Quantum
            Computing (¶q¤lpºâ) 2025
    
      
        
          
      
      Lecturer: ¦¿®¶·ç
      Teaching Assistants (TAs): 
¶À¤å¿« ªL¾ô¼Ý
      Time: ¶g¤G
        14:00~16:50 
        Place: ¶g¤G ¤u¤À] E6-A210
        EEClass: (CE5082)
        
      
      Goal: Leading students to understand the basic principles of
        quantum computing and the developments and the applications of
        the latest quantum computing technologies.
        (±a»â¾Ç¥Í¤F¸Ñ¶q¤lpºâ°ò¥»ì²z¤Î³Ì·s¶q¤lpºâ§Þ³N¤§µo®i»PÀ³¥Î)
      
      
      Scoring¡G
      
      
        - midterm project (programming) (30%)
 
- oral report in class (25%)
- term project (programming) (30%)
- homework, reports and in-class participation (15%)
 
Textbooks:
      
      Reference Books:
        - ±i¤¸µ¾, ¶q¤l¹q¸£»P¶q¤lpºâ, ùÖ®p¸ê°T, 2020.
 
- ³¯«Ø§»(Ķ), ¶q¤lpºâ¹ê¾Ô, ùÖ®p¸ê°T, 2020. 
 
- ²ø¥Ã¸Î(Ķ), ¹Ï¸Ñ¶q¤l¹q¸£¤Jªù, ÁyÃÐ, 2020.
- ªL§ÓÂE, ±i¤¯Þ·, ®}¨|¥ü, ªL¾ô¼Ý, ¼B¤lºÍ, ªL¨Ý«í, ¶q¤l¹q¸£À³¥Î»P¥@¬É¯ÅÄvÁɹê°È, 2021.
- Jack D. Hidary, Quantum Computing: An Applied Approach (2nd
          Ed), 2021.
- Chris Bernhardt, Quantum Computing for Everyone, 2020.
- Nihal Mehta, Quantum Computing -- Program Next-Gen Computers
          for Hard, Real-World Applications, 2020.
- Michael A. Nielsen, and Isaac L. Chuang, Quantum Computation
          and Quantum Information, 2002.
 
Syllabus:  (2025-Quantum-Computing.pdf) 
      
      
      
        - (9/2) Week 1. Introduction
            to Quantum Computing -- From quantum bit to quantum
            algorithm (qc-talk.pptx)
- (9/9) Week 2. Quantum
            programming for the first time (Introduction to IBM Q
            quantum computer and D-Wave quantum computer) (QBookCh1.zip)
 Homework1:
 Textbook Exercises (Select one from 1.1-1.3)(and 1.4)(and
              1.5 Bonus) (deadline: by noon before next class)
  
  
 
 
- (9/16) Week 3.
              QUBO«Ø¼Ò¡BPyQUBOµ{¦¡³]p»P¶q¤l¦ì¤¸Å|¥[ºAµ{¦¡³]p(2025-0916-PyQUBO.zip) (QBookCh2.zip)(Quantum_Course_Slides(Week3).zip)
 Homework 2: (A) Max-Cut Prob. PyQUBO
                programming for the G22 dataset and (B) Ex2.1 to Ex.2.5.
 Deadline: 9/22 23:59
- (9/23) Week 4. Quantum-inspired
                  Annealers (2025-GPUA.zip),
                  metaheuristic algorithms (metaheuristics.pptx)
                  as well as Quantum Gates, Quantum Entanglement and
                  Quantum Teleportation (QBookCh3.zip)(QBookCh4.zip)(qexp.pptx)
 Homework 3:  (A) Write a report to introduce ES,
                SA, DE, TCA, VNS, TS, or GSA (bonus: with an example
                using a program to solve an NP-hard problem). (TA will announce the problem assignment
                        soon.) (B) Ex4.1 to
                Ex4.5. Deadline: 9/29 23:59
 
- (9/30) Week 5. Paper
                Oral Reports (1/3)
 (1) Introduction to Fujitsu Digital Annealer with
                Examples. (Fujitsu_DA_Constraints.docx)(TA:
                ªL¾ô¼Ý)
 (2) de Queiroz, T. A., Iori, M., Locatelli, A., &
                Parizy, M. (2025, July).
 Solving the Cubic Knapsack Problem using the
                Quantum-Inspired Digital Annealer Technology. In
                Proceedings of the Genetic and Evolutionary Computation
                Conference (pp. 890-897).
 (3) Codognet, P., Diaz, D., & Abreu, S. (2022,
                July). Quantum and digital annealing for the quadratic
                assignment problem. In 2022 IEEE International
                Conference on Quantum Software (QSW) (pp. 1-8). IEEE.
 
