Bandwidth-Aware Peer-to-Peer 3D Streaming

Chien-Hao Chien, Shun-Yun Hu, Jehn-Ruey Jiang

Department of Computer Science and Information Engineering
National Central University, Taiwan, R.O.C.

ABSTRACT

Peer-to-Peer (P2P) streaming support for 3D content (i.e.,
P2P 3D streaming) has recently been proposed to provide
more affordable and cost-effective content streaming in vir-
tual environment (VE) applications. However, the gener-
ally limited client upload bandwidth requires maximal band-
width utilization for effective streaming. This paper pro-
poses Bandwidth-Aware Peer Selection (BAPS), a peer se-
lection strategy that improves the bandwidth utilization for
3D streaming. BAPS avoids request contentions and peer
overloading as object and user densities increase, thus im-
proving both bandwidth utilization and system scalability.
We compare BAPS with strategies that select from only
peers within the area of interest (AOI) as data sources and
without bandwidth capacity considerations. Our evaluation
shows that BAPS achieves better performance in general
and maintains a stable minimal quality of service (QoS) for
streaming, which is important for commercial applications.

Categories and Subject Descriptors

1.3.2 [Computer Graphics|: Graphics Systems—Distributed
/ network graphics

Keywords

peer-to-peer, networked virtual environment, 3D streaming,
peer selection, bandwidth-aware

1. INTRODUCTION

Networked Virtual Environments (NVEs) are computer
simulations that combine networked communications and
3D graphics techniques to provide immersive and responsive
virtual interactions. The early military simulator SIMNET
[14], and the recent Massively Multiplayer Online Games
(MMOGs), such as World of Warcraft (WoW)! or Second

"http:/ /www.worldofwarcraft.com

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

NetGames °09 Paris, France

Copyright 2009 ACM ...$5.00.

Life (SL)?, are all well-known examples of networked virtual
environments. Rendering a scene in a virtual environment
(VE) requires a combination of various 3D objects (e.g.,
mesh models and textures), currently often obtained from
a full installation via a DVD or a network download. How-
ever, downloading and installing the entire content to local
storage might take a long time. To address this issue, the
technique of 3D Streaming has been utilized.

3D Streaming [1,4,5,11] refers to the real-time and con-
tinuous transmission of 3D content through networks. Users
only need to download the data for rendering a given scene
before navigation, without having to wait for the entire con-
tent download to complete. For example, Second Life deliv-
ers terabytes of user-generated content with their 3D stream-
ing technology [7]. 3D streaming is similar to media stream-
ing [10] where users are allowed to immediately use the data
when the data is only partially received. Before transmis-
sion, the data also needs to be fragmented into many pieces,
so that users will be able to see the content progressively.
However, differences exist between 3D streaming and media
streaming. For instance, media streaming transmits data
pieces according to the time sequence of the video, so the
transmission sequence of the pieces is fixed. On the other
hand, 3D streaming transmits data based on 3D objects
viewable to the user. So different viewing angles or distances
produce individually different transmission sequences.

If 3D streaming is supported by a client-server (C/S) ar-
chitecture, then all content is provided by a central server.
When a user requests new data, the request is sent directly
to the central server, waiting for the server’s processing and
response. However, C/S architectures cannot scale easily
with user size, because the bandwidth or computing re-
sources of any given server is often fixed, whereas the num-
ber of users might increase with user activities, and may in
some cases overload the server’s capacity (e.g., a flash crowd
could gather for a concert). When concurrent requests from
users exceed the server’s capacity, the efficiency and qual-
ity of service (QoS) of the system will degrade. To address
this problem, peer-to-peer (P2P) architectures [3,7,12] have
been proposed to support 3D streaming. P2P networks are
characterized by the design where every user plays the role
of both the provider and the requester: each user shares data
with other users on the network. In other words, because
users can get what they need from other users, the data
source is not limited to the server. With this architecture,
the total network bandwidth or computing resources will in-
crease as user size scales, improving the system’s scalability.

Zhttp:/ /www.secondlife.com

Recent proposals in P2P-based 3D streaming (e.g., FLoD
[7]) show the benefits of using the P2P architecture to reduce
server load. However, request contention and overloading
can occur for some nodes [15], so some users’ bandwidth
cannot be properly used when the data sources are limited
to only a few nearby neighbors in the virtual space.

