Pergamon Information Systems Yol. 20, No. 8, pp"687—(_596, 1995
Copyright(©) 1995 Elsevier Science Ltd
Printed in Great Britain. All rights reserved

0306-4379(95)00037-2 0306-4379/95 $9.50 + 0.00

THE COLUMN PROTOCOL:
A HIGH AVAILABILITY AND LOW MESSAGE COST SOLUTION
FOR MANAGING REPLICATED DATA'

JENN-RUEY JiaNa
Management Information Systems Department, Chung Yuan Christian University, Chung Li, Taiwan, R. O. C.

{Recewed 18 January 1995; in final remsed form 26 October 1995)

Abstract — This paper presents a quorum-based replica control protocol which is resilient to network
partitioning. In the best case, the protocol generates quorums of a constant size. When some replicas
are inaccessible, the quorum size increases gradually and may be as large as O(n), where n is the
number of replicas. However, the expected quorum size is shown to remain constant as n grows. This
is a desirable property since the message cost for accessing replicated data is directly proportional to
the quorum size. Moreover, the availability of the protacol is shown to be comparably high. With
the two properties-- constant expected quorum size and comparably high availability—the protocol
is thus practical for managing replicated data.

Key words. Availability. Distributed Systems, Fault !olerance. Replication, Quorums.

1. INTRODUCTION

In a distributed system, data can be replicated at different sites to tolerate site and/or network
link failures. However, complex replica control protocols are required to make multiple replicas
of a data object behave as a single one, i.e., to ensure one-copy equivalence [4]. Several replica
control protocols [1. 2, 3. 5, 8, 9, 10, 11, 12] have been developed on the basis of quorum consensus
concept, which is described below. Each replica is associated with a version number. A read
operation should read-lock and access a read quorum of replicas and return the replica owning the
largest version number. On the other hand, a write operation should write-lock and access a write
quorum of replicas and then updates them with the new version number which is one more than
the largest version number just encountered. To ensure that a read operation can always return
the most up-to-date replica, any pair of a read and a write quorum and any two write quorums
are required to have a non-empty intersection. The quorum-based protocols are fault- tolerant in
the sense that even when network partitioning [6] occurs and makes some replicas inaccessible,
quorums may still be formed successfully.

In this paper, we propose a quorum-based replica control protocol, named column protocol.
With the aid of a logical structure called multi-column, the column protocol achieves O(1) (con-
stant) read and write quorum sizes in the best case. When some replicas are inaccessible, the
quorum size increases gradually and may be as large as O(n), where n is the number of replicas.
However, the expected quorum size is shown to remain constant as n grows. This is a desirable
property since the message cost for accessing replicated data is directly proportional to the quorum
size. In addition, the availability of the column protocol is shown to be comparably high. With
the two properties-—constant expected quorum size and comparably high availability—the column
protocol is thus practical for managing replicated data.

The remainder of this paper is organized as follows. In Section 2, we describe the column
protocol in detail. In Section 3, we show the correctness of the column protocol. In Section 4,
we analyze the column protocol and compare it with related ones in terms of quorum size and
availability. Finally, we conclude this paper with Section 5.

tRecommended by Amr El Abbadi

688 JEBEN-RUEY JIANG

2. THE COLUMN PROTOCOL

In this section, we describe the column protocol. We first introduce the multi-column structure.
Then, we define the read and write quorums under the assumption that data replicas are organized
as a multi-column structure. At last, two functions that can properly generate the defined quorums
are proposed as the skeleton for the protocol implementation.

A multi-column structure MC(k) = (Cy,...,Cy) is a list of pairwise disjoint sets of replicas.
Each set C; is called a column and must satisfy |C;] > 1 for 1 < i < k (the necessity for
this restriction will be explained later). For example, ({u1,uz2}, {us, us, us}, {ue, ur, ug, ug}) and
({u1,uz, us, uq, us}, {us, ur}, {us, ug}), with u1, ..., ug being replicas, are multi-column structures.

By organizing data replicas as multi-column structure MC(k) = (C4,...,C%), we define the
write and read quorums as follows:

A write quorum under MC(k) is a set that contains all replicas of some column C;,1 < i < k
(note that ¢ = 1 is included), and one replica of each of the columns C;11,...,Cy.

