
Scalable Reputation
Management with
Trustworthy User Selection
for P2P MMOGs

Guan-Yu Huang
Department of Computer Science and Information Engineering,
National Central University, Taiwan, R.O.C.
E-mail: aby@acnlab.csie.ncu.edu.tw

Shun-Yun Hu
Department of Computer Science and Information Engineering,
National Central University, Taiwan, R.O.C.
E-mail: syhu@csie.ncu.edu.tw

Jehn-Ruey Jiang
Department of Computer Science and Information Engineering,
National Central University, Taiwan, R.O.C.
E-mail: jrjiang@csie.ncu.edu.tw

Abstract: Networked virtual environments (NVEs) such as Massively Multiplayer
Online Games (MMOGs) have become very popular in recent years. However, existing
client-server architectures suffer from resource constrains when the number of concur-
rent users increases. Research on peer-to-peer networked virtual environments (P2P
NVEs) thus tries to find more scalable and affordable methods via the resource sharing
of mutually cooperating clients. However, P2P approaches face the problem of misbe-
havior by clients that do not process game rules properly. Without server monitoring,
the misbehavior could challenge the proper execution of game rules and affect a game’s
normal operations. In this paper, we present REPS, a distributed reputation manage-
ment system for P2P-based MMOGs that allows trustworthy clients be identified and
selected to perform important tasks.

The first part of REPS deals with the generation, storage, and query for peer rating
or game statistics (i.e., reputation factors) that could be the basis for user trustwor-
thiness estimation. The second part of REPS deals with how to find trustworthy users
by considering the weighted impacts of each factors. We propose TuS (Trustworthy
user Selection) to adjust the weights of each factors so that the more important factors
would weigh more. Based on the mutual rating among users and reputation queries,
REPS provides a scalable and reliable reputation mechanism that facilitates decision
making from choosing trustworthy superpeers, to deciding whether to interact with
particular users.

Keywords: peer-to-peer, virtual environments, trustworthy user selection; distributed
reputation management

1 Introduction

Massively Multiplayer Online Games (MMOGs) such as
World of Warcraft and Second Life, where over hundreds
of thousands of players assume virtual identities and en-
gage in various interactions, have become very popular in
recent years. These virtual worlds are very attractive as
they provide immersive 3D environments that people can
constantly explore together. As of 2008, there are more

than 12 millions registered Second Life accounts and over
11 millions paying subscribers in World of Warcraft. As
user population grows, the traditional client-server archi-
tecture will suffer from the server’s limited bandwidth and
processing power. To solve this problem, peer-to-peer net-
worked virtual environments (P2P NVEs, e.g., SimMud
(2004), Colyseus (2006), and VON (2006)) have since been
proposed.

Copyright c© 200x Inderscience Enterprises Ltd.

1



In client-server architectures, the server receives and
processes all the user-generated events. This ensures that
the actions of every participant are monitored, and game
rules are executed objectively as the designers have in-
tended. Cheating is also restricted as all important pro-
cessing is done by the servers. However, P2P NVEs do not
have such fairness guarantee because most server functions
are now assumed by some clients. A client may modify
any information that it possesses and may even change to
a new identity after it has cheated. Although, most play-
ers may not go to great lengths to cheat, as modifying the
game code requires certain technical skills. But even if
only a small portion of the users is successful at cheating,
gameplay can still be disrupted seriously.

Fortunately, we observe that the nature of MMOGs is
highly socialized, and users often invest large amounts of
time and energy to build their in-game persona to en-
sure their status in the virtual world. Users often are
also regulated by guilds or other social organizations, as
opinions from other users affect one’s reputation and so-
cial experiences even more than other in-game activities.
In other words, there exists strong social forces in suc-
cessful MMOGs where active users typically value highly
their status and reputations among peers. Such reputa-
tions thus may be exploited to facilitate certain game op-
erations, such as the selection of trustworthy clients for
important functions (e.g., the group leader or manager for
a region). We have seen similar mechanism in online mar-
ketplaces such as eBay or Yahoo Auctions, where online
reputations based on mutual user ratings are used to es-
timate the trustworthiness of a user. If such reputation
mechanism can be adopted in P2P MMOGs, it might help
users make decisions on whether to interact with a partic-
ular peer, or to select the more trustworthy clients to hand
over responsibilities.

One challenge for reputation schemes in a distributed
environment is how to deal with the disruptions from mali-
cious users. The reputation scores given by users might not
be accurate enough to reflect true trustworthiness, because
malicious users can give false reputation ratings. Also,
ratings related to specific user behaviors may not be gen-
eralizable to judge the overall trustworthiness of a user.
Therefore, considering more game parameters may help to
increase the estimation accuracy and restrain the interrup-
tions from malicious users. HReputations in a game can
be affected by many factors (i.e. the reputation factors).
Besides mutual ratings among peers, accumulated on-line
time, the number of completed tasks or trades, etc., all
can be the basis to judge trustworthiness. However, the
importance of each factor can be different, so we need to
give appropriate weights to each factors. Here we define
importance as how well a given factor can discriminate
among users (i.e., the users have a higher degree of vari-
ability in respect to the factor), because with higher dis-
criminability, it indicates that the factor can better discern
the differences among users. How to utilize various param-
eters to decide trustworthiness and assign weights for each
relevant factors are thus the main problems for us.

In this paper we propose REPS, a reputation manage-
ment system for P2P MMOGs based on peer-rated repu-
tations. Each user has a reputation value based on other
users’ subjective opinions during their interactions. The
reputation data is stored distributively among all users for
scalability and security reasons. We also propose the pro-
cess of Trustworthy user Selection (TuS) to choose trust-
worthy users. TuS uses a statistical regression to combine
all potential reputation factors and compute their impor-
tance weights, so that only users matching the strictest
reputation criteria are chosen as trustworthy users.