This motivates us to propose a Bandwidth-Aware Peer Se-
lection (BAPS) method that avoids request contention and
overloading. Unlike existing P2P 3D streaming schemes,
BAPS allows users to send requests to neighbors within the
AOI (area of interest) as well as to other users. Therefore,
more data sources become available. Furthermore, BAPS
adopts bandwidth reservation and the Tic-for-Tac concept
from BitTorrent [6] to 1) ensure a stable level of quality
of service (QoS); 2) improve bandwidth utilization, and 3)
achieve higher scalability. We verify BAPS with simulations
and compare its performance with related P2P 3D streaming
schemes to show its advantages.

The rest of the paper is organized as follows. Section 2
defines our problem and describes the expected results; Sec-
tion 3 proposes our peer selection and piece selection meth-
ods; Section 4 presents the results of the experiments; and
conclusions will be given in Section 5.

2. PROBLEM FORMULATION

We formulate our user scenario based on Second Life, as it
is a more generalized model for virtual worlds among current
MMOGs. There are two types of network transmissions in
Second Life: states and content data. States provide infor-
mation about what surrounds the current user, such as the
positions of other users and the placements or status of ob-
jects (e.g., how filled is a glass of water, or how much money
an item costs). When a user is aware of the surrounding
objects through the states, requests of the 3D objects (i.e.,
the content data) can then be sent to the server. States
therefore consist of smaller packets and require higher re-
sponsiveness and security. On the other hand, according to
Huang et al. [9], 61% to 88% of the network traffic in Second
Life is for textures, which is a type of 3D content. Therefore,
to reduce server loading and maximize the number of con-
current users, the sensible priority is to reduce bandwidth
usage due to the transmission of 3D objects. This paper is
based on a former study of FLoD [7], which is a framework
that addresses issues of 3D streaming in a P2P network.
In FLoD, there are two sources for content download: AOI
neighbors and the server. AOI neighbors refer to the other
users who are within a given user’s visibility, or Area of In-
terest (AOI). As AOIs may intersect, users can find other
users with similar object interests to form a neighbor group,
which can then serve as another source for content down-
load. When a user wants to download certain objects in
the AOI, the user can send a request to another user who
owns the object from the AOI neighbor group. If there are
no AOI neighbors to request, requests are then sent to the
server. However, as there is a limit on concurrent servable
requests, a download might be delayed due to the inability
to send or respond to requests. We identify three problems
in FLoD’s basic strategy:

1. Non-server content sources are limited to cur-
rent AOI neighbors. However, other non-AOI users who
have been in the same area may still possess the objects of
interest. The download thus can be inefficient due to the
insufficiency in content sources.

2. Random peer selection can cause bandwidth
waste and request jam. It is found that a naive random
peer selection causes users of different upload bandwidth to
carry the same loading [15], which means that the users of
low upload bandwidth can be in a request jam (i.e., receiving
requests beyond their capacities), whereas users with high
bandwidth capacity are idling. The upload bandwidth thus
is not efficiently allocated.

3. Unstable connections exist between peers. As
connections are created and broken very dynamically ac-
cording to user movements, the response time of the con-
tent requests cannot be estimated accurately. The quality
of streaming thus would suffer and cannot be consistently
guaranteed.

In summary, it is found that getting content from only
the AOI neighbors limits the download sources, and ran-
dom selection causes unbalanced workload and request con-
tention. Sung et al. [15] propose to solve the above problems
by reserving a list of past AOI neighbors and using a multi-
level AOI for the request areas. However, the work neglects
the difference in upload bandwidth between users and does
not assure that the source nodes have sufficient bandwidth
to provide for download. The P2P network thus may not
transmit most effectively. Besides, when the user density
is high, even with multi-level AOI requests, users within a
single area might still receive excessive data requests. There-
fore, we propose an improved mechanism with the following
objectives:

1. Develop a bandwidth allocation method to reduce the
waiting time to fulfill download requests and improve the
streaming quality.

2. Construct peer lists to provide additional data sources,
and adopt a Bandwidth-Aware Peer Selection (BAPS) strat-
egy, so that peer selection is not limited to only AOI neigh-
bors.