A read quorum under M C(k) is either

Type-1: a set that contains one replica of each of the columns Cy,...,Ck.

or
Type-2: a set that contains all replicas of some column C;, 1 < i < k (note that i = 1 is excluded),
and one replica of each of the columns C;o Ck.

We now explain the necessity of the restriction |C;| > 1,1 < ¢ < k. It is used to make the
following two cases distinguishable: (case 1) a set contains one replica of C; and (case 2) a set
contains all replicas of C;.

Below, we show an example of quorum construction. Under MC(2) = ({uy, uz2, us}, {us, us}),
the possible write quorums are {u4,us}. {u;,us,us,us}, {u1,u2,us,us}, and the possible read
quorums are {uj,us}, {ui,us}, {u2,ua}, {us.us}, {us,us}, {us,us} (of type-1) and {ug,us} (of
type-2). Note that the write quorum definition and the type-2 read quorum definition are identical
except that the latter does not include the sets composed of all replicas in C; and one replica from
each of Cy, ..., Ck. For the sack of efficiency, the sets mentioned are not regarded as read quorums
because each of them is a super set of a type-1 read quorum.

In an extreme case, all replicas in C} can constitute a quorum that is of a constant size |Cy|.
And in another extreme case. one replica from each of Cj,...,C; (for a type-1 read quorum)
or all replicas in C; together with one replica from each of Cs,...,Cy (for a write quorum) can
constitute a quorum. If the size of each C;.1 < i < &, is constant (or bounded above and below
by a constant), then the quorum mentioned is of size O(n).

Below we introduce two functions, Get.-Write_Quorum and Get_Read.Quorum, which can
properly return a write quorum and a read quorum under MC(k), respectively. Note that we
assume wlock(C;) is a function that tries to write-lock and return replicas of C;. It locks and
returns (case 1) the set of all replicas of C; if they are all lockable, or (case 2) a singleton set of one
arbitrary lockable replica if more than one replica is lockable, or (case 3) an empty set, otherwise.
Note that when wlock(C1)(¢ = 1) is performed, (case 2) is ruled out, i.e., either the set of all
replicas of C; or an empty set is returned. Function rlock(C;) is identical to wlock(C;) except
that rlock(C;) uses read-lock instead of write-lock and that when rlock(C) is performed, (case 1)
is ruled out, i.e., either a singleton set of one lockable replica of C; or an empty set is returned.

Function Get Write_Quorum (MC(k) = (C,,...,Cr): Multi-Column): Set;
Var S: Set;
S = wlock(Cy);
If S=C, Then Return(S),
If |S| =1 Then Return(S U Get Write_ Quorum(MC(k —1) = (C1,...,Cr-1));
If S=0 Then Ezit(failure); //Unsuccessful in forming a write quorum//
End Get_Write_Quorum

The Column Protocol: A High Availability and Low Message Cost Solution for Managing Replicated Data 689

Function Get_Read_Quorum (MC(k) = (Cy,. .., Ck): Multi-Column):Set;
Var S: Set;
S = rlock(Cy);
If S=C, Then Return(S);
If |S|=1and k >1 Then Return(SU Get_Read Quorum(MC(k —1) = (C1,...,Ck-1));
If {Sj=1and k=1 Then Return(S);
If S=0 Then Ezit(failure); //Unsuccessful in forming a read quorum//
End Get_Read_Quorum

3. CORRECTNESS

In this section, we prove the correctness of the column protocol with the following lemmas.
Lemma 1 is concerned with the write-write intersection property (i.e., any pair of write quorums
having a non-empty intersection), while Lemmas 2 and 3 are related to read-write intersection
property (i.e., any pair of a read quorum and a write quorum having a non-empty intersection).

Lemma 1 Any two write quorums intersect.

Proof. Under MC(k) = (C....,Cyi), let @1 be a write quorum containing all replicas of C; and
one replica from each of Cyy1,...,Cy, and let Q2 be a write quorum containing all replicas of C;
and one replica from each of Cj.y,...,Cr. Without loss of generality, we may assume i > j (the
proof for the case of ¢ = j is trivial and omitted). @, and @2 must intersect since ¢J; contains all
replicas of C; and @2 contains one replica of ;. |

Lemma 2 A type-1 read quorum and a write quorum intersect.