The rest of this paper is organized as follows. Section 2
provides background on reputation management and P2P
NVEs. Section 3 presents our problem formulation and
challenges in distributed reputation management. We de-
scribe the design of REPS in Section 4 and the design of
TuS in Section 5. Evaluations for REPS are performed in
Section 6, while concluding remarks are given in Section 7.

2 Background

2.1 Reputation management

Recently, there have been a number of reputation sys-
tems proposed for P2P applications, often in the context
of e-commerce (e.g., Atif (2002), Ebay (2001), Aberer and
Despotovic (2001), PeerTrust (2004), Ismail and Josang
(2002), Josang ,Ismail and Boyd (2007)). The goal of these
systems is to compute the reliability of a user and predict
future behaviors in respect to a specific metric, and the
P2P approach is to reduce the overhead for servers. Such
predications are based on past experiences and interac-
tions with the user, who is often a buyer or seller in an
existing distributed or semi-distributed e-commerce envi-
ronment. The reputation value represents a global view
for the user’s behavior, and can be used as reference to
warn of or convince other users. Users may also quickly
identify whether another user in contact is trustworthy,
and could thus avoid interactions with malicious users who
cheat for private benefits. The reputation systems in these
P2P applications calculate a peer’s reputation value by
collecting the local evaluations from other users. For ex-
ample, in EigenTrust (2003) and Ebay (2001), the sum of
a user’s rating from every transaction is used to compute
each user’s personal reputation value. To make reputa-
tion values more globally accessible and reliable, PeerTrust
(2004) normalizes the values by specific weights based on
each user’s global reputation value.

Some recent approaches like Ganeriwal and Srivastava
(2004), Mui (2001), Buchegger (2004) and Power-Trust
(2007) use the Bayesian method that takes a binary input
(i.e., positive or negative) to predict the cheating proba-
bility of the next transaction with a user based on past
experiences. Zhang and Fang (2007) provides the QoS ex-
perience vectors to perform reputation evaluation on many
levels to determine reputations more precisely.

When querying someone’s reputation in P2P applica-

2



tions, a decentralized method is often used to aggregate
reputation scores from various places to compute a global
reputation value. Users thus not only evaluate each oth-
ers but also learn of someone’s reputation value by aggre-
gating the evaluation records. In a client-server architec-
ture, the server stores all the reputation data, and users
just query the server for one’s reputation. However, in
a decentralized environment, often a P2P storage such as
Chord (2001), CAN (2001), or P-Grid (2001) is used to dis-
tributively store the reputation data on other peers. For
example, Zhang and Fang (2007) uses Chord to find the
successors of a user A, where A’s reputation records (eval-
uated by other users) are stored on its successors. When
other users need to know A’s reputation, they can hash
A’s identifier to aggregate the reputation records from A’s
successors. Similarly, EigenTrust (2003) uses the identifier
hash to discover successors to store the reputation values
by using CAN (2001) and Chord (2001).

There are other issues in P2P reputation management.
For example, Trustguard (2005) describes how to distin-
guish honest persons from dishonest ones, or to detect the
dishonest ones pretending to be honest; how to filter ex-
treme (i.e., too positive or negative) or fake reputation
evaluations to ensure the final reputation’s correctness;
and how to prove that a reputation management is reli-
able for a given application? There are many researches
that discuss these problems for P2P and non-P2P appli-
cations (e.g., Atif (2002), Yan, Adel and Ehab (2007) and
Ebay (2001)). We will discuss how REPS deals with these
problems in P2P MMOG scenarios.

2.2 P2P NVEs

In NVEs, every participant has a visibility range called
area of interest (or AOI, see Fig. 1). The AOI is often
circular, and other users within the AOI are called a user’s
AOI neighbors. Users can exchange messages to compre-
hend the environment around them, and see the dynamic
updates from other AOI neighbors. The key to scalable
P2P-based NVEs is based on the fact that users have lim-
ited views within their AOI and only need to know infor-
mation within the AOI. The scalability of the whole envi-
ronment thus can be extended if each user only exchanges
messages with its AOI neighbors, without going through
the server.

Figure 1: Large circle is the AOI of the center user.

Figure 2: Probability to cheat and reputation value

In some approaches (e.g., SimMud (2004), Yamamoto
(2005), DSID (2006), VSM (2008)), the whole world is di-
vided into serval disjoint regions in order to manage infor-
mation updates effectively. Some participants with better
capacities are chosen as superpeers to relay information
(e.g., position updates and event notifications) for other
users. Virginia Lo (2005) describe superpeers as having a
special role that can provide services to non-superpeers.

For many P2P NVE schemes that adopt superpeers,
whether the selected clients are trustworthy is essential for
the system’s proper operations. One of the implications
for our proposed distributed reputation management thus
is to provide a reliable method for selecting trustworthy
nodes that may assume important superpeer functions.

3 Problem Formulation and Challenges

Our goal is to build a scalable reputation management
system that supports P2P MMOGs by developing a dis-
tributed method to rate, store, and query reputation val-
ues. Trustworthy users can then be selected based on these
reputation evaluations. The main problem is how to store
the reputation scores on reliable peers and query them ef-
fectively. We first make the following assumptions:

1. Every user has a fixed AOI radius, where users see
each other only when they are within each other’s AOI. Be-
tween two mutually visible users, certain game-specific in-
teractions can occur (e.g., talking, fighting, trading, etc.).
The users within AOI, or AOI neighbors, change periodi-
cally due to users’ positional changes as they move.

2. We assume that a P2P NVE overlay exists to provide
a list of AOI neighbors for each user (e.g., SimMud (2004),
Colyseus (2006), VON (2006)). So any user may connect
and exchange messages directly with its AOI neighbors.