3. Introduce the Tit-for-Tat in BitTorrent [6] to provide
prioritized download for users with larger upload bandwidth,
so that they are able to provide more data to other users
sooner, reducing the server’s loading for better scalability.

3. DESIGN OF BAPS

3.1 Assumptions and Basic Ideas

Based on the ideas of FLoD [7] and the work of Sung et
al. [15], we divide a virtual world into several scenes with
fixed sizes. Each scene consists of a scene description with
the number of objects and each object’s placement and size.
When a user logins the virtual world, he/she will be informed
of the scene descriptions according to the user’s AOI cover-
age. In this work we assume that there is a gateway server
to perform this task (i.e., the server notifies each user the
necessary scene descriptions) in order to focus on the P2P
aspect of content exchange. Note that in the original FLoD
design, scene descriptions are provided by a P2P overlay as
well. However, as scene descriptions are often much smaller
than the actual content, we assume that they have negligible
contribution to bandwidth and may be performed in either
a client-server or P2P fashion. The required 3D objects
are then downloaded according to the scene descriptions.
When new objects are found, a list of required objects is
formulated by a Piece Selection procedure to determine the
content pieces to be downloaded and their priorities. Once
a piece is selected, the Peer Selection procedure will find

Base piece

—/EDDDDDDDDDDDDDDDDDDDDG
i

Piece Data of Objecty = {BP,RP;, RP;, ..., RP,}

Refinement pieces
|

Figure 1: Data Structure of 3D Streaming Object

an appropriate user to request. We describe the procedures
below:

1) Piece Selection mainly deals with the transmission pri-
ority of piece request. We first assume that objects in the VE
are fragmented into one or several pieces with Level of Detail
(LoD) techniques [13]. As shown in Figure 1, every object is
divided into a base piece (BP), and many refinement pieces
(RP), where successive pieces depend on the previous ones,
so every 3D object can be transmitted as a streaming con-
tent. When a user has downloaded a base piece, the object
can be seen in its rough outline; and if the download con-
tinues with getting more refinement pieces, then the object
will appear to be more refined. According to the nature of
virtual world, Piece Selection prioritizes the download order
with two considerations: (1) visual contribution of the piece
and (2) object proximity in the virtual world.

As 3D objects are displayed progressively, BP has to be
downloaded before showing RP;, and R;_; is required be-
fore R;. So, download priority depends on the piece num-
ber, where pieces with smaller numbers are downloaded first.

Pr(Piece;) = w(Piece;)/dist(Object)

We thus define the priority Pr of Piece; of Objecta as
above, where w(Piece;) indicates the visual contribution (or
weight) of the piece, and dist(Objecta) represents the vir-
tual distance between Objecta and the user. Higher Pr
values indicate higher priorities. When a user has to trans-
mit several pieces at the same time, this value would help
to decide which data piece has the higher priority.

2) Peer Selection decides to whom a request is sent. In
P2P 3D streaming, in order to provide a good navigation,
the system should focus on the timeliness of piece down-
load. To reduce waiting time, we propose to use bandwidth
reservation to allow requests be served as soon as they are
received. We realize that if content sources are limited to
AOI neighbors, insufficient downloadable sources and re-
quest jam may result. To solve these problems, we propose
Bandwidth-Aware Peer Selection (BAPS), which includes
Bandwidth Allocation and Multi-Source Selection, to help
users allocating bandwidth properly and finding appropri-
ate content providers. Similar to other media streaming, 3D
streaming should assure a stable streaming quality, which
can be achieved by avoiding excessive waiting time on piece
requests. Considering that in residential networks, band-
width resources are often limited and asymmetric for up-
load and download, we thus lower the allowable requests for
users with lower bandwidth in order to avoid jamming in the
requests. For users with higher bandwidth, we should also
allocate the bandwidth efficiently to avoid resource idling.

