edges included in S equals the number of vertices of the graph, (C2) if
each graph vertex is connected to exactly two edges included in S, and (C3) if the edges
included in S form a single cycle. A quantum circuit was built and executed using IBM
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Qiskit packages to validate its correctness in generating the Hamiltonian cycle for a fully
connected graph of three vertices.

In [22], Jiang and Yan proposed a novel quantum circuit design called “quantum
semaphore” to construct the oracle quantum circuit of Grover’s algorithm to address the
vertex cover problem for a given graph and an integer k. The vertex cover problem asks
whether, in a given undirected graph G(V, E), a vertex cover of size k′ ≤ k exists. That is, it
checks if there exists a set V′ ⊆ V of vertices such that every edge in the graph has at least
one of its vertices in V′, and the size of V′ is less than or equal to k. The original vertex cover
problem is a decision problem. However, Jiang and Yan’s quantum circuit can generate all
vertex covers of size k for a given graph and an integer k. Quantum circuits were constructed
and executed with IBM Qiskit packages to validate their correctness in generating all vertex
covers for an example graph of five vertices with k = 2 and 3, respectively.

In [23], Jiang and Lin proposed a quantum circuit design that utilizes quantum coun-
ters to construct the oracle of Grover’s algorithm to address the dominating set problem.
The dominating set problem asks whether, in a given undirected graph G(V, E), there exists
a dominating set D ⊆ V such that (C1) every vertex in V is either in D or adjacent to at
least one vertex in D and (C2) the size of D is equal to a specified integer k. Jiang and
Lin’s approach focuses on generating all dominating sets of a given size for a specified
graph, rather than merely deciding the existence of such dominating sets. Their quantum
circuits use quantum counters to check if (C1) and (C2) are satisfied. They were developed
and validated with IBM Qiskit packages. The correctness was demonstrated by finding all
dominating sets of size k for an example graph.

4. Proposed Quantum Circuit Design
Figure 5 shows the proposed quantum circuit design based on Grover’s algorithm

to address the ECP. The details of the quantum circuit are described in the following
subsections, including the qubit initialization, the simplified quantum counter, and the
oracle construction based on the simplified quantum counter.

Figure 5. The proposed quantum circuit design to address the ECP.
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4.1. Initialization

Figure 5 shows the quantum circuit design to address the ECP with a given universal
set U = {u0, . . . , um} of m elements and a given collection C = {s0, s1, . . . , sn−1} of n sets,
each of which is a subset of U. In Figure 5, qubits labeled with s0, s1, . . . , sn−1 are used to
represent subsets in the collection C, and each of the qubits labeled with ui,0, ui,1, . . . , ui,b is
used to represent the quantum counter associated with the element ui in the universal set
U to store the number of sets covering ui, where 0 ≤ i ≤ m− 1 and b = ⌊log n⌋+ 1 is the
number of qubits used in a quantum counter. Finally, a qubit that is initially |1⟩ and then
undergoes an H gate to be transformed into |−⟩ is used as an ancilla qubit, which is the
target qubit of a multi-controlled X (MCX) gate to trigger the phase kickback. In summary,
the quantum circuit uses n + m(⌊log n⌋+ 1) qubits.

4.2. Simplified Quantum Counter

We use a simplified quantum counter, as shown in Figure 6, to implement the quantum
circuit of the oracle. In the quantum counter circuit, a qubit labeled with “control” serves
as the control qubit, and qubits labeled with count0, . . . , countb−1 are the b counting qubits.
The quantum counter functions like an incrementer, where the counter’s value increases by
1 whenever the control qubit is set to |1⟩.

Compared to the existing quantum counter proposed by Heidari et al. in [26], the sim-
plified quantum counter is noticeably simpler in design. Furthermore, it utilizes fewer
quantum gates and has a smaller quantum circuit depth. Specifically, for a quantum counter
with b counting qubits, the simplified quantum counter decreases the number of X gates by
2b− 2 and reduces the quantum circuit depth by b.

Figure 6. The quantum circuit of the controlled quantum counter of b counting qubits.

4.3. Oracle

As shown in Figure 5, the oracle uses a controlled quantum counter gate denoted as
Uqc, an inverse of the controlled quantum counter gate denoted as U†

qc, and some X gates
and an MCX gate between Uqc and U†

qc. In order to determine whether each element in U
is covered by exactly one set in C, the oracle sets up a quantum counter for each element in
U to count how many times it is covered by sets in C. Afterward, the oracle uses an MCX
gate to invert the ancilla qubit if every counter corresponds to the value 1. Specifically,
the MCX gate has to control qubits from every quantum counter, with X gates being added
to all qubits of the quantum counter except the least significant qubit. This means that if
every quantum counter is of the binary value 0. . . 1 (i.e., value 1), then the ancilla qubit is
intended to be flipped. Note that, since the ancilla qubit is in state |−⟩, an eigenstate of the
X gate, the phase kickback occurs to affect the qubits of the quantum counters. We will
explain the phase kickback effect in detail below.