3. Two mutually visible users can rate each other multi-
ple times with a score of positive, neutral, or negative (+1,
0, -1) based on past interactions. A reputation record fol-
lows the form of (rater, rated-user, evaluation), where rater
is the user making the rating, rated-user is the user being
evaluated, and evaluation records the actual rating.

4. We assume that the probability for a user to cheat
decreases with a person’s reputation value, especially if the
reputation has exceeded certain threshold, as possibly a lot
of effort has been spent to build the reputation (Fig. 2).

3



Based on the above scenario, some challenges for a rep-
utation system in P2P MMOGs are outlined below:
Reputation evaluation Building a reputation system re-
quires the experiences and inputs from users as the basis
for reputation values. How to efficiently and precisely rep-
resent user impression about each others thus is the first
problem faced by any reputation schemes. Reputations
are meaningless if most values are close to zero due to the
lack of rating. In MMOGs, players often focus more on
the game itself than on miscellaneous activity such as rep-
utation evaluation, mechanisms to encourage user rating
thus is needed. To provide incentives for peer evaluation,
the evaluation method needs to be simple and efficient,
so that the evaluation can be done conveniently, and the
reputation values can be aggregated quickly.
Storage and query How to store and query reputations
in a fully distributed environment is the main challenge
for a P2P reputation system. To ensure that the system
would scale, we need to store the data distributively while
avoiding any server or client overloads. For the purpose of
efficiently querying reputation data, to find the users that
store the reputations and to collect the data with minimal
delays are two main considerations.
Security Ensuring the reliability and trustworthiness of
the information is another important aspect for a reputa-
tion system. In P2P environments, users may modify the
reputation data they keep for private gains. This would
disrupt the validity of the reputation data and possibly
cause misunderstandings among users. Therefore, a sys-
tem also needs to be able to prevent or recover from pos-
sible cheating behaviors.

4 Basic Architecture of REPS

We note that there are many game-related indicators, or
reputation factors, related to someone’s reputation in a
MMOG. These factors are generated during game play,
and can be based on certain game statistics (e.g., num-
ber of completed tasks or accumulated online time) or
feedbacks from other users (e.g., reputation ratings). The
game statistics can be collected at the nodes that manage
game states (e.g., servers or superpeers), whereas repu-
tation feedback is obtained from the evaluations of other
users. Below we describe how REPS performs rating, and
how the reputation values are stored and queried.

4.1 Localized reputation evaluation

In REPS, users perform mutual rating when they are
within each others’ AOI, because interactions can only oc-
cur with AOI neighbors. For example, in Fig 3, users C
and F could rate A because they are within A’s AOI. Rat-
ing may occur with a probability related to the intensities
of interactions. To ensure that rating would only occur
after user interactions, interacting users have to generate
a rating right authorized by the rated user to the poten-
tial rater, so that the rater can give a rating at some later

Figure 3: The rating condition in REPS

time, while preventing users to rate people whom they have
never interacted with. The rating right contains the rated
user’s unique identifier and IP address, and is recorded
at the rater so that rating may be performed at a later,
more convenient time. Rating right can be generated via
proxy signature (2006), which basically provides a method
to authorize a user to act on behalf of the authorizer to
perform certain tasks. In our case, the rated user autho-
rizes the rater to modify his or her reputation value at
another third party node (called reputation manager that
will be described later). However, the details of such au-
thorization is beyond the scope of this paper.

As an example, if user C rates user A with the score of
1, then a rating record of (C, A, 1) will be stored at A’s
reputation manager, which would update A’s reputation
based on A’s existing reputation value.

4.2 Reputation storage and query

Similar to EigenTrust (2003) and Power-Trust (2007), in
order to scalably store the reputation records, a user
chooses M users as its reputation managers to store and
retrieve reputation data, where M is a system-wide param-
eter. The reason for having M reputation managers is to
prevent the loss or corruption of reputation data due to the
failure of malicious act of any single reputation manager.
Reputation managers are chosen by hashing unique user
identifers using M different distributed hash table (DHT)
functions such as Chord (2001) or CAN (2001). DHT pro-
vides an unique mapping between a key (such as user iden-
tifer) and a user node located within a logical coordinate
space, so by using M hash functions, M separate nodes can
be selected to store the reputation data for any given user.
As the hash functions are well-known and agreed upon in
advanced, any other user can also easily locate the M rep-
utation managers for a given user. Reputation managers
are in charge of saving and computing the reputation score,
while making sure that only users with the proper rating
right can modify the respective reputation score. Potential
raters thus send their ratings to a rated user’s reputation
managers by hashing the rated user’s identifer via M dif-
ferent hash functions. Users can also query a given user’s
reputation data from the respective reputation managers
via the same way.

4



Figure 4: Trust region in TuS

5 Trustworthy User Selection (TuS)

Based on the reputation scores collected from reputation
managers and possibly some game statistics from game
state managers (i.e., the server or some superpeers man-
aging a region), the types of factors that are important
and relevant in forming users’ reputations could still dif-
fer for various MMOGs. In order to build a reputation
system that can adapt to different game scenarios, REPS
integrates all potential reputation factors to choose trust-
worthy users via a mechanism called Trustworthy user Se-
lection (TuS). After collecting the the relevant reputation
factors for some users, TuS can locally determine and ad-
just the importance of each reputation factors based on
user behaviors, so that the more trustworthy users can be
discovered for a given system.