By using pre-allocation, the upload bandwidth of a user is
divided into several connection channels of identical sizes.
When a requester asks a peer for content, a connection chan-
nel is created first, where the provider will reserve some up-
load bandwidth, so that requests will not be delayed due
to request jam. If enough bandwidth cannot be allocated,
the requester is denied connection and may need to look
elsewhere for other peers. As object pieces are linearly de-
pendent, when a user makes requests to some peers, it means
that their AOIs have been overlapped at some time (past or
present) and include the same objects. The provider thus is
likely to own other content pieces needed by the requester.
By reserving bandwidth at the provider, the request flow can
be kept smooth and continuous (i.e., similar to a pipeline),
which increases its efficiency.

3.2 BAPS algorithm

We now describe BAPS in more details according to the
main stages in P2P 3D streaming [8]:

1) Object Discovery: Before performing the piece and
peer selections, our first task is to identify which objects
are within the user’s view and thus are relevant to down-
load. This is achieved by reading the scene descriptions
obtained from the central server. As object discovery is not
our main focus, we assume that such a simple method would
suffice. If dynamic object creation / deletion / update were
to be supported, then a more sophisticated mechanism can
be used.

2) Source Discovery: To improve the source insufficiency
due to requesting from only AOI neighbors, a Peer List is
also included in the scene description, which describes the
users who have ever downloaded the scene. The Peer List is
constructed by the gateway server, which logs the users who
request for each scene descriptions. So when other users re-
quest the scene descriptions, the server can randomly select
some users who have requested the same scene description
previously into the Peer List. Users can learn from the list
about other users who have ever accessed the scene. This
way, the potential sources for peer selection is increased.

3) State Exchange: This step includes connection request
and state exchange. After knowing who are the content
sources, we then need to know which peers own the required
data pieces by exchanging some simple states [15]. We adopt
the proactive push-based distribution of such meta states on
piece availability (as proposed in [2,16]) to save the time on
state exchange, and a passive pull-based method for the later
content exchange (which tolerates more latency). In order to
inform existing connected peers on the availability of pieces,
we specify the state exchange peers as both the AOI neigh-
bors and peers with established connected channels. When
a user comes to a new scene which it has no knowledge of,
it would connect with some randomly selected peers from
the Peer List and AOI neighbors. Otherwise, the user will
only connect with peers who are known to possess the de-
sired content. When the size of known peers is lower than a
pre-defined value, the server is asked to provide a new Peer
List.

4) Content Exchange: This is the main stage where piece
selection and peer selection are performed. We determine
the request rp; for piece p; according to the Piece Selection
policy as follows. If set A represents all the owners of p;
among known users; set B represents the known owners of
p;i in the connected channels; and set C is the owners of p; in

Table 1: Simulation parameters

World dimension (units) 1000x1000
Cell size (units) 100x100
AOQI-radius (units) 100
Time-steps (10 steps = 1 sec) 1500
Object Size (KB) 100 - 300
Piece Size (KB) 5
Percentage of Base Piece 10%
Server Download/Upload Limit (KB) || 1000/1000

AOI neighbors. As users in set B have reserved bandwidth
for incoming requests, when a piece request is sent to any
peer in set B, it will immediately be served without being
delayed due to too many requests. We choose from set B
a content provider who has not yet reached the maximum
supportable requests. If no provider is found in set B, then
we pick a source from set C. When no appropriate provider is
found either in set B or set C, we examine whether we meet
the Server Request Condition [7]. If so, we send a request
to the server. In case we fail to find anyone to request,
that means the total system resource is insufficient, and we
would randomly select a few users in set A to ask for new
connections.

When a provider receives a piece request, it should imme-
diately decide whether to serve the request. In the original
FLoD, the piece request procedure uses the first come first
serve model, or FCFS. The benefit of this model is an equal
opportunity for all requesters. Thus, the requested load-
ing is evenly distributed. However, the FCFS model offers
the same opportunity for users with high upload and users
with low upload bandwidth, making the high capacity users
to have idle bandwidth resource while unable to distribute
content to others (called a content bottleneck [10]). To im-
prove such scenario, when a requester asks for a connection
channel, if the provider is fully loaded, connection preference
is given to peers with higher upload bandwidth, using a Tt
for Tat policy [6]. When connections are fully loaded, those
with lower transmissions will be suspended, so that high ca-
pacity peers can obtain content faster and serve sooner.