Proof. Because a type-1 read quorum contains one replica from each column and a write quorum
contains all replicas of a certain column, the two quorums must intersect. a

Lemma 3 A type-2 read quorum and a write quorum intersect.

Proof. Since a type-2 read quorum is of the same form of a write quorum, the proof is similar to
that of Lemma 1 and omitted. 0O

1. ANALYSIS AND COMPARISON

In this section we first analyze the quorum size and the availability for the column protocol, and
then compare the analyzed results with those of related protocols. In the following analysis, we
assume that all data replicas have the same up-probability, p, the probability that a single replica
is up (i.e., accessible). We also assume that replicas are organized as MC(k) = (Cy,...,Ck) and
use S; to denote |, for 1 <i < k.

4.1. Availability

The read (respectively, write) availability is defined to be the probability of a read (respectively,
write) quorum being successfully formed in an error-prone environment. For k > 1, if all replicas
in Cj are up, then a read (or write) quorum under MC(k) can be formed. On the other hand, if
at least one replica but not all replicas in Cj are up, then one of the up replicas together with a
read (respectively, write) quorum under MC(k — 1) can form a read (respectively, write) quorum
under M C(k). Let Rav (k) denote the availability of read quorums under MC(k), and Way (k),
the availability of write quorums under M C(k). For k > 1, we have

690 JEHN-RUEY JIANG

Rav(k) = Prob.(all replicas in Cy are up) +
Prob.(at least one replica but not all replicas in Cy are up) x Rav(k — 1)
= PP+ (1 —-p% - (1-p)*)Rav (k- 1) (1)
Wav(k) = Prob.(all replicas in C} are up) +
Prob.(at least one replica but not all replicas in Cy are up) x Way (k ~ 1)
= PR (1-p% = (1=)™)Way(k - 1) (2)

For k = 1, if at least one replica in ' is up. then a read quorum under M C(1) can be formed.
And all replicas in (' are required to be up to form a write quorum under M C(1). Thus, we have
Rav(1) = (1 = (1 = p)°) and Wy (1) = p°.

A fixed number of replicas can be arranged as a variety of multi-column structures. To reduce
the number of analysis cases, we limit all columns to have the same size s; that is, we assume
|Cij = =|Ckl =5 (1e,S1 = - =Sk =) for MC(k) = (Cy,...,Ck). Below, we use MC(k,s)
to denote such a multi-column structure.

When M C'(k. s) is considered, the recursive equations (1) and (2) can be regarded as first-order
linear difference equations [7]", which can be solved analytically. We have

S S

p

, . ko p

Ravik) = (1—-p-(Q=-p" 'i1-(1-p°- + 3
. L E s p’ P’

Wavk) = (1-p*=(1—-p5F "p - 4
av (k) (1-p"~(1~-p)) 7 p5+(l—p)s) rr—pr (4)

We first apply equations (3) and (4) to investigate the influence of column sizes under a fixed
number of replicas. We consider the following multi-column structures for a 30-replica system:
MC(15,2). MC(10,3),MC(6,5), MC(5,6), MC(3,10) and M C(2,15). The read availabilities cor-
responding to those structures are depicted in Figure 1, which reveals that larger column sizes
usually render the read availability higher (because they make the construction of type-1 read quo-
rums easier). The write availabilities corresponding to those structures are depicted in Figure 2,
which reveals that smaller column sizes usually render the write availability higher (because they
make the construction of write quorums easier).

There are trade-offs between the read availability and the write availability. However, one
can choose a proper column size according to practical situations, such as the fractions of read
and write operations, and the constraints on the lowest read or write availabilities, etc. Since
the read availabilities are on the upper side and the write availabilities are on the lower side, we
suggest adopting small column sizes, say 3 or 5, so that both the read and write availabilities
are comparably high. We do not suggest adopting the column size of 2, which leads to lower
write availabilities than those resulting from sizes of 3 and 5 for large up-probability p (e.g., for
p > 0.75). Note that most practical systems have large up-probability p, under which the column
size of 2 causes a relatively large probabilitv of no replica in a column being up, which prohibits
the construction of any quorum.

