
Self-stabilizing algorithms for the planarization
problem in complete bipartite networks

Abstract

The maximum planarization problem asks to find a spanning planar subgraph
having the largest number of edges. In this paper, we propose two simple self-
stabilizing algorithms for this problem in complete bipartite graphs. The first one
is an approximation algorithm; it finds a planar subgraph of approximation ratio
0.6 in the average case. Based on the techniques used in the first algorithm, the
second algorithm finds a maximum planar subgraph. The time complexity is O(n)
rounds for both algorithms.

1 Introduction

A graph is planar if we can draw it on a plane without crossing edges. In this
paper, we consider the planarization problem for self-stabilizing systems: Given a
distributed system whose underlying topology is a connected and undirected graph
G, we determine a subset of edges that induces a planar graph. The induced planar
graph is said to be maximal if adding one more edge results in a non-planar graph.
Among all maximal planar graphs, the one with the largest number of edges is
said to be maximum. Finding a maximum planar subgraph is known to be an
NP-complete problem [9], while finding a maximal one can be done in polynomial
time [2, 4].

Planarization has many applications. For example, researchers have found
that it can be applied to the routing problem if nodes know their geographic
location [6,7]. One such approach is GPSR (Greedy Perimeter Stateless Routing),
which delivers packets in wireless networks [6]. The idea of GPSR is to repeatedly
shorten the distance between a packet and its destination. When receiving a
packet, a node forwards the packet to the neighbor closest to the packet destination
by calculating Euclidean distances; thus the packet is forwarded in a greedy way. If
such a neighbor does not exist, the node sends the packet by using the right-hand
rule, which makes the packet travel along a face of the planar subgraph. As a
result, the packet will be delivered to some node that is closer to the destination;
that node then sends the packet via the greedy method again. By this way, the
packet eventually arrives the destination.

The maximal planarization problem (i.e., finding a maximal planar subgraph)
is highly relevant to the planarity-testing problem [5], which asks whether the
input graph G is planar or not. Given a solution to one of these problems, we
can use it to solve the other problem, as follows. Let V denote the node set of G.

1

Given a planarity-testing procedure, we can find a maximal planar subgraph G′ by
initializing G′ = (V, ∅) and then running a loop that repeatedly adds an edge e to
G′ if G′ ∪{e} is planar. When the loop terminates, G′ is a maximal planar graph.
On the other hand, given a procedure that outputs a maximal planar graph, we
can use it to solve the planarity-testing problem by checking whether the input
graph G equals to the output graph G′. If G = G′, then G is reported to be planar.

Instead of finding maximal planar graphs, people in the field of distributed com-
puting tend to construct planar graphs that are dense enough. That is, the more
planar edges, the better. In addition, the planar graphs should be constructed by
local algorithms because each node has only a partial view of the system [10]. We
also have to guarantee the connectivity of the constructed planar graph, in which
there should not be disconnected components.

When every node knows its geometric location, there are many distributed
ways to construct planar graphs from unit disk graphs. Such kinds of planar
graphs include relative neighborhood graph (RNG) [6], Gabriel graph (GG) [6], and
k-localized Delaunay triangulation (LDel(k)), where k ≥ 1 [8]. The graphs RNG
and GG are constructed by the following methods. Let dist(u, v) be the Euclidean
distance between two nodes u and v. An edge (u, v) is called RNG edge if every
other node w satisfies dist(u, v) ≤ dist(w, u) or dist(u, v) ≤ dist(w, v). The RNG
edges induce RNG. Similarly, an edge (u, v) is said to be a Gabriel edge if no other
node locates inside the circle of the diameter uv. The Gabriel edges induce GG. By
definition, the relative neighborhood graph is a subgraph of Gabriel graph since
any RNG edge is also a Gabriel edge.

The definition of LDel(k) is as follows. A triangle 4uvw is said to be a k-
localized Delaunay triangle if its circumcircle contains no any other node x less
than or equal to k hops away from u, or v, or w. That is, any node x, if any, inside
the circumcircle of 4uvw is more than k hops away from the three nodes. The
k-localized Delaunay graph is induced by Gabriel edges and k-localized Delaunay
triangles. For 2 ≤ k ≤ n, LDel(k) is a planar, but LDel(1) is not necessarily
planar, where n is the number of nodes. The relation between these planar graphs
is RNG ⊆ GG ⊆ LDel(n) ⊆ LDel(n−1) ⊆ . . .⊆ LDel(1) [8]. The literature [8] gives
a geometric illustration showing how to find all these graphs.