4. EVALUATION

This section describes the evaluation of BAPS via simu-
lations. We first present the simulation environment and
methods, followed by the metrics used and result analy-
sis. Our experiment is based on the FLoD architecture and
procedures [7] (see Table 1 for the simulation parameters).
At the initialization phase, all 3D objects are placed ran-
domly in the VE, and the object sizes are between 100KB
to 300KB. During the experiment, several nodes are created
to represent users of the virtual world. Similar to the ob-
jects, their placements are random. At the beginning, all
nodes remain at the initial positions until an initial set of
AOI objects are all downloaded. This assures that users
are equipped with some content to exchange with others be-
fore their movements. This way we can focus on the steady
state behaviors during data distribution. The user band-
width allocation is set as in [2] (see Table 2) to simulate a
real environment, so that we may examine the performance
of different algorithms under a realistic bandwidth distribu-
tion.

Table 2: user bandwidth distribution
download (KB/sec) || upload (KB/sec) || Node Fraction
96 10 0.05
187 30 0.45
375 100 0.40
1250 625 0.10

4.1 Metrics

The following metrics are used for performance evaluation:

Server Request Ratio (SRR): Users request data pieces
from both peers and the server. When a user is unable to
find a peer provider and that the Server Request Condi-
tion is matched, the user can request from the server. The
proportion of pieces (in data size) obtained from the server
is described in percentage as Server Request Ratio (SRR).
Lower values of SRR mean lower loading for the server and
better system scalability.

Fill Ratio: To evaluate the visual quality of a scene, a
simple quantity is to measure the ratio between successfully
downloaded content and the total interested (i.e., within
AOI) content (in sizes). Higher ratio means the user has
downloaded a more complete 3D scene and thus will have
better visual quality.

Request Latency: The delay between sending a piece
request to acquiring the piece is important, as it evaluates
the efficiency of request serving and shows whether there is
a request jam.

4.2 Performance Analysis

In the following simulations, we use two simulation setups
to evaluate bandwidth utilization and the system’s scalabil-
ity: (1) Fixed user size and movement paths to maintain
the same available bandwidth, while adjusting object quan-
tities to evaluate bandwidth utilization; (2) Fixed object
placements and quantities with varying user size to evaluate
the system’s scalability. Finally, we evaluate the streaming
quality of with time-series in how fill ratio changes.

Bandwidth utilization: In a P2P network, data pieces
are obtained from both server and peers. When users cannot
find appropriate sources in the P2P network, the request is
shifted to server. So if the SRR is high, then the P2P net-
work may be under-utilized. By maintaining the same user
size (100 peers) and movement paths while varying the ob-
ject size (from 100 up to 500), we test the P2P network’s per-
formance under different workloads. We randomly place M
objects in the VE, whose sizes are D;|i = 1,2,3..., M. The
total content size thus is: Zi\il D;, which is also the max-
imum downloadable volume for a user. The average down-
loadable volume in AOI is shown as AOI Area/W orldAreax
vail D;. For example, when there are 300 objects with an
average size of 200KB, there will be a total of 60 MB of
content, and the average content size in an AOI is 1.88MB.

As shown in Figure 2(a), when the content sources are ex-
tended from AOI neighbors to also include Peer List neigh-
bors, with our Peer Selection strategy and the same number
of objects, server’s loading reduces 59.8% on average. For
example, when there are 200 objects, the SRR is 14.6% in
FLoD but only 8.6% in BAPS, which is about a 55.9% re-
duction on the server loading; when there are 500 objects,
the reduction rate becomes 66.2%.