- (10/7) Week 6. Paper
                      Oral Reports (2/3)
 (4) Jehn-Ruey Jiang, and
                Chun-Wei Chu, "Classifying
                  and Benchmarking Quantum Annealing Algorithms Based on
                  Quadratic Unconstrained Binary Optimization for
                  Solving NP-hard Problems," IEEE Access, vol. 11,
                pp. 104165-104178, 2023.
 Jehn-Ruey
                            Jiang, Yu-Chen Shu, and Qiao-Yi Lin, "Benchmarks
                              and Recommendations for Quantum, Digital,
                              and GPU Annealers in Combinatorial
                              Optimization," IEEE Access, vol. 12,
                            pp. 125014-125031, 2024.
 (5) Zeng, Q. G., Cui, X. P., Liu, B., Wang, Y.,
                Mosharev, P., & Yung, M. H. (2024). Performance of
                quantum annealing inspired algorithms for combinatorial
                optimization problems. Communications Physics, 7(1),
                249.
 (6) Lee, H., & Jun, K. (2025). Range dependent
                Hamiltonian algorithms for numerical QUBO formulation.
                Scientific Reports, 15(1), 8819.
- (10/14) Week 7. Paper
                      Oral Reports (3/3)
 (7) Nakano, K., Takafuji, D., Ito, Y., Yazane, T.,
                      Yano, J., Ozaki, S., ... & Mori, R. (2023,
                      May). Diverse adaptive bulk search: a framework
                      for solving QUBO problems on multiple GPUs. In
                      2023 IEEE International Parallel and Distributed
                      Processing Symposium Workshops (IPDPSW) (pp.
                      314-325). IEEE.
 (8) Andreou, A., Mavromoustakis, C. X., Markakis,
                      E., Bourdena, A., & Mastorakis, G. (2025).
                      Sustainable AI With Quantum-Inspired Optimization:
                      Enabling End-to-End Automation in Cloud-Edge
                      Computing. IEEE Access.
 (9) Kaseb, Z., Moller, M., Vergara, P. P., &
                      Palensky, P. (2024). Power flow analysis using
                      quantum and digital annealers: a discrete
                      combinatorial optimization approach. Scientific
                      Reports, 14(1), 23216.
 
        - (10/21) Week 8.
                Midterm Project (No Class Today)
 Using the QUBO solver to solve a large scale 0/1
                knapsack problem instance based on the
                slack-variable-range-search problem decomposition
                mechanism (ref: 2025-ECICE-QUBO-Decomposition(1008).zip).
                The scoring will be based on how close you solution
                approaches the best known solution and how well you
                describe your program. (TA will
                    announce the problem
                    instance via EE-Class soon.) (Due: 10/27 23:59)
- (10/28) Week
                  9. Background Knowledge for gate-based quantum
                  algorithms and Grover's algorithm and its variants.
- (11/4)
                  Week 10. Grover's algorithm and its variants (1/2).
- (11/11)
                  Week 11. Grover's algorithm and its
                          variants (2/2).
        - ===VVV===The
                      contents below are not up-to-date. ===VVV===
 (9/28-10/11)
              (16+2¼u©Ê±Ð¾Ç) + PBL (Problem-Based Learning, or Project-Based
              Learning): Distributed Quantum Computing System (DQCS),
              and Quantum Annealing Algorithm (QA)
 
 * Dirac Notation
 * Bloch Sphere
 * H, X, CNOT Gates
 * Quantum Entanglement (EPR pair)
 * Quantum Teleportation
 Homework 2: Select two out
              of Ex2.1,...,Ex2.5. Deadline: 10/4 noon
 