Since the circuit of the oracle and the diffuser is repeated multiple times or iterations, it
is necessary to reset the counting qubits of every quantum counter before the next iteration
starts. This can be achieved by employing the inverse of the controlled quantum counter
gate, i.e., the U†

qc, as shown in Figure 5. The reader can check that, in Uqc, the qubits labeled
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with s0, s1, . . . , sn−1 have no relation to the ancilla qubit. However, when all the X gates
directly after the MCX gate and the U†

qc gate are executed, the quantum counter qubits
that were originally affected by the MCX gate’s phase kickback will start affecting qubits
labeled with s0, s1, . . . , sn−1.

The quantum circuits of both Uqc and U†
qc use m quantum counters. Hence, the whole

quantum circuit of the oracle uses 2m quantum counters, each of which has b = ⌊log n⌋+ 1
counting qubits. Thus, using simplified quantum counters to replace the existing quantum
counters proposed by Heidari et al. [26] can reduce the number of quantum gates by
2m(2b− 2) and shorten the quantum circuit depth by 2mb for a single oracle. The overall
quantum circuit invokes the oracle ⌊π/4

√
N/M⌋ times to address the ECP, where N = 2n

is the total number of possible input instances and M is the number of solutions to the
ECP, 1 ≤ M≪ N. Consequently, the overall quantum circuit using the simplified quantum
counter instead of existing quantum counters can save (4mb− 4m)⌊π/4

√
N/M⌋ quantum

gates, and its circuit depth is reduced by (2mb)⌊π/4
√

N/M⌋.

4.4. Quantum Circuit Generation Algorithm

This subsection shows the algorithm, called Grover-ECP, used to generate a quantum
circuit based on Grover’s algorithm to tackle the ECP by finding all exact covers for a given
universal set U = {u0, . . . , um} of m elements and a given collection C = {s0, . . . , sn−1} of
n sets, where each set in C is a subset of U.

As shown in Algorithm 1, the Grover-ECP algorithm first prepares a quantum cir-
cuit QC with n working qubits s0, . . . , sn−1 in state |0⟩, a total of m · b counting qubits
u0,0, . . . , u0,b−1, . . . , um−1,0, . . . , um−1,b−1 (or cnt0, . . . , cntmb−1) of counters in state |0⟩,
and an ancilla qubit labeled by anc in state |1⟩ and n classical bits to store the measurement
results of the n working qubits s0, . . . , sn−1. Then, the n working qubits s0, . . . , sn−1 undergo
H gates to ensure the uniform superposition of 2n states of the search space.

Afterwards, the quantum circuit repeats the Grover iterator ⌊(π/4)
√

(N/M)⌋
times (iterations). At each iteration, a controlled quantum counter gate Uqc is added
to qubits s0, . . . , sn−1 and u0,0, . . . , u0,b−1, . . . , um−1,0, . . . , um−1,b−1. Then, X gates are
added to qubits u0,1, . . . , u0,b−1, . . . , um−1,1, . . . , um−1,b−1. Note that no X gates are
added to the qubits u0,0, . . . , um−1,0, each of which is the first counting qubit of the
quantum counter associated with every element. Furthermore, the quantum circuit
is appended by an MCX gate that takes qubits u0,0, . . . , u0,b−1, . . . , um−1,0, . . . , um−1,b−1

as control qubits and the anc qubit as the target qubit. Then, X gates are added to
qubits u0,1, . . . , u0,b−1, . . . , um−1,1, . . . , um−1,b−1. The inverse quantum counter gate U†

qc
is added to qubits s0, . . . , sn−1 and u0,0, . . . , u0,b−1, . . . , um−1,0, . . . , um−1,b−1. The dif-
fuser gate Us is added to qubits s0, . . . , sn−1. After ⌊(π/4)

√
(N/M)⌋ repetitions of the

Grover iterator, the n working qubits s0, . . . , sn−1 are measured to derive the solution
to the given ECP.