5.1 Scenario description

In a typical scenario, there are r reputation factors that
can affect users’ reputation in the game world (e.g., rep-
utation scores, number of completed tasks, accumulated
on-line time, etc.). Each reputation factor has a weight wi

between 0 and ∞ that represents its importance. TuS also
uses mi to represent the reputation threshold of the ith rep-
utation factor. For a user to be considered trustworthy, it
must satisfy the thresholds for all reputation factors, where
satisfaction means exceeding the thresholds. So the higher
the value of a reputation factor, the better. If we plot
the reputation factors of each user in consideration on an
r-dimensional plane, then the set of points where all rep-
utation thresholds are satisfied is called a trust region (as
shown in Fig. 4 for two reputation factors). Each thresh-
old mi would update with time and environment according
to ∆mi, which indicates the magnitude of change for mi.
Each ∆mi would change as appropriate to adjust the size
of the trust region according to the relative importance of
each reputation factor.

Table 1: Example of proportionality distortions
User S(u) T(u) R(u)
A 30 100 0.3
B 9 10 0.9

Take two reputation factors for example, we use the most
popular reputation factors total score, S(u), and rating ra-
tio, R(u), to explain how TuS chooses trustworthy users.
Total score is the summation of every score S(i, u) an user
u receives from each rater i, and the rating ratio R(u) in-
dicates the proportion between the total score S(u) and
the total number of ratings T (u) that user u receives. The
higher S(u) or R(u), the more trustworthy user u is.

S(u) =
∑

S(i, u) R(u) =
S(u)
T (u)

But which reputation factor is more important If user A
scores 30 out of 100 ratings, and user B scores 9 out of 10
ratings. According to S(u) alone, A is more trustworthy
as its total is higher than B’s. But the ratio R(u) of B is
higher than A’s, making B more trustworthy. Yet since 100
people have rated A and only 10 persons have rated B, the
A’s rating may be more significant. Some proportionality
distortions thus exist (Table I).

Ideally, we would like to combine the effects of both the
total score and the rating ratio, as they can both be mean-
ingful. However, we do not know which is more important
as it may differ across regions or MMOGs, where the will-
ingness to rate can vary. So it is better for TuS to combine
S(u) and R(u) in a flexible way.

Fig. 4 illustrates the concpet of TuS by a two-factor
example, where the x-axis represents all possible values
for the rating ratio and the y-axis represents all possible
values for the total score. A user u can be selected as
a trustworthy user if its reputation point lies within the
trust region (satisfying the conditions of R(u) > mR and
S(u) > mS , where mR is between 0 and 1 and mS is
between the most negative rating and the most positive
rating). If we want to select N trustworthy users, we can
adjust the thresholds mR and mS so that there are exactly
N points (i.e., user reputation values) in the trust region.

To adjust the thresholds of mR or mS , we define the
value wS,R as the absolute value of the regression coeffi-
cient (i.e., the slope of the regression line for all points in
the trust region). wS,R can be used as the relative impor-
tance weight for reputation factors from S(u) to R(u). We
can also define wR,S , the relative importance weight from
R(u) to S(u), as the inverse of wS,R. If R̄ is the average
R(u) and S̄ is the average S(u) for all users within the
trust region, then:

wR,S =
1

wS,R

wS,R =

∣∣∣∣∣∣

∑
(R(u)− R̄)(S(u)− S̄)

∑
(R(u)− R̄)2

∣∣∣∣∣∣

5



The regression coefficient shows the distribution for all
values, and taking absolute values means that TuS only
cares about the direction of the distribution but not the
shape of the regression line. If wS,R > 1, the trend for
points in the trust region is towards S(u), the importance
of S(u) is thus relatively higher than R(u) because the
reputation points are more spread out (i.e., have greater
variability) on the dimension of S(u) than on R(u). The
weight of S(u) thus should increase more. If wS,R < 1, it
means that the points are tilting towards R(u) in the trust
region, and instead the weight for R(u) should increase
more.

The actual adjustments ∆mR and ∆mS for mR and mS

depend on the value of wS,R, where ∆mS / ∆mR = wS,R.
TuS increases or decreases ∆mR and ∆mS simultaneously
with the fixed ratio wS,R until the number of the candidate
points matches the number of required users.

Likewise, ∆mR and ∆mS decrease with the ratio wS,R

when the number of required trustworthy users is less.
When TuS is first initialized, wS,R, mR and mS are set
to 1.0, 1.0 and the number of current online users (i.e.,
the maximum values for each threshold), which makes the
area of the trust region null. We then reduce mR and mS

to extend the trust region with ∆mR / ∆mS = 1 to find
some initial trustworthy users.

5.2 TuS algorithm process

In order to choose trustworthy users, TuS adjusts the rep-
utation thresholds according to the weights of each repu-
tation factors. Assuming that a high value indicates good
reputation, TuS adjusts the reputation threshold more for
the more important reputation factors, and less for the
less important reputation factors. As such, the change in
the threshold’s magnitude becomes closely related to the
weight wi of the reputation factor i (note that when i = S,
wi = wS,R, as used in the last section).

When the desired number of trustworthy users, N , in-
creases, TuS can select more users by extending the trust
region. On the other hand, TuS increases the reputation
threshold to reduce the trust region when the demand for
trustworthy users is less. If the number of currently se-
lected trustworthy users is n,wi is the weight of the reputa-
tion factor i and adjustment fraction ρ is an adjustable sys-
tem parameter between 0 and 1, then TuS adjusts thresh-
old mi of i by adding or subtracting a chunk ∆mi, where
∆mi is defined as follows:

∆mi =
{

wiρmi if n < N
1

wi
ρmi if n ≥ N

Fig. 5 shows the process of the TuS algorithm, where
each reputation threshold is set as the highest value ini-
tially and the number of trustworthy users is 0. Then,
each reputation threshold is decreased by the same rate
∆mi = ρ to extend the trust region, so that users whose
reputation factors higher then all the reputation thresh-
olds can be selected as the trustworthy users. When there

are at least two trustworthy users, TuS begins to calcu-
late the weight wi by multivariate analysis and adjust the
threshold mi by the formula above until N trustworthy
users are found (the the calculation of wi will be explained
in the next section). At this point, and system goes into
a stable state. When there are dynamic updates to the
system (e.g., new AOI neighbors are encountered) or the
number of required trustworthy users N has changed, the
system would modify the weights for reputation factors,
and adjust the size for the trust region.