In this paper, we propose two algorithms for the planarization problem. We
focus on complete bipartite graphs without location information of the nodes.
The first algorithm is an approximated one; it finds a planar graph having at least
(3n−√n2 − 4m)/2−2 edges, where n is the number of nodes and m is the number
of edges in G. The second algorithm finds a maximum planar graph. The idea
behind both algorithms is to carefully identify a set of edges that induces a graph
without a subdivision of K5 or K3,3, where K5 is the complete graph of 5 nodes and
K3,3 is the complete bipartite graph with each partite set of 3 nodes. According
to Kuratowski’s Theorem, the induced graph is planar [11].

Our algorithms have the property of self-stabilization [3], which is a power-
ful fault-tolerant paradigm for distributed systems. Even when the system is in
an illegal configuration, our algorithms can automatically bring it into a legal
configuration within O(n) rounds.

The rest of this paper is organized as follows. Section 2 introduces the system
model and the terminologies. Sections 3 and 4 present the approximation algo-
rithm and the maximum planarization algorithm, respectively. Finally, section 5

2

concludes this paper.

2 Preliminaries

In this section, we first introduce the model of self-stabilizing distributed systems.
We then recall some terminologies and notation concerning graph theory.

2.1 System Model

A distributed system is modeled by a connected, undirected graph G = (V,E),
where V is the set of nodes and E is the set of edges. In this paper, we consider a
complete bipartite network; that is, G is a complete bipartite graph Kn1,n2 , where
n1 and n2 are the sizes of the partite sets. We also consider an ID-based network;
every node is hard-wired with a unique ID that never changes. Two nodes u and
v are said to be neighbors if (u, v) ∈ E. Each node keeps a set of variables to
represent its local state. A node can read and write to the variables of its own but
can only read the variables of its neighbors.

We use the term configuration to represent a system state. Given a configura-
tion c and its successor c′, the transition from c to c′ is called a computation step,
denoted by c → c′. The computation of the system is expressed by a sequence of
configurations c0 → c1 → . . . , where c0 is an arbitrary initial configuration. We
use ck Ã ck+k′ to denote a sequence of k′ consecutive computation steps, where
k ≥ 0 and k′ ≥ 0.

Self-stabilization is a powerful fault-tolerant mechanism for distributed sys-
tems [3]. When local states of nodes change unexpectedly (by memory corrup-
tions, for example,) the system configuration may become incorrect and we say
that the system undergoes transient faults. A self-stabilizing system copes with
transient faults by the following reasoning. All configurations are classified into
two categories: legitimate and illegitimate. Starting from any initial configuration,
a self-stabilizing system guarantees to be able to converge to and then remain in
legal configurations. Once unexpected transient faults occur, it is considered to
be in an initial configuration. By the property of self-stabilization, it will return
to legal configurations. Formally speaking, let S denote all possible configurations
and SL be the set of legitimate configurations. For every c0 ∈ S, any computation
of the system is c0 Ã c` Ã c`+k, where c`+k ∈ SL for a finite integer ` ≥ 0 and
any k ≥ 0. The process c0 Ã c` is called convergence, whereas c` Ã cell+k is
called closure. The stabilization time is the time span from c0 to the first legal
configuration c`.

We encode the proposed algorithms by a set of rules. The format of a rule
is “guard → action”, where guard is a boolean formula and action is a set of
program statements. When the guard of a rule is satisfied for a node, the node is
said to be privileged and the rule is said to be enabled. The privileged node could
execute the enabled rule by performing the corresponding action. A node executes
a rule in an atomic way: it uninterruptedly evaluates the guard and performs the
corresponding action.

There is a distributed daemon that decides the computation of the system. At
the beginning of each computation step c → c′, the daemon chooses a non-empty
set of privileged nodes in c. Every of the chosen nodes executes a rule. When

3

u0

u1

u2

u3

v0

v1

v2

v3
v4

v5

u4

Figure 1: A subdivision of K5.

the nodes finish their actions, the system is in the configuration c′ and the next
computation step begins.

2.2 Graph Theory Background

We assume that the reader is familiar with fundamental knowledge about graph
theory. Here we recall some terminologies and notations that are used less fre-
quently.