- 4. (10/4)
                  (16+2¼u©Ê¾Ç²ß)(No Class)(¾Ç¥Í¦Û¦æ¬ãŪ¥H¤UijÃD©Î½×¤å¡A¨Ã©ó10/11¤À
              ²Õ³ø§i)
 #1. Topic: Quantum Key Distribution (QKD) : BB84 (Proposed
            by Bennett and Brassard in 1984)
 #2. Topic: Quantum Key Distribution
            (QKD) with entanglement: E91 (Proposed by Ekert in 1991) with
              comparisons with BB84
 #3. Topic: Quantum Key
              Distribution (QKD) : B92 (Proposed by Bennett in 1992)
              with comparisons with BB84 and E91
 #4. Paper: Burr, J.,
            Parakh, A., & Subramaniam, M. (2022). Quantum internet.
            Ubiquity, 2022 (August), 1-14.
 #5. Paper: Caleffi, M., Cacciapuoti, A. S., & Bianchi,
            G. (2018, September). Quantum Internet: From communication
            to distributed computing!. In Proceedings of the 5th ACM
            International Conference on Nanoscale Computing and
            Communication (pp. 1-4).
 #6. paper: Cuomo, D., Caleffi, M., & Cacciapuoti, A. S.
            (2020). Towards a distributed quantum computing ecosystem.
            IET Quantum Communication, 1(1), 3-8.
 #7. Paper: Loke, S.
            W. (2022). From Distributed Quantum Computing to Quantum
            Internet Computing: an Overview. arXiv preprint
            arXiv:2208.10127.
 #8. Paper: Loke, S. W. (2022). The Rise of Quantum Internet
            Computing. arXiv preprint arXiv:2208.00733.
 #9. Topic: Quantum Tuneling + Ising Model + Quadratic
            Unconstrained Binary Optimization (QUBO) model + One example
            of QUBO to solve an NP-hard problem (For CSIE Undergraduate
            Project)
 
- 5. (10/11) ¤G¤H¤@²Õ¡A¤À²Õ³ø§i¡A¨C²Õ³ø§i12¤À+3¤ÀÄÁQ&A
              (§ë¼v¤ù½Ð¦b10/11¤¤¤È«e¨Ì·Ó§U±Ð«ü©w¤è¦¡¤W¶Ç§¹²¦)
 
- 6. (10/18) Quantum
            Annealing + Single-bit Quantum Gates, Unitary Matrices, and
            Quantum Circuits
 Paper: Solving
              NP-hard Problems with Quantum Annealing, presented at
            IEEE ECICE 2022(°É»~¥[¤À)(Slides)(QBookCh3.zip)
 Homework 3: Select two out of Ex3.1,...,
              Ex3.5. Deadline: 10/25 noon
 
- 7. (10/25) Multi-bit
            Quantum gates, Phase Kickback, and Grover Algorithm
 Paper: Quantum Circuit Based on
              Grover Algorithm to Solve Hamiltonian Cycle Problem, presented at IEEE ECICE
            2022(°É»~¥[¤À)(Slides)(QBookCh4.zip)
 (QBookCh6.zip)
          Homework 4: Select one out of Ex4.1,...,
              Ex4.5, and one out of Ex6.1,..., Ex6.5. Deadline: 11/8
              noon
 
- 8. (11/1) No Class (for preparing midterm
              project)
 Midterm Project: (Due:11/11
                noon11/15 noon)
 Option 1: Write a quantum program based on Grover
              algorithm to find themaximum,minimum, mean, or medianof a given set of unstructured data. You should hand in an
              electronic-version report describing your method, your
              circuit, your program, and the results of running your
              program (circuit). (Let the number of index qubits be 3 or
              4)
 (Reference: Quantum Minimum Searching
                  Algorithm and Circuit Implementation)(Paper and
                    Slides)
 
 Option 2: Write a quantum program based on
                  Grover algorithm to find the number of solutions to
                  the Hamiltonian cycle problem for 4-clique. You should
                  hand in an electronic-version report describing your
                  method, your circuit, your program, and the results of
                  running your program (circuit).
 (Reference: https://qiskit.org/textbook/ch-algorithms/quantum-counting.html)
 