We now apply equations (3) and (4) to investigate the asymptotic value of quorum availability.
When k goes to infinity. the term (1 — p* — 1 —p)*)*~! goes to 0, and both Rav (k) and Way (k)
go to

p° _ 1
s+ (1-p)s 1=py*
p (o 1 (52

1
In other words, the asvmptotic availability of the column protocol is I——T:T For p = 0.5,
+ =P
P

the asymptotic availability is 0.5 whatever the column size is. For p < 0.5, %}3 is larger than 1 and

TA first-order linear difference equation of the form Xy = aXj,_; + b for k > 2 with X being the first term has

as its kth term Xj = a*~ (X + Ef—l\, - q%l ifa+#1.

The Column Protocol: A High Availability and Low Message Cost Solution for Managing Replicated Data 691

T
09 L
08 L
A
vO07 L
a
I 0o L /
! /7& / /n —a— MC(15,2)
a [/ Cy
% T i J /- —o— MC(10,3)
! o / — MC(6,5
loa ’j // 7{ /) * 6.5)
i D [a —o— MC(5.,6)
tos - /A
v ;o / /o —a— MC(3.10)
0z L, A
N s MC(2,15)
[/ / J '/»—
o },’!{ : N Ve 7 ﬂ,/’
12/ A // ///'
141,4—1:'—%‘%”311%%* bt]
c c1 0.2 0.3 C4 0& 06 Q7 0.8 Q.9 1

Up-probability

Fig. 1: The read availability of the column protocol for various multi-column structures.

0% | e MC(15.2)
|

0s || o MC(103)
A | e MCE5)
v 07 4+ |
a o MC(5.,6)
; 06 1 | ——— MC(3,10)
agp ‘ —— MC(2,15)
b
i
I 04
i
t 03
y

¢ 01 02 03 04 05 06 07 08 09
Up-probability

Fig. 2: The write availability of the column protocol for various multi-column structures.

692 JEHN-RUEY JIANG

thus (1—;2)3 increases as s grows. It is easy to see that the smaller s is, the larger the asymptotic

availability is. For p > 0.5, 1—;2 is less than 1 and thus (1=B)° decreases as s grows. It is easy
to see that the larger s is, the larger the asymptotic ava.ilaGility is. To sum up, smaller column
sizes are preferable when p < 0.5 and larger column sizes are preferable when p > 0.5. However,
we still suggest adopting small column sizes because the asymptotic availability is high even for
small column sizes when p > 0.5. For example, when s = 3, the asymptotic availability is 0.998630,
0.984615 and 0.927027 for p=0.9, 0.8 and 0.7, respectively. When s = 4, the asymptotic availability
1s 0.999847, 0.996108 and 0.967365 for p=0.9, 0.8 and 0.7, respectively.

4.2. Quorum Size

Both the smallest read and write quorums under M C(k, 5),k >> s, are of size s; such quorums
are formed by including only all replicas in the last column. That is, the column protocol has
constant quorum size in the best case. This is a desirable property since the message cost for
accessing replicated data is directly proportional to the quorum size. However, when some replicas
are inaccessible, the quorum size increases gradually and may be as large as O(n). Specifically,
under MC(k,s),k >> s, the largest read quorum, which is composed of one replica from each of
Ci,...,Cyk, is of size k = 2. And the largest write quorum, which is composed of all replicas from
C and one replica from each of Cy,. .., Cy, is of size s+k—~1 = s+ 2 — 1. Note that both quorums
are of O(n) sizes.

Using the lower and the upper quorum size bounds to estimate data access cost may be too
optimistic and too pessimistic respectively. Below, we analyze the expected quorum size for the
column protocol to estimate its average data access cost. Let Rgs(k) and Wgg(k) denote respec-
tively the expected sizes of read and write quorums under M C(k). We apply parameter f, which
is also adopted in the tree quorum protocol [2], to indicate the fraction of the quorums composed
of only all the replicas in Cy (note that f is used in the tree quorum protocol [2] to indicate the
fraction of quorums including the root node). For k > 1, we have

Rps(k) = fSy+(1—-f)(1+Res(k-1))=(fSk+1~f)+(1 - f)Res(k-1) (5)
Wes(k) fSk+ (1=l +Wesk-1) =(fSk+1-f)+(1 - f)Wes(k—-1) (6)

il

The term fS; arises because there are f quorums of size Si that are composed of only all
replicas in Cg. And the term (1 — f)(1 + Rgs(k — 1)) (respectively, (1 — f)(1 + Wgs(k — 1)))
arises because there are (1~ f) quorums of size Rgs(k — 1) + 1 (respectively, Wgs(k — 1) + 1) that
are composed of not all replicas of Cy, but one replica of Cy and one quorum under MC(k — 1).
Since one arbitrary replica of C; can form a read quorum under M C(1), and all replicas in C; can
form a write quorum under M C(1), we have Rgs(1) = 1 and Wgg(1) = S;.