The Grover-ECP algorithm invokes other algorithms to generate the quantum circuits
of the quantum counter (Algorithm 2), the inverse quantum counter (Algorithm 3), and the
diffuser (Algorithm 4). These algorithms are also shown below to reveal the details of the
quantum circuits. It is noted that the inverse quantum counter executes all the gates used
in the quantum counter in reverse order. This has the effect of resetting all counters to the
initial value of 0, so that the counters can count from 0 in the next iteration.
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Algorithm 1 Grover-ECP(U, C)

Input: An exact cover problem (ECP) instance:
U = {u0, . . . , um−1}, a universal set of m elements
C = {s0, . . . , sn−1}, a collection of n sets, each of which is a subset of U

Output: QC: a quantum circuit using QQSA to address the ECP
1: b← ⌊log n⌋+ 1
2: QC ← a quantum circuit with

n working qubits s0, . . . , sn−1 in |0⟩,
mb counter qubits u0,0, . . . , u0,b−1, . . . , um−1,0, . . . , um−1,b−1 (or
cnt0, . . . , cntmb−1) in |0⟩, and
1 ancilla qubit anc in |1⟩

3: Add H gates on n qubits s0, . . . , sn−1
4: for i← 1 to ⌊(π/4)

√
(N/M)⌋ do

5: Uqc ← Quantum_Counter(n, m)
6: Add Uqc gate on qubits s0, . . . , sn−1 and

u0,0, . . . , u0,b−1, . . . , um−1,0, . . . , um−1,b−1
7: Add X gates on qubits u0,1, . . . , u0,b−1, . . . , um−1,1, . . . , um−1,b−1
8: Add an MCX gate taking qubits u0,0, . . . , u0,b−1, . . . , um−1,0, . . . , um−1,b−1 as

control qubits and anc qubit as the target qubit
9: Add X gates on qubits u0,1, . . . , u0,b−1, . . . , um−1,1, . . . , um−1,b−1

10: U†
qc ← Inverse_Quantum_Counter(n, m)

11: Add U†
qc gate on qubits s0, . . . , sn−1 and

u0,0, . . . , u0,b−1, . . . , um−1,0, . . . , um−1,b−1
12: Us ← Diffuser(n)
13: Add Us gate on qubits s0, . . . , sn−1
14: end for
15: Measure qubits s0, . . . , sn−1
16: return QC

Algorithm 2 Quantum_Counter(n, m)

Input: Integers n and m
Output: QC: a quantum circuit of the quantum counter

1: b← ⌊log n⌋+ 1
2: QC ← a quantum circuit with

n working qubits s0, . . . , sn−1 and
mb counter qubits u0,0, . . . , u0,b−1, . . . , um−1,0, . . . , um−1,b−1 (or
cnt0, . . . , cntmb−1)

3: for i← 0 to n− 1 do
4: for uj ∈ si with ascending index order of j do
5: for k← b− 1 downto 1 do
6: Add an MCX gate taking si and uj,0, . . . , uj,k−1 as control qubits and uj,k

as the target qubit
7: end for
8: Add a CX gate taking si as the control qubit and uj,0 as the target qubit
9: end for

10: end for
11: return QC
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Algorithm 3 Inverse_Quantum_Counter(n, m)

Input: Integers n and m
Output: QC: a quantum circuit of the inverse quantum counter

1: b← ⌊log n⌋+ 1
2: QC ← a quantum circuit with

n working qubits s0, . . . , sn−1 and
mb counter qubits u0,0, . . . , u0,b−1, . . . , um−1,0, . . . , um−1,b−1 (or cnt0, . . . , cntmb−1)

3: for i← n− 1 downto 0 do
4: for uj ∈ si with descending index order of j do
5: Add a CX gate taking si as the control qubit and uj,0 as the target qubit
6: for k← 1 to b − 1 do
7: Add an MCX gate taking si and uj,0, . . . , uj,k−1 as control qubits and uj,k as the

target qubit
8: end for
9: end for

10: end for
11: return QC

Algorithm 4 Diffuser(n)

Input: An integer n
Output: QC: a quantum circuit of the diffuser

1: QC ← a quantum circuit with n qubits q0, . . . , qn−1
2: Add H gates on qubits q0, . . . , qn−1
3: Add X gates on qubits q0, . . . , qn−1
4: Add an MCZ gate with q0, . . . , qn−2 as control qubits and qn−1 as the target qubit
5: Add X gates on qubits q0, . . . , qn−1
6: Add H gates on qubits q0, . . . , qn−1
7: return QC

5. Experimental Results
We conduct four experiments based on the IBM Qiskit packages to implement the

proposed quantum circuit design to address the ECP. The details of the experiments are
described in the following subsections.

5.1. The First Experiment

The first experiment is to construct and run a quantum circuit to address the ECP
defined below. The universal set U is {u0, u1, u2} of three elements u0, u1 and u0, and the
collection C of sets is {s0, s1}, where s0 and s1 are subsets of U, s0 = {u0}, and s1 = {u1}.