5.3 Multivariate analysis for weight adjustment

Multivariate Analysis of Statistics (1979) is based on the
statistical principle of multivariate statistics, which in-
volves observations of more than one statistical variable.
The method is used to perform tradeoff studies across mul-
tiple dimensions while taking into account the effects of
all variables of interest. It analyzes the principal compo-
nents of all input variables to determine the component
that is most discriminating. In mathematical terms, this
means finding the distribution direction that will create the
largest variations for weighted averages, and the weights
for each variable guaranteed to generate the largest differ-
ence among all variables.

In TuS, we take r different reputation factors as the vari-
ables, s total users within the trust region, and xi,j as the
value for user i’s j-th reputation factor. In order to com-
pute the weight of each reputation factor relative to the
first factor, TuS finds each regression coefficients relative
to the first reputation factor according to all current xi,j

values by multivariate analysis. TuS then takes the regres-
sion coefficients as the reputation factor weights relative to
the first reputation factor w2,1, w3,1, ..., wr,1 (for brevity,
we use w2, w3, ..., wr to represent them). The computa-
tions for the weights are shown as follows:




x1,1

x2,1

...
xs,1


 =




1 x1,2 ... x1,r

1 x2,2 ... x2,r

1 ... ... ...
1 xs,2 ... xs,r







w1

w2

...
wr


 +




ε1

ε2

...
εr




or equivalently:

X0

(s ∗ 1) = X
(s ∗ r)

W
(r ∗ 1) + ε

(s ∗ 1)

We ignore ε during computation because ε = 0 based
on the assumption of Multivariate Analysis of Statistics
(1979) where the expected error for each reputation factor
is minimum. We can now use a matrix transformation to
find the solution matrix W as follows:

W = (X ′X)−1X ′X0

where X ′ is the transformation matrix of X. Each wi

except w1 in W represents the adjustment ratio of the
trust region where Xi corresponds to X1. Note that w1 is
not the weight of m1 but the intercept of the distribution

6



Figure 5: Process flow of the TuS algorithm

representing the absolute location of the distribution. In
other words, if ∆mXi and ∆mX1 are the respective ad-
justment ratios of Xi and X1, then wi = ∆mXi / ∆mX1

represents the adjustment ratio of the reputation factor i
to the reputation factor 1 (i.e., the first reputation factor).

6 Performance Evaluation

In this section, we will simulate the operations of TuS
and compare its performance with other methods to select
trustworthy neighbors. The main purpose of the simula-
tion is to show and compare the accuracy of TuS under dif-
ferent conditions. We also evaluate the performance when
different reputation factors are considered together.

6.1 Simulation environment

Our simulations are based on the simulator for VON
(2006), where each node in the system has a fixed AOI
range and can exchange messages with its AOI neighbors.
In the simulation, 2000 nodes are placed within a two-
dimensional plane 1000- by 1000-unit, and each AOI radius
is set to 100 units. As we are mainly interested in the accu-
racy of TuS’s selection, we first assume that the values of
various reputation factors are stored and retrieved from the
reputation managers instantly without any delays. Note
that on a real system, as DHT is used for the storage and
retrieval of reputation values, to select N trustworthy users
would incur N DHT queries, each with an average latency
of O(nlogn), where n is the number of users in the system.
As the DHT queries can be performed concurrently, the
overall additional latency is roughly O(nlogn).

At the beginning of the simulation, each node is assigned
a random initial location. They will then move according
to random way-point (Esa Hyytia (2006)) model for 1000
simulation time-steps. Each node also has its own misbe-
havior probability, which indicates the frequency that mis-
behavior occurs. For example, if someone’s misbehavior

probability is 0.3, it means that 30% of the node’s inter-
actions with others is bad and the other 70% is normal.
Each node would rate each other whenever they are within
each other’s AOI, at a probability given by rating frequency
(e.g., a 50% rating frequency indicates a node would on
average, rate once for every two neighbor encounters). A
score of 1 is given if the other node exhibits normal behav-
ior and a score of -1 is given for bad behaviors. We can
then collect all the ratings to calculate the total score (i.e.,
summation of all ratings) and rating ratio (i.e., ratio of the
total score to the number of ratings given so far).

Initial reputation thresholds mR and mS total score and
rating ratio are respectively set to 1 and 2000 (i.e., the
maximal values for each reputation factor), and the ad-
justment fraction ρ is 0.005. When the simulation starts,
the trust region first extends according to the fixed weight
wS,R = 1 until the number of trustworthy users exceeds
one (because at least two points are required to calculate
the regression line for the trust region). The area of the
trust region would then extend according to how the weight
wS,R is adjusted.

In order to evaluate the accuracy of TuS, we require that
each user should identify a number of most trustworthy
neighbors. For our simulation this number is set to 20
(i.e., roughly 25% of the average AOI neighbors in the the
most crowded scenario).

The main metric for accuracy here is defined as how ac-
curate the chosen trustworthy users are indeed the most
trustworthy ones, based on their misbehavior probability
(i.e., the number of correctly estimated users with the low-
est misbehavior probabilities). For example, if a selection
method correctly identifies 9 out of 10 neighbors with the
lowest misbehavior probability, then the reputation accu-
racy is 90%. The average reputation accuracy represents
the mean of all users’s reputation accuracy at a given time
point. Another useful matric is convergence time, which
is defined as the average time for average reputation accu-
racy to exceed 95%. Convergence time indicates how fast
a given method can select the most trustworthy users.