When MC(k,s),k >> s, is considered, the case of f = 1 corresponds to the lower bound of the
quorum size, which occurs when all the replicas in Cy are always included in the quorum. On the
other hand, the case of f = 0 corresponds to the upper bound of the quorum size, which occurs
when a larger quorum is always chosen instead of a smaller one. Note that the probability that
all replicas in Cy are up (i.e., p*) can reflect the value of f. For example, the value of f can be
reflected by 0.65%=0.274625 when p=0.65 and s=3.

Under MC(k,s) where S; = --- = Sy = s, the recursive equations (5) and (6) can be regarded
as first-order linear difference equations and can be solved analytically. For f > 0, we have
, ke +1-— +1-
Res(k) = (1-/f)F - L f f)+fs f ! (7)
, +1- +1-
Wes(h) = (1—fFis— L2 7 £y £ f ! (8)

When & goes to infinity (and so does n), the term (1 — f)¥~! goes to 0, and hence both Rgg(k)
and Wgg(k) go to f—’L;:L =s+ % — 1, which is a constant. In other words, the expected quorum
size of the column protocol remains constant when n grows. It is easy to see that smaller s or larger
f produces smaller asymptotic expected quorum size. Take the following four cases for example:

The Column Protocol: A High Availability and Low Message Cost Solution for Managing Replicated Data 693

(case 1) f =0.5,s =3 (case 2) f =0.5,s = 5 (case 3) f = 0.25,5 = 3 and (case 4) f = 0.25,s = 5.
The asymptotic expected quorum sizes for these four cases are 4, 6, 6 and 8 , respectively.

4.3. Comparison

In this section we describe some related protocols [2, 3, 5, 8, 9, 10, 11, 12] and compare them
with the column protocol (CP) in terms of availability and quorum size. The simplest replica
control scheme is the read- one-write-all protocol (ROWA) [3], in which any replica can form a
read quorum and all the replicas can form a write quorum. ROWA can be regarded as a special
case of CP—when we apply the multi-column structure with only one column containing all the
replicas. The majority quorum protocol (MQP) [12] requires both the read and the write quorums
to have over half (i.e., at least [21]) replicas; thus, its quorum size is O(n).

Some protocols (2, 8] form quorums with the aid of tree structures. By placing replicas in leaves
of a mutilevel tree with non-leaf nodes being logical, the hierarchical quorum protocol (HQP) [8]
achieves O(n®%3) quorum size. Its quorum forming is hierarchical: a quorum of a node at level
i is formed if enough (over half) quorums of its child nodes at level i + 1 are formed. Thus, any
two quorums formed at the root have a non-empty intersection and can be used as a write (or
read) quorum. Assuming replicas are logically organized as a binary tree, the tree quorum protocol
(TQP) [2] has [logn] quorum size in the best case. Its quorum forming (for both read and write
quorums) is recursive and can be regarded as attempting to obtain replicas from nodes along a
root-to-leaf path. If the root fails. then the obtaining should follow two paths: one root-to-leaf
path on the left subtree and one root-to-leaf path on the right subtree. The largest quorum of
TQP is composed of all leaf nodes and is of size [2£L]; however, it has been shown in [2] that
TQP has O(logn) quorum size for most practical environments.

In the grid protocol (GP) [5]. replicas are organized as a rectangular grid of [rows and m
columns, where [x m = n (the number of replicas). A column-cover, which contains one replica of
each column, can form a read quorum, and a column-cover along with all replicas of some column
can form a write quorum. Thus, a read quorum contains m replicas and a write quorum contains
I +m — 1 replicas. If a square grid is assumed, i.c., [= m = /n, then both the read and write
quorums have O(/n) size.