Figure 7 depicts the quantum circuit of the Grover iterator that contains the oracle
and the diffuser to address the given ECP. The oracle has two qubits s0 and s1 for sets s0

and s1 in C, and it has three quantum counters for elements u0, u1 and u2, respectively.
Specifically, each quantum counter uses two qubits, where cnt0 and cnt1 are with the
counter for element u0; cnt2 and cnt3 are with the counter for element u1; and cnt4 and cnt5

are with the counter for element u2. Furthermore, the oracle also has an ancilla qubit that is
denoted as acn and is used for phase kickback, which will be explained later. It is noted
that the Grover iterator uses nine qubits.

Figure 8 shows the quantum circuit of the quantum counting algorithm (QCA) using the
Grover iterator to derive the number of solutions to the ECP in the first experiment. The QCA
quantum circuit uses three counting qubits cq0, cq1, and cq2, each serving as the control qubit
of the controlled Grover iterator (CG, or G for short). Specifically, qubit cq0 is the control
qubit of a G (or G1 or G20

), cq1 is the control qubit of two Gs (or G2 or G21
), and cq2 is the
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control qubit of four Gs (or G4 or G22
). The counting qubits initially undergo H gates to be

in superposition and in the Fourier basis and then undergo an inverse Fourier transform
(QFT†) gate to return to the computational basis for measurement to derive the phase of the
Grover iterator. Note that the quantum circuit has nine working qubits, wq0, . . . , wq8, which
correspond to the nine qubits used by the Grover iterator. The working qubits wq0 and wq1

correspond to the two qubits s0 and s1 in the Grover iterator; they undergo H gates to be in
superposition initially. The last working qubit wq8 corresponds to the ancilla qubit of the
Grover iterator; it undergoes an X gate and an H gate to be in the state |−⟩ initially.

Figure 9 shows the histogram of the measurement results of the QCA to derive the
number of solutions to the ECP in the first experiment. Outcome 100 has the measurement
probability of 1. It corresponds to the value of 4. By dividing 23, where 3 is the number of
counting qubits, 4 becomes 4

23 , which in turn is mapped into a phase angle in radians within
the range [−π, π]. Specifically, it is mapped into the phase angle 2π× 4

23 −π = 8π
8 −π = 0.

With Equation (8), we can derive M = N × sin2
(

θ
2

)
= 4× sin2 0 = 0. Therefore, using the

quantum counting algorithm, we can determine that the ECP in the first experiment has no
solution. We thus do not need to address the ECP in the first experiment further, as it has
no solution.

Figure 7. The quantum circuit of the Grover iterator (i.e., the oracle and the diffuser) to address the
ECP in the first experiment.

Figure 8. The quantum circuit of the quantum counting algorithm using the Grover iterator to derive
the number of solutions to the ECP in the first experiment.
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Figure 9. The histogram of the measurement results of the quantum counting algorithm to derive the
number of solutions to the ECP in the first experiment.

5.2. The Second Experiment

The second experiment is to construct and run a quantum circuit to address the ECP
defined below. The universal set U is {u0, u1} of two elements u0 and u1, and the collection
C of sets is {s0, s1}, where s0 and s1 are subsets of U, s0 = {u0}, and s1 = {u1}.

Figure 10 shows the quantum circuit of the Grover iterator that contains the oracle and
the diffuser to address the given ECP. The oracle has two qubits s0 and s1 for sets s0 and s1

in C, and it has two counters for elements u0 and u1, respectively. Specifically, each counter
uses two qubits, where cnt0 and cnt1 are with the counter for element u0, and cnt2 and cnt3

are with the counter for element u1. Furthermore, the oracle also has an ancilla qubit that is
denoted as acn and is used for phase kickback, which will be explained later. It is noted
that the Grover iterator uses seven qubits.

Figure 11 shows the quantum circuit of the quantum counting algorithm (QCA) using
the Grover iterator to derive the number of solutions to the ECP in the second experiment.
The QCA quantum circuit uses three counting qubits cq0, . . . , cq2, each serving as the control
qubit of the controlled Grover iterator (CG, or G for short). Specifically, qubit cq0 is the control
qubit of a G (or G1 or G20

), cq1 is the control qubit of two Gs (or G2 or G21
), and cq2 is the

control qubit of four Gs (or G4 or G22
). The counting qubits initially undergo H gates to be

in superposition and in the Fourier basis and then undergo an inverse Fourier transform
(QFT†) gate to return to the computation basis for measurement to derive the phase of the
Grover iterator. Note that the quantum circuit has seven working qubits, wq0, . . . , wq6, which
correspond to the seven qubits used by the Grover iterator. The working qubits wq0 and wq1

correspond to the two qubits s0 and s1 in the Grover iterator; they undergo H gates and are
in superposition initially. The last working qubit wq6 corresponds to the ancilla qubit of the
Grover iterator; it undergoes an X gate and an H gate to be in the state |−⟩ initially.