Inducing Let G = (V,E) be a graph and E ′ be a subset of E. The graph
induced by E ′ is a subgraph of G, denoted by G[E ′], that is composed of E ′ and
the nodes connected by E ′. Similarly, let V ′ be a subset of V . The graph induced
by V ′ is composed of V ′ and the edges whose endpoints ∈ V ′.

Subdivision A subdivision of an edge (u, v) is an operation that replaces the
edge with a path u, w, v, where w is a new node. A subdivision of a graph G is
a graph obtained by repeatedly applying edge subdivisions to G. Figure 1 shows
an example of a subdivision of K5. That figure also demonstrates a property that
a bipartite graph may have a subdivision of K5 (note that {ui|0 ≤ i ≤ 4} and
{vi|0 ≤ i ≤ 5} are partite sets.)

There is a known characteristic concerning planar graphs: Kuratowski’s the-
orem. This theorem states that G is planar if and only if G does not contain a
subdivision of K5 or K3,3. Based on this theorem, the idea of searching for planar
subgraphs becomes a little more straightforward. For not inducing a subdivision
of K5, there should not be 10 internally disjoint paths completely interconnecting
5 nodes. Similarly, for not inducing a subdivision of K3,3, there should not be 9
internally disjoint paths completely connecting 3 nodes with another 3 nodes.

Theorem 1 (Kuratowski). A graph is planar if and only if it does not contain a
subdivision of K5 or K3,3.

4

3 The Approximation Algorithm

In this section, we present an approximation planarization algorithm. We assume
a complete bipartite network Kn1,n2 = (V, E), where n1 and n2 are the sizes of the
partite sets. We use G and Kn1,n2 interchangeably and use the notation v < u to
express that the ID of v is lower than that of u. In addition, we use n = n1 + n2

and m = n1n2 to denote the number of nodes and edges, respectively.
In subsection 3.1, we explain the basic idea and show how to find a subset Ê

of edges that induces a planar graph. In subsection 3.2, we prove the planarity of
G[Ê], the time complexity, and the performance ratio of the algorithm.

3.1 The algorithm

For constructing a planar graph, we carefully select a set Ê of edges so that G[Ê]
has no subdivision of K5 or K3,3. The definition of Ê is as follows. Each node u
keeps a variable S, denoted by S.u, to maintain a list of neighbors as its successors.
The set Ê is then defined to be

Ê = {(u, v)|u ∈ V, v ∈ S.u}.

In the rest of this paper, if v ∈ S.u holds, v is said to be a successor of u and u is
said to be a predecessor of v.

The overview of the proposed algorithm is as follows. We first give a label
to every node. Ideally, the value of a label is 0, 1, or 2, so the node set V is
partitioned into non-empty, disjoint sets V0, V1 and V2. The union of V0 and V2

is one partite set of G, whereas V1 is the other partite set. Moreover, we makes
|V0| = 1. Depending on the set it belongs to, a node has a corresponding way to
decide its successors. The node in V0 sets S = ∅, and the nodes in V1 set S to V0.
The other nodes group their neighbors to form a family of candidate sets, each of
which consists of two neighbors. They decide their successors by simply selecting
one of those candidate sets.

To assign the labels to the nodes, we first run the BFS spanning tree algorithm
in [1]. Thus each node maintains the necessary variables needed for [1]. Among
them, there is a variable d that records the depth of a node in the tree. When
the spanning tree algorithm stabilizes, there are only three possible values for the
variable d: 0, 1, and 2. The root node, which is the node of maximum ID, has
d=0; the neighbors of the root have d = 1; the others have d = 2. The value of
d represents the node label, and we define that a node u belongs to Vi if d.u = i,
where i ∈ {0, 1, 2}.

Nodes decide their successors based on labels. The general principle is to let
nodes of bigger labels select those of smaller labels as successors. The node in V0

thus has no successor, whereas every node in V1 has only one successor, for |V0| =1.
Those nodes in V0 ∪ V1 induces a subgraph K1,|V1| so we have to deal with nodes
in V2 in particular in order not to produce subdivisions of K3,3 and subdivisions
of K5.

For this, we demand that every node in V2 has only two successors. We organize
V1 into |V1| − 1 candidate sets. Every candidate set has exactly two nodes (except
for the case |V1| = 1), according to node IDs in the ascending order. Every node
in V2 simply selects a candidate set to be its successor set.