GP is dominated by CP, which means that if a quorum can be formed in GP then a quorum
can be formed in CP. Below, we verify the last statement. Consider the multi-column structure
MC(k,s), which is exactly a k-column, s-row grid structure. Under such a structure, a write
quorum of GP is a super set of some write quorum under M C'(k,s) (by the definitions of the two
quorums discussed), and a read quorum of GP is actually a type-1 read quorum under MC(k, s)
(and CP still has type-2 read quorums). Therefore, we can conclude that GP is dominated by CP.

In the hierarchical grid protocol (HGP) (9], a hierarchical grid structure is used in which nodes
at the lowest level 0 are physical replicas and nodes at level i(i > 0) are defined as a square grid
of level i — 1 nodes. The quorum forming is recursive and is identical to that of GP if viewed
at a single level. The read (respectively, write) quorum formed at the top level allows a read
(respectively, write) operation to proceed. If a square grid structure is assumed in each level, the
hierarchical grid protocol also owns O(y/n) quorum size for both write and read quorums. HGP
has the property that its quorum availability increases asymptotically when more replicas are used,
a property not owned by GP. Since HGP bases on quorum definitions of GP, it can be improved
by replacing GP’s quorum definitions with CP’s.

The general grid protocol (GGP) [10] improves GP by regarding either a column-cover or a
full column of replicas as a read quorum (this improvement was also suggested independently by
Neilsen [11]) and by allowing empty (hollow) grid positions that correspond to no data replica. It
has been shown in [10] that empty grid positions usually make quorum availability higher. Note
that GGP has the same write quorum size as GP and any GGP’s write quorum is a super set
of some CP’s write quorum. However, any CP’s read quorum is a super set of some GGP’s read
quorum.

A summary of quorum sizes of some of the discussed protocols appears in Table 1. Availability
comparisons of CP, ROWA, MQP and TQP for 15- and 31-replica systems appear in Figures 3

1S 20-8-F

694

JEHN-RUEY JiANG

Nl T e XX

: - /*;J\”
v
4 _/
(/
N —=«— ROWA(Read)
: J —0— ROWA(Write)
! —+—— MQP

- I
Vet ——x—— TQP
/
03 / ' +—— CP(Read)
£ : CP(Wri
o s | - CP(Write)
P /i —
;S
ol >y
Ry r
o] A_é)\% <
U Ao e o Ty T o Y T, S . " ‘ . .
2 03 G4 05 Cé& G7 08 09 1
Up-probability
IPig. 3 The availability comparison for various protocols for the 15-replica system.
L ./.Ja——.-—u——i—l—u——-—a‘-—t;{;;};;g; —K—?X—'I'X
‘ / .
09 /
08 . 4
A L
vo7 | {‘ —=—— ROWA(Read)
a | .
i 06 4 i —o0—— ROWA(Write)
!] i ——— MQP
ao0s . ’
b | (—x— TQP
i !
| ¢4 “ ———— CP(Read)
; 0z I —a— CP(Write)
i
Yy :
02 4
h
I
(LR
© i—ﬁ—-ﬂ—t&
0 0. 02 03 04 0.5 0.6 0.7 0.8 09 1

Up-probability

Fig. 4: The availability comparison for various protocols for the 31-replica system.

The Column Protocol: A High Availability and Low Message Cost Solution for Managing Replicated Data 695

r [MQP [HQP | TQP | GP | HGP | CP |
Lower Bound | [2E] | O(n®®) T Nlogn] | O(n®%) | O(n%%) s |
Upper Bound || 2] T O(%®3) | TEHT [0(n%%) | O(n®3) | O(n)]

MQP: The Majority Quorum Protocol {127, GP: The Grid Protocol [5].
HQP: The Hierarchical Quorum Protocol [8].HGP: The Hierarchical Grid Protocol (9.
TQP: The Tree Quorum Protocol [2].CP: The Column Protocol under MC(k, s), where k >>> s.

Fable L1 Bounds on quorum sizes for various protocols.

and 4. When CP is concerned. we assume that replicas are arranged as M C(5,3) in the 15-replica
system, and as MC(10) = (("y... .. Cho). where |Cy| = - = |Cy| = 3 and |Cyp| = 4. in the 31-
replica system (recall that we suggest adopting small column sizes except 2). The formulas for
calculating the availabilities of ROWA, MQP and TQP are discussed below.