The server loading is efficiently reduced due to having

80

25% 95% —
90% = 70
g 20% / N R 2 }
z Z 6o
3 . 80% T . /
- c
g 15% ;‘; 75% % 40 /.,
: g™ :
g 10% / = 5% \l\ g 30
o o
& 60% > 20
[=]
® 5% 55% \ E 10 .___._”.——-—'—"A
0
» 50% o
50 100 150 200 250 300 350 400 450 500 50 100 150 200 250 300 350 400 450 500 50 100 150 200 250 300 350 400 450 500
Number of Objects +—Proposed Number of Objects == Proposed Number of Objects —+—Proposed
—m—FloD —8—FLoD —@—FloD
(a) Avg. Server Request Ratio (SRR) (b) Avg. Fill Ratio (c) Base Latency
Figure 2: Bandwidth utilization evaluation under varying object sizes (100 peers)
25% 90% 25
P PN _ N
5 m 85% —— ——e
L20% . > 20
b 80% — S —ag—S—8—a—8—a—a | -
vy [
E15% g 75% ® 15
b= T (1]
= e 70% I+
g \ = 2
S10% Z esu £ 10
= 2
5 o 60% a s
xX —"-‘.--..__. 559% ——t * ¢ < >—t
0% 50% 0
50 100 150 200 250 300 350 400 450 500 50 100 150 200 250 300 350 400 450 500 50 100 150 200 250 300 350 400 450 500
Number of Peers—#—Proposed Number of Peers —¥— Proposed Number of Peers =#=Proposed
—m—FLoD —@—FLoD —m—FloD

(a) Avg. Server Request Ratio (SRR)

(b) Avg. Fill Ratio

(c) Base Latency

Figure 3: System scalability evaluation under varying peer sizes (300 objects)

vau s LR e
ensetT T e

LR

200 400 600 800 1000 1200

====MAX_FILL_RATIO
=eeee= AVG_FILL_RATIO

1400
steps

MIN_FILL_RATIO

(a) FLoD

120% 120%
o 100% -
100% ,I. L T R
= 80% A - <80% |77
§ l‘- o ;’] :A
o I o S60% |+
B 60% ! = e e :
o) S Y e = t :
= I T40% (-
o 40% " -,‘ 'H
P / “-\\ 20% i
20% H—
Ty -
0% &
200 400 600 800 1000 1200 1400
teps
=== MAX_FILL_RATIO === MIN_FILL_RATIO
------- AVG_FILL_RATIO

(b) BAPS

Figure 4: Fill Ratio Time-series (100 peers, 300 objects)

multiple sources and the improved peer selection. However,
we also need to know the bandwidth overhead of using Peer
Lists. It is found that Peer List transmission takes 4.3%
in the entire transmission, and the proportion increases as
the number of objects increases. This shows that its cost
is acceptable, but also indicates that as the object quan-
tity grows, AOI neighbors will not provide sufficiently, so
requests for Peer Lists would increase.

As for the fill ratio, Figure 2(b) shows that the fill ra-
tio reduction in FLoD is higher than BAPS. When there
are 100 objects, the fill ratio in FLoD is 87.5%, and when
the object size increases to 500, the fill ratio is reduced to
55.7% with a reduction rate of 31.8%. So as object density
increases, bandwidth becomes insufficient and the fill ratio
suffers. As for BAPS, the fill ratio is reduced from 92.5% to
75.1%, which is 17% less compared to FLoD. Consequently,
given identical bandwidth, BAPS is able to provide better
utilization with a lower reduction in fill ratio.

Figure 2(c) shows the latency for getting the base piece
(i.e., the base latency [7]), where the base piece is 10% of
object size. We note that as object size increases, it takes
more time to get the base piece. The latency curve of FLoD,
however, grows noticeably faster than BAPS. It is likely due
to the limited content sources and random peer selection in
FLoD, as requests are distributed evenly to all peers, even
those with low bandwidth. With BAPS, not only base piece
download is prioritized, bandwidth is also reserved for base
piece requests to ensure that users can obtain them faster.

System Scalability: We simulate different number of
peers to evaluate the scalability of the system, while fixing
the object size at 300. When users are unable to obtain
content from peers, requests are shifted to the server. So we
need to observe whether server loading increases as the num-
ber of user scales. Figure 3(a) shows the percentage of data
obtained from the server in FLoD and BAPS. When user
size increases, FLoD and BAPS both reduces server loading.
But for BAPS the server request ratio is even lower. Fig-
ure 3(b) shows the average fill ratio after 1500 time-steps.
The more limited content sources may produce the lower
fill ratio for FLoD. Figure 3(c) shows the comparisons in
base latency. We can easily observe the difference in perfor-
mance from Figure 3(b) and Figure 3(c). One observation is
that both FLoD and BAPS can effectively relive server loads
and maintain relatively stable performances as user scales.
However, BAPS in general achieves better performance, as
connection channels are created to provide better guarantee
on request latency.