 
- 9. (11/8) Paper: ¨Ï¥Î¶q¤l½u¸ô¼ÒÀÀ¶q¤lºô»Úºô¸ô®Ö¤ß¾÷¨î, 2022
            »OÆWºô»Úºô¸ô¬ã°Q·|(TANET 2022, 12/15-17)½×¤å (Slides) 
- 10. (11/15) Quantum Fourier
            Transform (QFT), Inverse Quantum Fourier Transform (IQFT),
            and Quantum Phase Estimation (QPE) (FFT.zip)
 (QBookCh7.zip),
                        and Quantum Counting (QCount.zip)
 Homework 5: Select two out
                            of Ex7.1, Ex7.2, and Ex7.3. Deadline: 11/22
                            noon
 ½m²ß 7.1
 ³]p¶q¤lµ{¦¡±N 5 Ó¶q¤l¦ì¤¸ªì©lª¬ºA³]©w¬°
                        '11011'¡A¥ý¥H¥¬¬¥»®²y±Åã¥Ü¶q¤l¦ì¤¸ª¬ºA¡AµM«á¥[¤J¶q¤l³Å¥ß¸ÅÜ´«½u¸ô«á¡A¦A¥H¥¬¬¥»®²y±Åã¥Ü¶q¤l¦ì¤¸¸g¹L¶q¤l³Å¥ß¸ÅÜ´«¤§«áªºª¬ºA¡A³Ì«á¦A¥[¤J
                        °f¶q¤l³Å¥ß¸ÅÜ´«½u¸ô¡A¦Ó¥B¦P¼Ë¥H¥¬¬¥»®²y±Åã¥Ü¶q¤l¦ì¤¸ª¬ºA¡C¦bµ{¦¡ªº³Ì«á¥²¶·Åã¥Ü¾ãÅé¶q¤l½u¸ô¡Aµ{
                        ¦¡¥i¥Hª½±µ©I¥s¥»³¹´£¨Ñªº qft ¤Î iqft
                        ¨ç¼Æ«Øºc¶q¤l³Å¥ß¸ÅÜ´«½u¸ô¤Î°f¶q¤l³Å¥ß¸ÅÜ´«½u¸ô¡A¨Ã¥B¥H¶q¤l¹hªº§Î¦¡¥[¤J¶q¤l½u¸ô¤¤¡C½Ðª`·N¡Aµ{¦¡µL¶·¥[¤J©w¸q
                        qft ¤Î iqft¨ç¼Æªº²Ó¸`¡A¦ý¬O¦b©I¥s³o 2 Ó¨ç¼Æ¤§«en¥ý°õ¦æ©w¸q³o 2 Ó¨ç¼Æªºµ{¦¡¡C
 ½m²ß 7.2
 ³]p¶q¤lµ{¦¡³z¹L¶q¤l¬Û¦ì¦ô´ú¡A¥H 3
                        Óp¼Æ¦ì¤¸ªº´ú¶qµ²ªG±À¾É¥X¤\¥¿ÅÜ´«T¹h¥»¼xȹïÀ³ªº¬Û¦ì¡Cµ{¦¡¥²¶·Åã¥Ü¾ãÅé¶q¤l½u¸ô¡Ap¼Æ¦ì¤¸ªº´ú¶qµ²ªGª½¤è¹Ï¡A¥H¤Î¥Ñ´ú¶qµ²ªG±À¾É¥Xªº¬Û¦ì¡Cµ{¦¡¥i¥H
                        ª½±µ©I¥s¥»³¹´£¨Ñªº iqft
                        ¨ç¼Æ«Øºc°f¶q¤l³Å¥ß¸ÅÜ´«½u¸ô¡A¨Ã¥B¥H¶q¤l¹hªº§Î¦¡¥[¤J¶q¤l½u¸ô¤¤¡C½Ðª`·N¡Aµ{¦¡µL¶·¥[¤J©w¸q
                        iqft ¨ç¼Æªº²Ó¸`¡A¦ý¬O¦b©I¥s iqft ¨ç¼Æ¤§«en¥ý°õ¦æ©w¸q iqft ¨ç¼Æªºµ{¦¡¡C
 ½m²ß 7.3
 ³]p¶q¤lµ{¦¡³z¹L¶q¤l¬Û¦ì¦ô´ú¡A¥H 6 Óp¼Æ¦ì¤¸ªº´ú¶qµ²ªG±À¾É¥X±a 𝜋/3 °Ñ¼Æ¤\¥¿ÅÜ´« P
                        ¹h¥»¼xȹïÀ³ªº¬Û¦ì¡Cµ{¦¡¥u»ÝnÅã¥Üp¼Æ¦ì¤¸ªº´ú¶qµ²ªGª½¤è¹Ï¡A¥H¤Î¥Ñ´ú¶qµ²ªG±À¾É¥Xªº¬Û¦ì¡Cµ{¦¡¥i¥H
                        ª½±µ©I¥s¥»³¹´£¨Ñªº iqft
                        ¨ç¼Æ«Øºc°f¶q¤l³Å¥ß¸ÅÜ´«½u¸ô¡A¨Ã¥B¥H¶q¤l¹hªº§Î¦¡¥[¤J¶q¤l½u¸ô¤¤¡C½Ðª`·N¡Aµ{¦¡µL¶·¥[¤J©w¸q
                        iqft ¨ç¼Æªº²Ó¸`¡A¦ý¬O¦b©I¥s iqft ¨ç¼Æ¤§«en¥ý°õ¦æ©w¸q iqft ¨ç¼Æªºµ{¦¡¡C
 