Figure 12 shows the histogram of the measurement results of the QCA to derive
the number of solutions to the ECP in the second experiment. Two outcomes, 011 and
101, have significant probabilities. They correspond to the values of 3 and 5, respectively.
By dividing 23, where 3 is the number of counting qubits, 3 and 5 become 3

23 and 5
23 , which

in turn are mapped into phase angles in radians within the range [−π, π]. Specifically,
they are mapped into the phase angle 2π × 3

23 − π = 6π
8 − π = − 2π

8 and the phase angle

2π × 5
23 − π = 10π

8 − π = 2π
8 . With Equation (8), we can derive M = N × sin2

(
θ
2

)
=

4× sin2(±2π
8

)
= 0.58578, which is rounded as 1. That is, using the quantum counting

algorithm, we can determine that the ECP in the second experiment has M = 1 solution.
Figure 13 shows the quantum circuit based on Grover’s algorithm using the Grover

iterator to address the ECP in the second experiment. Note that the Grover iterator is
repeated T = ⌊π/4

√
N/M⌋ = ⌊π/4

√
4/1⌋ = ⌊1.57079⌋ = 1 time.
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Figure 14 shows the histogram of the measurement results of the quantum circuit
based on Grover’s algorithm using the Grover iterator to address the ECP in the second
experiment. There is only one outcome of pattern 11 with a significant probability of occur-
rence. Outcome 11 corresponds to the sets s0 = {u0} and s1 = {u1}, and the subcollection
{s0, s1} of C is exactly the only solution to the ECP in the second experiment.

Figure 10. The quantum circuit of the Grover iterator (i.e., the oracle and the diffuser) to address the
ECP in the second experiment.

Figure 11. The quantum circuit of the quantum counting algorithm using the Grover iterator to
derive the number of solutions to the ECP in the second experiment.

Figure 12. The histogram of the measurement results of the quantum counting algorithm to derive
the number of solutions to the ECP in the second experiment.
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Figure 13. The quantum circuit based on Grover’s algorithm using the Grover iterator to address the
ECP in the second experiment.

Figure 14. The histogram of the measurement results of the quantum circuit based on Grover’s
algorithm using the Grover iterator to address the ECP in the second experiment.

5.3. The Third Experiment

The third experiment is to construct and run a quantum circuit to address the ECP
defined below. The universal set U is {u0, u1, u2} of three elements u0, u1 and u2, and the
collection C of sets is {s0, s1, s2, s3}, where s0, s1 and s2 are subsets of U, s0 = {u0},
s1 = {u1}, s2 = {u2} and s3 = {u0, u1, u2}.

Figure 15 depicts the quantum circuit of the Grover iterator that contains the oracle
and the diffuser to address the given ECP. The oracle has four qubits s0, . . . , s3 for sets
s0, . . . , s3 in C, and it has three counters for elements u0, . . . , u2. Specifically, each counter
uses three qubits, where cnt0, . . . , cnt2 are with the counter for element u0; cnt3, . . . , cnt5

are with the counter for element u1; and cnt6, . . . , cnt8 are with the counter for element
u2. Furthermore, the oracle also has an ancilla qubit that is denoted as acn and is used for
phase kickback. It is noted that the Grover iterator uses a total of 14 qubits.

Figure 16 shows the quantum circuit of the quantum counting algorithm using the
Grover iterator to derive the number of solutions of the ECP in the third experiment.
The quantum circuit uses four counting qubits cq0, . . . , cq3, each serving as the control qubit
of the controlled Grover iterator (CG, or G for short). Specifically, qubit cq0 is the control
qubit of a G, G1 or G20

; cq1 is the control qubit of two Gs, G2 or G21
; cq2 is the control qubit
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of four Gs, G4 or G22
; and cq3 is the control qubit of eight Gs, G8 or G23

. The counting
qubits initially undergo H gates to be in superposition and in the Fourier basis and then
undergo an inverse Fourier transform (QFT†) gate to return to the computational basis for
measurement to derive the phase of the Grover iterator. Note that the quantum circuit has
14 working qubits, wq0, . . . , wq13, which correspond to the 14 qubits used by the Grover
iterator. The working qubits wq0, . . . , wq3 correspond to the four qubits s0, . . . , s3 in the
Grover iterator; they undergo H gates and are in superposition initially. The last working
qubit wq13 corresponds to the ancilla qubit of the Grover iterator; it undergoes an X gate
and an H gate to be in the state |−⟩ initially.