Streaming Quality: Figure 4(a) and Figure 4(b) show
the time-series of fill ratio under 100 peers and 300 objects.
We see that FLoD takes more time to stabilize, and when
users begin to move, the fill ratio decreases more significantly
than in BAPS. In these figures, we show the maximum /
average / minimum fill ratios achieved among all users. A
fast increase in maximum fill ratio indicates the effective use
of the Tit-for-Tat policy. It preferentially makes the users
connect with peers of higher upload speed and suspend the
non-performing connection channels. The minimum fill ratio
indicates the percentage of peers with the worst streaming
quality. An important observation from Figure 4(b) is that
by reducing request jam, a more stable streaming is achieved
even in the worst case scenario. For commercial providers,
such minimal QoS guarantee can be important to ensure a
basic level of user satisfaction.

5. CONCLUSION

FLoD demonstrates the possibility of progressive 3D con-
tent streaming in a P2P network. In this paper, we point
out some improvements that can be made to FLoD’s origi-
nal design, by proposing bandwidth allocation channels that
reduce the request latency, and a Bandwidth-Aware Peer Se-
lection (BAPS) that improves the source limitation due to
getting data from only AOI neighbors. The experiments
show that with limited AOI neighbors as content sources,
when object density increases, source insufficiency and re-
quest jam can occur. Such insufficiency, however, can be
solved with BAPS and the adoption of Peer Lists. To make
high capacity users contribute more, we use BitTorrent’s
Tit-for-Tat peer selection strategy to determine which peers
can form connection channels. Future improvements to BAPS
include using a more distributed approach (instead of rely-
ing on server) to maintain the Peer List, as this will bring
workloads to server that would increase with user size and
create a scalability bottleneck in the system.

6. REFERENCES

[1] A. Andre, S. Saito, and M. Nakajima. Adaptive 3d
content for multi-platform on-line games. In Proc.
Cyberworlds, 2007.

[2] A. Bharambe, C. Herley, and V. Padmanabhan.
Analyzing and improving a bittorrent networks
performance mechanisms. In Proc. INFOCOM, 2006.

[3] J. Botev et al. The hyperverse: concepts for a
federated and torrent-based '3d web’. IJAMC,
2(4):331-350, 2008.

[4] W. Cheng et al. An analytical model for progressive
mesh streaming. In Proc. ACM Multimedia, 2007.

[5] C.-H. Chu, Y.-H. Chan, and P. Wu. 3d streaming
based on multi-lod models for networked collaborative
design. Computers in Industry, 59(9):863-872, 2008.

[6] B. Cohen. Incentives build robustness in bittorrent. In
Proc. Economics of Peer-to-Peer Systems, 2003.

[7] S--Y. Hu et al. Flod: A framework for peer-to-peer 3d
streaming. In Proc. INFOCOM, 2008.

[8] S.-Y. Hu, J.-R. Jiang, and B.-Y. Chen. Peer-to-peer
3d streaming. IEEE Internet Computing, (to appear).

[9] H. Liang et al. Texture in second life: Measurement
and analysis. In Proc. P2P-NVE, 2008.

[10] N. Magharei and R. Rejaie. Prime: Peer-to-peer
receiver-driven mesh-based streaming. In Proc.
INFOCOM, pages 1415-1423, 2007.

[11] S. Mondet et al. Streaming of plants in distributed
virtual environments. In Proc. Multimedia, 2008.

[12] J. Royan, P. Gioia, R. Cavagna, and C. Bouville.
Network-based visualization of 3d landscapes and city
models. IEEE CGE&A, 27(6):70-79, 2007.

[13] D. Schmalstieg and G. Schaufler. Adaptive 3d content
for multi-platform on-line games. In Proc. Virtual
Reality Annual International Symposium, 1997.

[14] S. Singhal and M. Zyda. Networked Virtual
Environments. ACM Press, 1999.

[15] W. L. Sung, S. Y. Hu, and J. R. Jiang. Selection
strategies for peer-to-peer 3d streaming. In Proc.
NOSSDAYV, 2008.

[16] X. Susu et al. Coolstreaming: Design, theory, and
practice. multimedia. IEEE TMM, 9(8), 2007.