5

Definition 1. Let u be any node and let v0, v1,...,vk−1 denote u’s neighbors sorted
in the ascending order. The family of candidate sets for node u, denoted by FCS.u,
is as follows:

FCS.u ≡

{{vi|0 ≤ i < k, d.vi = 0}} if d.u = 1
{{v0}} if d.u = 2 ∧ k = 1
{{vi, vi+1}|0 ≤ i ≤ k − 2} if d.u = 2 ∧ k > 1
{∅} otherwise

Now we begin to present our algorithm. It has two layers in a sense. The lower
layer is to determine a correct label for each node by running the spanning tree
algorithm in [1]. The upper layer is to choose planar edges; it has only one rule
R0. Every node always sets S to one of its candidate sets.

R0: S.u /∈ FCS.u
→ Set S.u to some candidate set ∈ FCS.u;

The induced graph G[Ê] has |V1| + 2|V2| −2 edges. It is because every node in
V1 corresponds to 1 edge in G[Ê] and every node in V2 corresponds to 2 edges. In
the next subsection, we will show that G[Ê] is planar and |Ê| ≥ (3n−√n2 − 4m)/2
−2.

3.2 Correctness and Time Complexity

In this subsection, we prove the convergence property and the time complexity for
the approximation algorithm. From the analyses of [1], the variable d stabilizes
in O(K + (deg × dia)) = O(n + ((n − 1) × 2)) = O(n) rounds, where K is the
maximum possible number of nodes, deg is the maximum degree and dia is the
diameter of G (When we say that the variable d stabilizes, we actually mean that
the value of d maintained by every node will no longer change, until transient
faults occur.) What remains is to show that (1) eventually there is no privileged
node, and then, (2) G[Ê] is planar.

Lemma 1. Once the variable d has stabilized, each node executes R0 at most once.

Proof. Because the variable d has stabilized, each node has a fixed family of can-
didate sets. Therefore, after a node u executes R0, S.u ∈ FCS.u holds and u no
longer executes R0 henceforth.

Because it takes O(n) rounds for the variable d to stabilize and another one
round for the variable S to stabilize, we have the following lemma.

Lemma 2. Starting from any configuration, there will be no privileged node after
O(n) rounds .

Lemma 2 states that the system will converge to and then remain in some con-
figuration. In the next lemma, we show that G[Ê] is planar in that configuration.

Lemma 3. When no node is privileged, G[Ê] is a spanning planar graph.

6

u0 u1 u2 u3 u4 u5

v

Figure 2: A drawing of G[Ê].

Proof. We prove this lemma by giving a drawing of G[Ê].
We first put the node v ∈ V0 arbitrarily on the plane; below v we put nodes

in V1 horizontally, from left to right according to their IDs in the ascending order.
Finally, for any node in V2 we put the node between its successors. With such
arrangement, we can draw G[Ê] without crossing edges. Figure 2 gives an example
of a drawing of G[Ê]. In the figure, V0 = {v}, V1 = {ui|0 ≤ i ≤ 5}, and V2 is the
set of untagged nodes.

Now, we begin to analyze the number of edges in |Ê|. Without loss of gener-
ality, we assume that the node in V0 belongs to the partite set of size n2. This
assumption implies |V1| = n1, |V2| = n2 − 1, and |Ê| = n1 + 2(n2 − 1) = n1 +
2n2 − 2. These equations suffice to find |Ê|:
Lemma 4. |Ê| ≥ 3n−√n2−4m

2
− 2

Proof. From the equations n1 + n2 = n and n1n2 = m, we can find

n2 =
n±√n2 − 4m

2

and thus
|Ê| = n1 + 2n2 − 2

= n + n2 − 2

≥ 3n−√n2−4m
2

− 2

Theorem 2. The approximate algorithm finds a spanning planar graph with (3n−√
n2 − 4m)/2− 2 edges in O(n) rounds.

Proof. It is a direct consequence of lemma 2, lemma 3 and lemma 4.

The performance ratio is different for the worst case and the average case.
When n2 is a constant, |Ê| is just a few more than n−1, the number of edges in the
simplest spanning planar graph: spanning tree. In other words, the performance
ratio is about 1/2 in the worst case, since G is triangle-free and its maximum
planar graph has at most 2n− 4 edges. On the other hand, the performance ratio
is about 0.6 in the average case. The key idea is to find the average value for m.
Since 1 ≤ n1 ≤ n− 1, m has n− 1 possible values so its average is

∑
n1+n2=n;

n1,n2≥1

n1n2

n− 1
=

n−1∑

k=1

k(n− k)

n− 1
=

n2 + n

6

7

From the above equation, we can infer that the average of |Ê| is

(3n−
√

n2 − 4(n2 + n)/6)/2− 2

≥ (3n− n/
√

3)/2− 2

= 9−√3
6

n− 2

Theorem 3. The performance ratio of the approximate algorithm is (9+
√

3)/12 ≈
0.6 in the average case.