Table 2 shows the detailed measurement results of the QCA to derive the number
of solutions to the ECP in the third experiment. Figure 17 shows the histogram of the
measurement results of the QCA to derive the number of solutions to the ECP in the third
experiment. Two combinations or outcomes, 0110 and 1010, have significant measurement
probabilities. They correspond to the values of 6 and 10, respectively. By dividing 24, where
4 is the number of counting qubits, 6 and 10 become 6

24 and 10
24 , which in turn are mapped

into phase angles in radians within the range [−π, π]. Specifically, they are mapped into the
phase angle 2π× 6

24 − π = 12π
16 − π = − 4π

16 and the phase angle 2π× 10
24 − π = 20π

16 − π =

4π
16 . With Equation (8), we can derive M = N × sin2

(
θ
2

)
= 16× sin2

(
±4π

16

)
= 2.34314,

which is rounded as 2. That is, using the quantum counting algorithm, we can determine
that the ECP in the third experiment has M = 2 solutions.

Figure 18 shows the quantum circuit based on Grover’s algorithm using the Grover
iterator to address the ECP in the third experiment. Note that the Grover iterator is repeated
T = ⌊π/4

√
N/M⌋ = ⌊π/4

√
16/2⌋ = ⌊2.22144⌋ = 2 times.

Table 3 shows the detailed measurement results (combination and probability) of the
quantum circuit based on Grover’s algorithm using the Grover iterator to address the ECP
in the fourth experiment. Furthermore, Figure 19 shows the histogram of the measurement
results of the quantum circuit based on Grover’s algorithm using the Grover iterator to
address the ECP in the third experiment. There are two combinations, 0111 and 1000,
with significant measurement probabilities of occurrence. Outcome 0111 corresponds to
the sets s0 = {u0}, s1 = {u1}, and s2 = {u2}, and the subcollection {s0, s1, s2} of C is a
solution to the ECP in the third experiment. Similarly, outcome 1000 corresponds to the
set s4 = {u0, u1, u2}, and the subcollection {s4} of C is the other solution to the ECP in the
third experiment.

Table 2. The detailed measurement results (combination and probability) of the quantum counting
algorithm to derive the number of solutions to the ECP in the third experiment.

Comb. Prob. Comb. Prob. Comb. Prob. Comb. Prob.

00000 0.0008 00001 0.001 00010 0.0006 00011 0.0016
00100 0.0014 00101 0.0006 00110 0.001 00111 0.0022
01000 0.0022 01001 0.005 01010 0.0072 01011 0.02
01100 0.3574 01101 0.0768 01110 0.0162 01111 0.0064
10000 0.0038 10001 0.006 10010 0.0116 10011 0.081
10100 0.356 10101 0.0226 10110 0.0072 10111 0.0042
11000 0.0024 11001 0.001 11010 0.001 11011 0.0006
11100 0.0014 11101 0.0000 11110 0.0006 11111 0.0002
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Figure 15. The quantum circuit of the Grover iterator (i.e., the oracle and the diffuser) to address the
ECP in the third experiment.

Table 3. The detailed measurement results (combination and probability) of the quantum circuit
based on Grover’s algorithm using the Grover iterator to address the ECP in the third experiment.

Comb. Prob. Comb. Prob. Comb. Prob. Comb. Prob.

0000 0.0026 0001 0.003 0010 0.0054 0011 0.004
0100 0.0032 0101 0.0042 0110 0.003 0111 0.4768
1000 0.4698 1001 0.003 1010 0.0058 1011 0.004
1100 0.0044 1101 0.0034 1110 0.0036 1111 0.0038



Mathematics 2025, 13, 90 22 of 31

Figure 16. The quantum circuit of the quantum counting algorithm using the Grover iterator to
derive the number of solutions of the ECP in the third experiment.

Figure 17. The histogram of the measurement results of the quantum counting algorithm to derive
the number of solutions to the ECP in the third experiment.
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Figure 18. The quantum circuit based on Grover’s algorithm using the Grover iterator to address the
ECP in the third experiment.

Figure 19. The histogram of the measurement results of the quantum circuit based on Grover’s
algorithm using the Grover iterator to address the ECP in the third experiment.

5.4. The Fourth Experiment

The fourth experiment is to construct and run a quantum circuit to address the
ECP defined below. The universal set U is {u0, u1, u2} of three elements u0, u1 and u2,
and the collection C of sets is {s0, s1, s2, s3, s4}, where s0, . . . , s4 are subsets of U, s0 = {u0},
s1 = {u1}, s2 = {u2}, s3 = {u0, u1}, and s4 = {u0, u2}.
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Figure 20 shows the quantum circuit of the Grover iterator that contains the oracle and
the diffuser to address the given ECP. The oracle has five qubits s0, . . . , s4 for sets s0, . . . , s4

in C, and it has three counters for elements u0, . . . , u2. Specifically, each counter uses three
qubits, where cnt0, . . . , cnt2 are with the counter for element u0; cnt3, . . . , cnt5 are with the
counter for element u1; and cnt6, . . . , cnt8 are with the counter for element u2. Furthermore,
the oracle also has a an ancilla qubit that is denoted as acn and is used for phase kickback.
Note that the Grover iterator uses a total of 15 qubits.