7



(a) (b) (c)

Figure 6: TuS accuracy analysis in different rating frequency (a) f=10% (b) f=50% (c) f=90%

6.2 Accuracy analysis

In the first set of simulations, we compare the average rep-
utation accuracy for the following four methods: TuS, To-
tal score + Rating Ratio (T+R), Total Score and Rating
Ratio. T+R means that the reputation thresholds ∆mi

are adjusted using the same initial ratio. Total Score and
Rating Ratio choose trustworthy users simply based on
the highest total score or rating ratio, respectively. In
other words, T+R adjusts the trust region without con-
sidering the relative importance of a given metric, while
Total Score, and Rating Ratio determines trustworthiness
based on only a single metric.

If we set the rating frequency f = 10% (Fig. 6(a)), the
average relative weight of total score to rating ratio wS,R

turns out to be 1.72 (i.e., total score is more important
than rating ratio). Therefore, we also observe that the
average accuracy for the Total Score method is higher than
that of Rating Ratio. Because the Rating Ratio selection
considers one more factor (i.e., the total number of ratings)
that is not too relevant for someone’s reputation, the extra
consideration thus interferes with the accuracy to choose
trustworthy users. By combining total score and rating
ratio, TuS and T+R both show better accuracy. But the
average accuracy of TuS exceeds the accuracy of T+S by
29.55% (i.e., 64.27% - 34.72%, see Table 2), this result
explain TuS can distinguish more users with higher total
scores in the trust region.

When the rating frequency increases to f = 50%, as
shown in Fig. 6(b), the difference between Total Score and
Rating Ratio becomes smaller. By combining the effects of
both total score and rating ratio, TuS and T+R still show
better accuracy than the other two naive schemes. The av-
erage weight wS,R = 1.09 shows that the accuracy between
TuS and T+S becomes closer as the relative importance of
the two reputation factors becomes more similar.

When f = 90%, all the schemes have enough samples
in reputation ratings to distinguish users’ trustworthiness
after 1000 steps, as shown in Fig. 6(c). All four schemes
are able to converge to the highest accuracy of 100% as
time goes. However, the convergence time of TuS is only
76.66% of the next-best scheme, T+R, and only 62.31%
and 55.91% of the convergence time of Total Score and

Rating Ratio (see Table 3). These results show that better
selection accuracy can be achieved with a properly chosen
scheme, and that TuS adapts to different conditions with
a generally shorter convergence time.

6.3 Effect of malicious behaviors

In order to test the robustness of each scheme, we assume
some malicious users exist and act in the following way:

1. They give a score of -1 when meeting normal peers,
and a score of 1 when meeting bad behavior.

2. Malicious users give a score of 1 to each other regard-
less of whether the encounter is normal or bad.

Malicious users are assumed to have the same misbehav-
ior probability between 0 and 1 as normal users and their
activities cannot be detected to certify schemes can defend
continuously malicious attack. In order to determine each
scheme’s robustness in face of malicious behaviors, we use
Reputation Aggregation Error (RAE) to represent the de-
parture of the chosen trustworthy users and the truly trust-
worthy ones under the interference from malicious users.
RAE is defined as:

RAE =

√∑s
i=1(

ri − r̀i
ri

)2

s

Figure 7: Effect of malicious users on RAE

8



Table 2: Average reputation accuracy under different rating frequencies
Scenario Average Reputation Accuracy (%)

rating frequency (f) wS,R TuS T+R Total score Rating ratio
10% 1.72 64.27 34.72 42.54 25.27
50% 1.07 71.36 70.9 56.45 48.36
90% 1.13 74.72 67.09 61.18 57.45

Table 3: Convergence time under different rating frequencies
Scenario Convergence Time (time-steps)

rating frequency (f) TuS T+R Total score Rating ratio
10% - - - -
50% 607 635 - -
90% 496 647 796 887

”−” indicates when convergence is not achieved within 1000 steps.

Figure 8: Effect of user size on RAE

where ri is the ranking of the chosen trustworthy user
from all AOI neighbors, r̀i is the true ranking based on
misbehavior probabilities, and s is the number of selected
trustworthy users at the moment.

As the number of malicious users increases, Fig. 7 shows
the variation of average RAE from all trustworthy users
under each scheme. We can find that although TuS some-
times provides lower accuracy than T+R (in Fig. 7, for
example), simulations show that the ranking of the chosen
trustworthy users under TuS matches more closely to the
true ranking. Fig. 8 shows the change in average RAE
with different total number of users when the percentage
of malicious users is 10%. These simulations show that be-
sides working under normal situations, TuS also has better
performance than other schemes in face of malicious inter-
ference, even under different user sizes.

6.4 Analysis on selectivity

We have evaluated the accuracy and robustness of TuS
under different scenarios. Another important aspect for
a selection method is its selectivity, which may be under-
stood as how well the method can identify the users with

the most sought-after metrics. For example, if a selec-
tion method is only capable to identify the best 30% in a
group, then when the requirement is to identify the best
10%, the results returned may not be accurate enough for
the stricter demand. We are thus also interested in how
selective TuS can identify an ever-smaller group of trust-
worthy users. As the average AOI neighbor for 2000 nodes
is about 80, we would like to see how good TuS can choose
5, 10, 15, 20, 25, and 30 trustworthy users (i.e. 6.25%,
12.5%, 18.75%, 25%, 31.25%, 37.5% of AOI neighbors).

Fig. 9 shows the accuracy of TuS to choose a specified
number of trustworthy users under different rating frequen-
cies. We see that better average accuracy is achieved when
choosing more trustworthy users, because the penalty for
mis-identification is less (e.g., one missed identification
brings an inaccuracy of 20% for selecting 5 users, but only
3.3% for 30 users). The difference in accuracy between
choosing 5 and 30 trustworthy users exceeds 25% when
f=90%, which shows that selectivity improves with rating
frequency. We also see that reputation aggregation error
decreases with increasing numbers of selected users from
Fig. 10, as less penalty for missed identification can also
reduce the reputation aggregation error.