Proof. Since the maximum planar subgraph has at most 2n − 4 edges and since
the average number of edges in G[Ê] is (9−√3)n/6− 2, we have

performance ratio ≥ (9−√3)n/6− 2

2n− 4
≥ 9−√3

12
≈ 0.6

in the average case.

We can further improve the algorithm and find a truly maximum spanning
planar graph. In the next section we show how to do this.

4 The Maximum Planarization Algorithm

4.1 The Algorithm

In this section, we show how to construct a maximum spanning graph from a
complete bipartite graph Kn1,n2 . Here we only consider the case that n1, n2 ≥ 2;
otherwise G is planar. Similar to the algorithm proposed in section 3, we first
run the BFS spanning tree algorithm in [1] and every node maintains a variable
d. When the tree construction algorithm stabilizes, the value of d is 0, 1, or 2.

Every node keeps a variable S for representing their successors and defining
planar edges, similar to what we did before. Nodes in V0 have no successors, while
nodes in V1 (resp., V2) select nodes in V0 (resp., V1) to be their successors.

Unlike the approximation algorithm in section 3, we organize nodes into V0, V1

and V2 in a different way. In addition to the node of d = 0, the set V0 also contains
the node that has the maximum ID among nodes of d = 2. By this setting, V0

contains two nodes, V1 contains nodes of d = 1, and V2 contains the other nodes.
Since we move a node of d = 2 from V2 into V0, we have to let the node know

it is in V0 rather than in V2. This could be done through nodes in V1. All nodes
in V1 select a neighbor of d = 0 and another neighbor of d = 2 with the maximum
ID to be their successors. If a node of d = 2 finds that all the neighbors are its
predecessors, then it is aware that it belongs to V0 and should reset its S to ∅.
Following this logic, the definition of candidate sets changes accordingly.

Definition 2. Let u be any node and let v0, v1,...,vk−1 denote u’s neighbors sorted
in the ascending order. The family of candidate sets for node u, denoted by FCS.u,
is

FCS.u ≡

{{vi|0 ≤ i < k, d.vi = 0} ∪ {vk−1}} if d.u = 1
{{vi, vi+1}|0 ≤ i ≤ k − 2} if (d.u = 2)

∧(∀vi : 0 ≤ i < k ⇒ u /∈ S.vi)
{∅} otherwise

8

The self-stabilizing maximum planarization algorithm is as follows. It is two
layered in a sense. The lower layer is for determining the variable d by the spanning
tree algorithm in [1]. The upper layer is to choose planar edges by rule R0:

R0: S.u /∈ FCS.u
→ Set S.u to some candidate set ∈ FCS.u;

According to our design, only two nodes have empty candidate set so they have
no successors. The other nodes have exactly two successors. The induced graph
thus has 2(n− 2) = 2n− 4 edges.

4.2 Correctness and Time Complexity

In this subsection, we show that the algorithm stabilizes and does find a maximum
planar graph. The proofs are similar to those in subsection 3.2. We show that
the algorithm converges to a configuration in which there is no privileged node
(lemmas 5 and 6). We then show that the induced graph is planar and maximum
in that configuration (lemma 7).

Lemma 5. Once the variable d has stabilized, each node executes R0 at most
twice.

Proof. Let u denote the node that has the maximum ID among nodes of d = 2.
We show that u executes R0 at most twice and the other nodes execute R0 at
most once.

By the assumption that the variable d has stabilized, every node except u has a
fixed family of candidate sets, so it executes R0 at most once. For node u, FCS.u
changes after all its neighbors appoint u as their successor. After FCS.u changes,
node u gains one more privilege to execute R0 so it executes R0 at most twice.

Lemma 6. Starting from any configuration, there will be no privileged node after
O(n) rounds.

Proof. According to [1], the variable d stabilizes in O(n) rounds. By lemma 5, no
node is privileged in another two rounds. Thus this lemma holds.

Lemma 7. When there is no privileged node, G[Ê] is a maximum spanning planar
graph.

Proof. We show that G[Ê] is planar and has 2n− 4 edges. That suffices to prove
this lemma since a triangle-free planar graph has at most 2n− 4 edges.