Figure 21 shows the quantum circuit of the quantum counting algorithm using the
Grover iterator to derive the number of solutions to the ECP in the fourth experiment.
The quantum circuit uses five counting qubits cq0, . . . , cq4, each serving as the control qubit
of the controlled Grover iterator (CG, or G for short). Specifically, qubit cq0 is the control
qubit of a G (or G1 or G20

), cq1 is the control qubit of two Gs (or G2 or G21
), cq2 is the

control qubit of four Gs (or G4 or G22
), and cq4 is the control qubit of 16 Gs (or G16 or G24

).
The counting qubits initially undergo H gates to be in superposition and in the Fourier basis
and then undergo an inverse Fourier transform (QFT†) gate to return to the computational
basis for measurement to derive the phase of the Grover iterator. Note that the quantum
circuit has 15 working qubits, wq0, . . . , wq14, which correspond to the 15 qubits used by the
Grover iterator. The working qubits wq0, . . . , wq4 correspond to the five qubits s0, . . . , s4

in the Grover iterator; they undergo H gates and are in superposition initially. The last
working qubit wq14 corresponds to the ancilla qubit of the Grover iterator; it undergoes an
X gate and an H gate to be in state |−⟩ initially.

Table 4 shows the detailed measurement results of the QCA to derive the number of
solutions to the ECP in the fourth experiment. Moreover, Figure 22 shows the histogram of
the measurement results of the QCA to derive the number of solutions to the ECP in the
fourth experiment. Two outcomes, 01101 and 10011, have significant probabilities. They
correspond to the values of 13 and 19, respectively. By dividing 25, where 5 is the number
of counting qubits, 13 and 19 become 13

25 and 19
25 , which in turn are mapped into phase

angles in radians within the range [−π, π]. Specifically, they are mapped into the phase
angle 2π × 13

25 − π = 26π
32 − π = − 6π

32 and the phase angle 2π × 19
25 − π = 38π

32 − π = 6π
32 .

With Equation (8), we can derive M = N × sin2
(

θ
2

)
= 32× sin2(±6π

32
)
= 2.69648, which is

rounded as 3. That is, using the quantum counting algorithm, we can determine that the
ECP in the fourth experiment has M = 3 solutions.

Figure 23 shows the quantum circuit based on Grover’s algorithm using the Grover
iterator to address the ECP in the fourth experiment. Note that the Grover iterator is
repeated T = ⌊π/4

√
N/M⌋ = ⌊π/4

√
32/3⌋ = ⌊2.56509⌋ = 2 times.

Table 5 shows the detailed measurement results (combination and probability) of the
quantum circuit based on Grover’s algorithm using the Grover iterator to address the ECP
in the fourth experiment. Furthermore, Figure 24 shows the histogram of the measurement
results of the quantum circuit based on Grover’s algorithm using the Grover iterator to
address the ECP in the fourth experiment. There are three outcomes of combinations (or
patterns), namely 00111, 01100, and 10010, with significant measurement probabilities. Out-
come 00111 corresponds to the sets s0 = {u0}, s1 = {u1} and s2 = {u2}. Outcome 01100
corresponds to the sets s2 = {u2} and s3 = {u0, u1}. Outcome 10010 corresponds to the
sets s1 = {u1} and s4 = {u0, u2}. The three outcomes correspond to the subcollections of
C, each of which is a solution to the ECP in the fourth experiment.
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Figure 20. The quantum circuit of the Grover iterator (i.e., the oracle and the diffuser) to address the
ECP in the fourth experiment.

Table 4. The detailed measurement results (combination and probability) of the quantum counting
algorithm to derive the number of solutions to the ECP in the fourth experiment.

Comb. Prob. Comb. Prob. Comb. Prob. Comb. Prob.

00000 0.0002 00001 0.0004 00010 0.0006 00011 0.0006
00100 0.0004 00101 0.0002 00101 0.0000 00111 0.0008
01000 0.0006 01001 0.0014 01010 0.0018 01011 0.0036
01100 0.0184 01101 0.458 01110 0.0096 01111 0.0038
10000 0.003 10001 0.0048 10010 0.0116 10011 0.4528
10100 0.019 10101 0.0028 10110 0.0012 10111 0.0012
11000 0.0006 11001 0.0008 11010 0.0002 11011 0.0004
11100 0.0002 11101 0.0002 11110 0.0002 11111 0.0006
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Figure 21. The quantum circuit of the quantum counting algorithm using the Grover iterator to
derive the number of solutions to the ECP in the fourth experiment.