6.5 Accuracy in higher dimensions

In order to see how TuS performs under multiple dimen-
sions (i.e., more than two reputation factors), besides total
score and rating ratio, we consider one more reputation
factor called latest score, L(u), which is defined as follows:

L(u) =
∑

i

LS(i, u)

where LS(i, u) represents the last (i.e., most recent) rat-
ing user i has given to user u. Unlike total score, latest
score cannot accurately show the historically accumulated
reputation, but it still shows the reputation most relevant
to current user behavior. Therefore, latest score is also an
indicator for a user’s trustworthiness.

9



Table 4: Effect of three reputation factors on accuracy and convergence time
Scenario wS,R w(L,Ran),R ARA (%) CT

Reputation factor f 2D 3D 3D 2D 3D 2D 3D
Latest Score 50% 1.07 1.11 1.24 71.36 81.27 607 413

Random Score 50% 1.07 0.88 0.14 71.36 65.81 607 679
* ARA: Average reputation accuracy, CT: Convergence time

Figure 9: TuS accuracy under different selectivity

Figure 10: TuS RAE under different selectivity

In Fig. 11, we compare the accuracy of two dimen-
sional (total score and rating ratio) and three dimensional
(total score, rating ratio and latest score) reputation fac-
tors to choose trustworthy user by TuS. The simulation
shows that 3D-TuS has 18% more average reputation ac-
curacy than 2D-TuS, and also reduces 32% convergence
time. Both accuracy and convergence time improve if we
combine more relevant reputation factors for determining
trustworthiness.

Besides combining reputation factors directly related to
user behavior, we also try to see how factors unrelated to
user behavior would impact the evaluation results. Ran-
dom score is a random fixed value between 0 and 1 assigned
to each user. Its weight to other reputation factors is thus

Figure 11: 2D and 3D TuS accuracy with latest scores

Figure 12: 2D and 3D TuS accuracy with random scores

relatively lower than the weight of latest score. In Fig. 12,
we compare the accuracy of two dimensional and three di-
mensional TuS using random score as the third reputation
factor. We can see that the effect of a random factor to
both the accuracy and convergence time is low, and the
average difference between 2D TuS and 3D TuS is below
5%, as the weight of the random factor is low under multi-
variate analysis. In order to filter less relevant reputation
factors like random score, we can set a threshold ε. If the
weight of a reputation factor less then ε, we can discard this
factor to increase accuracy of the whole system. Therefore,
we can conclude that TuS can filter out less relevant rep-
utation factors by lowering their weights, and by combing
influential reputation factors, overall system performance

10



would improve.

7 Concluding Remarks

7.1 Discussions

Reputation evaluation REPS uses direct rating between
users as the main representation for reputations, where
users give a simple score of (-1, 0, 1) to indicate their im-
pressions for each other. It is thus very simple to perform
rating and calculate one’s reputation value. A user’s rep-
utation managers update reputation values directly and
individually whenever they get a new reputation record
from a rater. The rating right control allows users to iden-
tify which users can rate and ensures that only users who
have interacted can rate each other. REPS thus provides a
simple yet effective method to evaluate and compute rep-
utation values.

Storage and query Querying for reputation can be
done efficiently as a querying user only needs to hash an
user identifier, then it can ask some reputation managers
directly. As the number of users increases in a system, the
number of query overhead may also increase for a given
user. However, the overhead of each reputation managers
can be reduced by increasing the number of reputation
managers M for each user, so that more reputation man-
agers may share the querying load.

Security The effect of malicious users on the system
is reduced in REPS due to the mutual monitoring among
users. As everyone can rate another user and update their
scores when new situations occur, a cheating user will soon
be rated very negatively if some misbehavior is discovered.
A cheater’s reputation thus can be reduced rapidly and its
privileges or responsibilities could be removed.

As reputation values are stored on multiple reputation
managers, improper modifications by any single reputation
manager is masked from the correctly maintained records
in other reputation managers. Reputation manager mis-
behavior thus will impact the system minimally. As rep-
utations are stored and accessed at reputation managers
instead of the rated user, users also cannot manipulate
their own reputation values for unfair benefits.

7.2 Summary

REPS provides reputation management to support P2P
MMOGs by allowing users to rate each other after some
interactions, and select trustworthy nodes based on these
ratings. Through the use of reputation managers, repu-
tation records can be stored and accessed distributively
without relying on a centralized server. Reputation val-
ues can thus be used in a scalable way. We also present
Trustworthy user Selection (TuS) that chooses the trust-
worthy users by combining several reputation factors such
as a user’s total score and rating ratio, and adjusts each
factor’s weight to adapt for different scenarios by multi-
variate analysis. Dynamic adjustments of the trust region

identify the minimum area that satisfies a given number of
required trustworthy users, effectively selecting trustwor-
thy nodes using the strictest criteria. Additional evalua-
tions also show that TuS improves its performance if more
relevant reputation factors are considered, yet it is unaf-
fected by irrelevant, undistinguishing factors (e.g., mali-
cious behaviors, random scores).

There are still some issues we have not yet fully explored
in this paper, for example, the performance for the storage
and query of reputation factors under DHT, and the inte-
gration of REPS to existing games or actual P2P MMOGs.
Detection of cheating behaviors by malicious users is an-
other potential issue. These future works would help to
evaluate REPS better in real scenarios and potentially help
to address the security issues hindering the realization of
P2P MMOGs.

REFERENCES

Second Life, http://secondlife.com/.

World of Warcraft, http://www.worldofwarcraft.com/.

B. Knutsson and H. Lu and W. Xu and B. Hopkins. (2004)
‘Peer-to-peer support for massively multiplayer games’,
Proc. INFOCOM pp.96–107.