We give a drawing to show that G[Ê] is planar. First, put nodes in V1 hori-
zontally, from left to right, according to their IDs in the ascending order. Then,
put nodes in V2 between their successors. Finally, the two nodes in V0 are put at
the top and the bottom of the plane, respectively. After deciding the positions of
nodes, we can draw G[Ê] without crossing edges. Figure 3 illustrates an example
of a drawing.

From the property that every node except for the two in V0 has two successors,
there are 2(n− |V0|) = 2(n− 2) = 2n− 4 edges in G[Ê]. Since G is triangle-free,
its maximum planar subgraph has at most 2n − 4 edges. Therefore, G[Ê] is a
maximum planar subgraph.

Theorem 4. The algorithm stabilizes in O(n) rounds.

Proof. It is a direct consequence of lemma 6 and lemma 7.

9

u0
u1

u2 u3
u4 u5

Figure 3: An example of a maximum planar graph; V1 = {ui|0 ≤ i ≤ 5}.

5 Conclusion

In this paper, we propose two self-stabilizing algorithms for the planarization prob-
lem; our approach heavily depends on the property of complete bipartite graphs.
By defining candidate sets, the first algorithm constructs a planar subgraph with
approximation ratio 0.6 in the average case, while the second algorithm finds a
maximum planar subgraph. Both of them have linear time complexity; they con-
struct planar graphs within O(n) rounds.

In distributed systems, it is not easy to find a spanning planar graph with
non-trivial approximation ratio. One reason is that it is not easy to preserve
connectivity because each node uses only local information to decide planar edges.
Another reason is that it is very likely to form subdivisions of K5 and K3,3. The
latter reason could be seen through the following example. Assume that we already
have a simplest spanning planar graph (i.e., spanning tree). For any 6 nodes in
that induced graph, we can construct a subdivision of K3,3 by adding just 9 more
edges, as follows. First we partition the 6 nodes into two sets, each of which has
3 nodes. For each pair (u, v) of nodes in different sets, we connect a descendant
of u and another descendant of v. As a result, there is one more path connecting
u and v. The other 8 edges are created in a similar way. If all those 9 paths
are internally disjoint, then a subdivision of K3,3 is constructed. (Actually, it is
possible to form a subdivision of K3,3 by adding just 6 edges to a spanning tree.)

The research on the planarization problem is still active. It is interesting to
find solutions with non-trivial approximation ratio (i.e., 1/2 for triangle-free graphs
and 1/3 for other cases.) Moreover, it is also interesting to consider graphs that
are less regular.

References

[1] A. Arora and M. Gouda. Distributed reset. IEEE Transactions on Computers,
43(9):1026–1038, 1994.

[2] L. Cai, X. Han, and R. E. Tarjan. An o(m log n)-time algorithm for the
maximal planar subgraph problem. SIAM Journal on Computing, 22:1142–
1162, 1993.

[3] E. W. Dijkstra. Self-stabilizing systems in spite of distributed control. Com-
munications of the ACM, 17:643–644, 1974.

10

[4] H. N. Djidjev. A linear-time algorithm for finding a maximal planar subgraph.
SIAM journal on discrete mathematics, 20(2):444–462, 2006.

[5] J. E. Hopcroft and R. E. Tarjan. Efficient planarity testing. Journal of the
ACM, 21(4):549–568, 1974.

[6] B. Karp and H. T. Kung. GPSR: greedy perimeter stateless routing for wire-
less networks. In MobiCom ’00: Proceedings of the 6th annual international
conference on Mobile computing and networking, pages 243–254, 2000.

[7] E. Kranakis, H. Singh, and J. Urrutia. Compass routing on geometric net-
works. In Proc. 11th Canadian Conference on Computational Geometry,
pages 51–54, 1999.

[8] X. Y. Li, G. Calinescu, P. J. Wan, and Y. Wang. Localized delaunay trian-
gulation with application in ad hoc wireless networks. IEEE transactions on
parallel and distributed systems, 14(10):1035–1047, 2003.

[9] A. Liebers. Planarizing graphs — a survey and annotated bibliography. Jour-
nal of Graph Algorithms and Applications, 5(1):1–74, 2001.

[10] J. Urrutia. Local solutions for global problems in wireless networks. Journal
of Discrete Algorithms, 5(3):395–407, 2007.

[11] Douglas B. West. Introduction to Graph Theory. Prentice Hall, 2001.

11