It is easy to sec that ROWA’s read and write availabilities are 1~ (1 —p)™ and p”, respectively.
MQP does not differentiate read quorums form write quorums. Its availability is given in [2] as
Prob.(h replicas arc up) + Prob.(h + 1 replicas are up) + -+ 4+ Prob.(n replicas are up)
=57 (';)pz(l —py*" ' where b= lrlf—w

i=h

Assuming data rephoas ae organized as a binary tree T. the availability of TQP is given in [2]
as
Availability(T) =
Prob.(T’s root is up; = Acadability(T’s left subtree) xUnavailability(T’s right subtree) +
Prob.(T’s root 1s up) x U navailability(T’s left subtree) x Availability(T’s right subtree) +
Prob.(T's root is up) > Availability(T’s left subtree) x Availability(T’s right subtree) +
Prob{T's root is not up) x Availability(T’s left subtree) x Availability(T’s right subtree).

Figures 3 and 4 reveals that CP has comparably high availability. The read availability and
the write availability of ROWA are almost bounds of those of other protocols. The availability of
TQP is better (respectively. worse) than that of MQP when up-probability is smaller (respectively,
larger) than 0.5. For a wide range of up-probabilities, the read (respectively, write) availability of
CP is a little better (respectively. worse) than the availability of TQP.

5. CONCLUSION

A quorum-based protocol. called column protocol, has been proposed in this paper for managing
replicated data. This protocol is fault-tolerant; it allows replicated data to be accessed consistently
even in the presence of network partitioning. By organizing data replicas into a multi-column
structure, the protocol generates quorums of constant size in the best case. When some replicas
are inaccessible, the quorum size increases gradually and may be as large as O(n). Nevertheless,
we have shown that the expected quorum size of the column protocol remains constant as n
grows. This is a desirable property since the message cost for accessing replicated data is directly
proportional to the quorum size. In addition, we have also shown that the availability of the column
protocol is comparably high. The two properties —constant expected quorum size and comparably
high availability - make the column protocol practical for managing replicated data.

Acknowledgements I wonld Hike 1o thank the anonymous referees for their valuable comments, which helped for
improving the paper The “lose-form equations of availability and expected quorum size resulted from the comments
of the referees.

REFERENCES

1) Do Agrawal and A, El Abbadi. Exploiting logical structures in replicated databases. Information Processing
Letters, 33(5):255 260 (1990)

696

JEHN-RUEY JIANG

D. Agrawal and A. El Abbadi. An efficient and fault-tolerant solution for distributed mutual exclusion. ACM
Transactions on Computer Systems, 9(1):1-20 (1991).

P. A. Bernstein and N. Goodman. An algorithm for concurrency control and recovery in replicated distributed
databases. ACM Transactions on Database Systems, 9(4):596-615 (1984).

P. A. Bernstein, V. Hadzilacos, and N. Goodman. Concurrency control and recovery in database Systems.
Addison-Wesley (1987).

S. Y. Cheung, M. H. Ammar, and M. Ahamad. The grid protocol: a high performance scheme for maintaining
replicated data. IEEE Transactions on Knowledge and Data Engineering, 4(6):582-592 (1992).

S. B. Davidsen, H. Garcia-Molina, and D. Skeen. Consistency in partitioned networks. ACM Computing
Surveys, 17(3):341-370 (1985).

J. A Dossey, A. D. Otto, L. E. Spence, and C. V. Eynden. Discrete Mathematics. Scott, Foresman and
Company (1986).

A. Kumar. Hierarchical quorum consensus: a new algorithm for managing replicated data. JEEE Transactions
on Computers, 40(9):996-1004 (1991).

A. Kumar and S. Y. Cheung. A high availability \/n hierarchical grid protocol for replicated data. Information
Processing Letters, 40(6):311-316 (1991).

A. Kumar, M. Rabinovich, and R. K. Sinha. A performance study of general grid structures for replicated
data. In Proc. 13th Int. Conf. on Distributed Computing Systems, pp. 178-185, Pittsburgh, PA (1993).

M. L. Neilsen. Quorum structures in distributed systems. PhD thesis, Kansas State University (1992).

R. H. Thomas. A majority consensus approach to concurrency control. ACM Transactions on Database
Systems. 4(2):180-209 (1979).