A. Bharambe and J. Pang and S. Seshan (2006) ‘AColy-
seus: A Distributed Architecture for Online Multiplayer
Games’, Proc. NSDI, pp.155–168.

S. Y. Hu and J. F. Chen and T. H. Chen (2006) ‘VON:
A Scalable Peer-to-Peer Network for Virtual Environ-
ments’, IEEE Network, Vol. 20, No. 4, pp.22–31.

Y. Atif (2002) ‘Building Trust in E-Commerce’, IEEE In-
ternet Computing, Vol. 6, No. 1, pp.18–24.

C. Dellarocas (2001) ‘Analyzing the Economic Efficiency of
Ebay-Like Online Reputation Reporting Mechanisms’,
Proceedings of the 3rd ACM conference on Electronic
Commerce, pp.171–179.

Yonghe Yan and Adel El-Atawy and Ehab Al-Shaer (2007)
‘Ranking-based Optimal Resource Allocation in Peer-to-
Peer Networks’, Proc. INFOCOM, pp.1100–1108.

K. Aberer and Z. Despotovic (2001) ‘Managing Trust in
a Peer-to-Peer Information System’, Proc. ACM CIKM,
pp.310–317.

L. Xiong and Ling Li. (2004) ‘PeerTrust: Supporting Rep-
utation Based Trust for Peer-to-Peer Electronic Com-
munities’, IEEE TKDE, Vol. 16, No. 7, pp.843–857.

R. Ismail and A. Josang (2002) ‘The beta reputation sys-
tem’, Proceedings of the 15th Bled Conference on Elec-
tronic Commerce.

11



A. Josang and R. Ismail and C. Boyd (2007) ‘A Survey of
Trust and Reputation Systems for Online Service Pro-
vision’, Decision Support Systems, June, Vol. 43, No. 2,
pp.618–644.

S. Kamvar and M. Schlosser and H. Garcia-Molina (2003)
‘The Eigentrust Algorithm for Reputation Management
in P2P Networks’, Proc. ACM World Wide Web Conf.
(WWW ’03), May.

L. Mui and M. Mohtashemi and C. Ang and P.
Szolovits and A. Halberstadt (2001) ‘Ratings in
Distributed Systems: A Bayesian Approach’, cite-
seer.ist.psu.edu/mui01ratings.html.

Sonja Buchegger and Jean-Yves Le Boudec (2004) ‘A Ro-
bust Reputation System for P2P and Mobile Ad-hoc
Networks’, Proceedings of SASN ’04, October.

Saurabh Ganeriwal and Mani B. Srivastava (2004)
‘Reputation-based Framework for High Integrity Sen-
sor Networks’, Proc. Second Workshop on Economics of
P2P Systems, June.

Runfang Zhou and Kai Hwang (2007) ‘APowerTrust: A
Robust and Scalable Reputation System for Trusted
Peer-to-Peer Computing’, IEEE Transaction on Parallel
and Distributed Systems, Vol. 18, No. 4, pp.460–473.

Yanchao Zhang and Yuguang Fang (2007) ‘A Fine-Grained
Reputation System for Reliable Service Selection in
Peer-to-Peer Networks’, IEEE Transaction on Parallel
and Distributed System, Vol. 18, No. 8, pp.1134–1145.

Ion Stoica and Robert Morris and David Karger and Frans
Kaashoek and Hari Balakrishnan (2001) ‘Chord: A Scal-
able Peer-To-Peer Lookup Service for Internet Applica-
tion’, Proc. ACM SIGCOMM, pp.149–160.

S. Ratnasamy and P. Francis and M. Handley and R. Karp
and S. Shenker (2001) ‘ scalable content-addressable net-
work’, Proc. of ACM SIGCOMM, August.

Karl Aberer (2001) ‘P-Grid: A Self-Organizing Access
Structure for P2P Information Systems’, CoopIS 2001,
June, Vol. 2172, pp.179–194.

M. Srivatsa and L. Xiong and L. Liu (2005) ‘Trustguard:
Countering Vulnerabilities in Reputation Management
for Decentralized Overlay Networks’, Proc. 14th Intl
World Wide Web Conf, pp.422-431.

S. Yamamoto and Y. Murata and K. Yasumoto and
M.inoru Ito (2005) ‘A distributed event delivery method
with load balancing for MMORPG’, Proceedings of 4th
ACM SIGCOMM NETGAMES.

H.H. Lee and C.H. Sun (2006) ‘Load-balancing for Peer-to-
peer Networked Virtual Environment’, Proc. Netgames,
October.

Shun-Yun Hu and Shao-Chen Chang and Jehn-Ruey Jiang
(2008) ‘Voronoi State Management for Peer-to-Peer
Massively Multiplayer Online Games’, Proc. NIME.

Virginia Lo and Dayi Zhou and Yuhong Liu and Chris
GauthierDickey and Jun Li (2005) ‘Scalable Supernode
Selection in Peer-to-Peer Overlay Networks’, Proc. of
HOT-P2P, pp.18–27.

KV Mardia and JT Kent and JM Bibby (1979) ‘Multivari-
ate Analysis. Academic Press.’

Kuan-Ta Chen and Polly Huang and Chin-Laung Lei
(2007) ‘Game Traffic Analysis: An MMORPG Perspec-
tive’, Computer Networks, Vol. 51, No. 3.

Esa Hyytia, Pasi Lassila and Jorma Virtamo (2006) ‘A
Markovian Waypoint Mobility Model with Application
to Hotspot Modeling’, In Proceedings of IEEE ICC 2006.

Manik Lal Das, Ashutosh Saxena, Deepak B. Phatak
(2006) ‘Algorithms and Approaches of Proxy Signature:
A Survey’, eprint arXiv:cs/0612098, December.

12