Figure 22. The histogram of the measurement results of the quantum counting algorithm to derive
the number of solutions to the ECP in the fourth experiment.
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Figure 23. The quantum circuit based on Grover’s algorithm using the Grover iterator to address the
ECP in the fourth experiment.

Table 5. The detailed measurement results (combination and probability) of the quantum circuit
based on Grover’s algorithm using the Grover iterator to address the ECP in the fourth experiment.

Comb. Prob. Comb. Prob. Comb. Prob. Comb. Prob.

00000 0.0114 00001 0.0116 00010 0.015 00011 0.0112
00100 0.0098 00101 0.0124 00110 0.014 00111 0.2342
01000 0.0104 01001 0.0138 01010 0.0092 01011 0.0118
01100 0.2082 01101 0.0126 01110 0.0122 01111 0.0122
10000 0.0132 10001 0.0112 10010 0.2238 10011 0.0112
10100 0.0118 10101 0.0112 10110 0.0104 10111 0.0106
11000 0.0104 11001 0.0116 11010 0.011 11011 0.011
11100 0.0112 11101 0.011 11110 0.0114 11111 0.009
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Figure 24. The histogram of the measurement results of the quantum circuit based on Grover’s
algorithm using the Grover iterator to address the ECP in the fourth experiment.

6. Conclusions
In this paper, we have designed and implemented quantum circuits based on Grover’s

algorithm to address the NP-hard ECP with a given collection of n sets, each of which
is a subset of a given universal set containing m elements. The quantum circuits utilize
a simplified quantum counter to construct the oracle of Grover’s algorithm. Thanks to
Grover’s algorithm, these quantum circuits invoke the oracle along with the diffuser
⌊π/4

√
N/M⌋ = O(

√
N) times to address the ECP, where N = 2n is the total number

of possible input instances and M is the number of solutions to the ECP. This achieves
quadratic acceleration compared to the classical sequential algorithms invoking the oracle
O(N) times.

Compared to the existing quantum counter proposed by Heidari et al. in [26], the sim-
plified quantum counter decreases the number of X gates by 2b− 2 and reduces the depth of
the quantum circuit by b for a quantum counter with b counting qubits. An oracle quantum
circuit uses m quantum counters with b = ⌊log n⌋+ 1 counting qubits twice. Thus, a whole
quantum circuit to address the ECP saves (4mb− 4m)⌊π/4

√
N/M⌋ quantum gates, and its

circuit depth is reduced by (2mb)⌊π/4
√

N/M⌋. This is particularly beneficial in the current
NISQ era, where quantum computers have a limited number of qubits, low quantum gate
fidelity, and short decoherence times.

We relied on the QCA to derive the number of solutions to the ECP that is not known
in advance. However, the QCA needs to repeat the Grover iterator with t counting qubits a
total of 20 + . . . + 2t−1 = 2t times. This corresponds to not only a large number of quantum
gates but also a very large quantum circuit depth, which is a problem in the current NISQ
era. We are now investigating how to address this problem. Furthermore, we plan to
utilize the simplified quantum counter to implement quantum circuits based on Grover’s
algorithm to address more intricate problems, besides the Hamiltonian cycle, vertex cover,
and dominating set problems solved by us in [20–23].

We have conducted four experiments using the IBM Qiskit packages to implement and
execute our designed quantum circuits using the IBM Aer Simulator, successfully solving
the ECP for correctness validation. We have also conducted experiments to execute the
designed quantum circuits on real IBM 127-qubit quantum computers, e.g., ibm_brisbane
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and ibm_strasbourg. However, despite our efforts to reduce the number of qubits used and
shorten the quantum circuit depth, the results returned by the real quantum computer are
not entirely consistent with those returned by the simulator. We do not observe significant
probabilities of outcomes that lead to correct solutions, so these results are not included in
the paper. This is likely because quantum simulators usually assume perfect gate fidelity
with no noise, infinite qubit coherence times, and accurate qubit measurement without
errors. However, we are still in the NISQ era, where the gate fidelity is not yet high enough,
the decoherence time is not long enough, and qubit measurement still has errors. In the
future, we plan to investigate error mitigation techniques and to re-execute these quantum
circuits on available real quantum computers, hoping to achieve experimental results that
are more consistent with those returned by the simulator. Another possibility is to resort
to the latest fault-tolerant quantum computers with error correction capabilities, such as
Google’s Willow [38], which realizes a 101-qubit distance-7 surface code. Willow maintains
below-threshold performance, meaning that its error rates stay below the critical threshold
needed for effective quantum error correction. Implementing and executing our quantum
circuit designs on large-scale, fault-tolerant quantum computers is also a future research
goal that we hope to realize.
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