- 11. (11/22) RAS algorithm
                    (RSA.zip), and Shor¡¦s
            algorithm (QBookCh7.zip)
 Homework 6: Select one out
                        of Ex5.1, Ex5.2, and Ex5.3, and one out of Ex7.4
                        and Ex7.5. Deadline: 11/29 noon
 ½m²ß 7.4
 ³]p¶q¤lµ{¦¡«Øºc¨Ï¥Î 2 Ó¶q¤lp¼Æ¦ì¤¸¡A¹ïÀ³ 𝑓(𝑥) = 11^𝑥 (mod 15)
                      ªº¶q¤l¬Û¦ì¦ô´ú½u¸ô¡A¨Ã¨Ï¥Î¶q¤l¹q¸£¼ÒÀÀ¾¹°õ¦æ¶q¤l½u¸ô¡AÀò±o¶q¤lp¼Æ¦ì¤¸ªº´ú¶qµ²ªG¡A¥H¨D¥X𝑓(𝑥)ªº
                      ¶g´Á¡Cµ{¦¡¥i¥Hª½±µ©I¥s¥»³¹´£¨Ñªº qc_mod15 ¤Î iqft
                      ¨ç¼Æ«Øºc¶q¤l¼Ò¾½u¸ô¤Î°f¶q¤l³Å¥ß¸ÅÜ´«½u¸ô¡A¨Ã¥B¥H¶q¤l¹hªº§Î¦¡¥[¤J¶q¤l½u¸ô¤¤¡Cµ{¦¡ªº³Ì«á¥²¶·Åã¥Ü¾ãÅé¶q¤l½u¸ô¡A¨ÃÅã¥Ü¶q¤lp¼Æ¦ì¤¸ªº´ú¶qµ²ªG¥H¤Î®Ú
                      ¾Ú´ú¶qµ²ªG±o¨ìªº¶g´Á¦ô´úÈ¡C½Ðª`·N¡Aµ{¦¡µL¶·¥[¤J©w¸q qc_mod15 ¤Î idft
                      ¨ç¼Æªº²Ó¸`¡A¦ý¬O¦b©I¥s³o 2 Ó¨ç¼Æ¤§«en¥ý°õ¦æ©w¸q³o 2 Ó¨ç¼Æªºµ{¦¡¡C
 ½m²ß 7.5
 ³]p¶q¤lµ{¦¡«Øºc¨Ï¥Î 4 Ó¶q¤lp¼Æ¦ì¤¸¡A¹ïÀ³ 𝑓(𝑥) = 7^𝑥 (mod 15)
                      ªº¶q¤l¬Û¦ì¦ô´ú½u¸ô¡A¨Ã¨Ï¥Î¶q¤l¹q¸£¼ÒÀÀ¾¹°õ¦æ¶q¤l½u¸ô¡AÀò±o¶q¤lp¼Æ¦ì¤¸ªº´ú¶qµ²ªG¡A¥H¨D¥X𝑓(𝑥)ªº
                      ¶g´Á¡Cµ{¦¡¥i¥Hª½±µ©I¥s¥»³¹´£¨Ñªº qc_mod15 ¤Î iqft
                      ¨ç¼Æ«Øºc¶q¤l¼Ò¾½u¸ô¤Î°f¶q¤l³Å¥ß¸ÅÜ´«½u¸ô¡A¨Ã¥B¥H¶q¤l¹hªº§Î¦¡¥[¤J¶q¤l½u¸ô¤¤¡Cµ{¦¡ªº³Ì«á¥²¶·Åã¥Ü¾ãÅé¶q¤l½u¸ô¡A¨ÃÅã¥Ü¶q¤lp¼Æ¦ì¤¸ªº´ú¶qµ²ªG¥H¤Î®Ú
                      ¾Ú´ú¶qµ²ªG±o¨ìªº¶g´Á¦ô´úÈ¡C½Ðª`·N¡Aµ{¦¡µL¶·¥[¤J©w¸q qc_mod15 ¤Î idft ¨ç¼Æªº²Ó¸`¡A¦ý
                      ¬O¦b©I¥s³o 2 Ó¨ç¼Æ¤§«en¥ý°õ¦æ©w¸q³o 2 Ó¨ç¼Æªºµ{¦¡¡C
 
- 12. (11/29)
                      Quantum Teleportation (QTeleport.pptx)
 Machine Learning/Deep Learning and Their
                      Applications (ML4QC(2022-1128).pptx)(DL4QC(2022-1128).pptx)
 Papers:
 (1). Industrial
                        Control System Anomaly Detection and
                        Classification Based on Network Traffic, IEEE Access, 2022. (Slides)
 (2). Deep
                          Learning Anomaly Classification Using
                          Multi-Attention Residual Blocks for Industrial
                          Control Systems, Sensors, 2022. (Slides)
 Homework
                        7: Derive the general quantum state equation of
                        the following Bell-state quantum circuit and
                        validate your equation with the histogram.
                        Deadline: 12/6 noon
  
 
- 13, 14, 15. (12/6,
                        12/13, 12/20) Second Oral Report (Upload Slides
                        by noon before the class starts)
 Paper: Jehn-Ruey Jiang, ¡§Quantum
            Entanglement with Self-stabilizing Token Ring for
            Fault-tolerant Distributed Quantum Computing System,¡¨
            accepted to present at the 26th Conference on Quantum
            Information Processing (QIP 2023), Ghent, Belgium, February
            4-10, 2023. (https://arxiv.org/abs/2209.11361)(Slides)
 #1 Quantum Fourier Convolutional Network
 #2 Entanglement in Phase Estimation Algorithm and
                      Quantum Counting Algorithm
 #3 Distributed Quantum Machine Learning
 #4 Quantum Phase Estimation Based Algorithms for
                      Machine Learning
 #5 Machine Learning in the Quantum Realm: The
                      State-of-the-art, Challenges, and Future Vision
 #6 A Review of Various Quantum Routing Protocols
                      Designed for Quantum Network Environment
 #7 DQRA: Deep Quantum Routing Agent for
                      Entanglement Routing in Quantum Networks
 #8 Order Matters: On the Impact of Swapping Order
                      on an Entanglement Path in a Quantum Network
 (2nd-Oral-Papers.zip)
 
- 16. (12/27) Deutsch-Jozsa
              (DJ) algorithm (QBookCh5.zip)
                      and Term Project Announcement  (Slides)
 Term Project
                        Problem: Designing quantum circuits for
                        calculating the Hamming distance of 2-qubit
                        Boolean functions f(x) and g(x) for the cases of
                        the distance = 2, 3, and 4 (33% per case).
 Related Paper: Zidan, M., Eldin, M. G., Shams, M.
                      Y., Tolan, M., Abd-Elhamed, A., & Abdel-Aty,
                      M. (2022). A Quantum Algorithm for Evaluating the
                      Hamming Distance. CMC-COMPUTERS MATERIALS &
                      CONTINUA, 71(1), 1065-1078.
 
- 17. (1/3) No Class (For you
            to prepare for the Final Project)
        - Term Project (30%) Due Day:
                    2023/01/10 13:00
 ¨Ì·Ó§U±Ð¤½§i¤è¦¡Ãº¥æµ{¦¡¤Î³ø§i¡A¸Ô²Ó»¡©úterm project§¹¦¨ªº¹Lµ{¤Îµ{¦¡ªº¹ê§@²Ó¸`¡C
 
 
    
    
    
      
        
    
    