Cohorts Structures for Fault-Tolerant k Entries to a Critical Section*

Jehn-Ruey Jiang†, Shing-Tsaan Huang‡ and Yu-Chen Kuo‡

†Management Information Systems Department

Chung Yuan Christian University

Chung Li, Taiwan, R. O. C.

‡Department of Computer Science

National Tsing Hua University

Hsin Chu, Taiwan, R. O. C.

 *
This is an enhanced version of a paper presented in Proceedings of 13th IEEE International Conference on Distributed Computing Systems, Pittsburgh, PA., May 1993, pp. 74-81.

All correspondence should be addressed to:

Dr. Jehn-Ruey Jiang

Management Information Systems Department

Chung Yuan Christian University

Chung Li, Taiwan, R. O. C.

Tel:886-37-463099

Fax:886-3-4563171-5499

E-mail:jrjiang@cs.nthu.edu.tw

Abstract

We propose a structure named Cohorts to solve the problem of the access control of multiple entries to a critical section. Our solution is formalized as forming quorums in a k‑coterie. It is resilient to node failures and/or network partitioning, invokes constant expected message cost and has comparably high availability.

1. Introduction

In this paper, we propose a fault-tolerant solution to the access control of multiple entries to a critical section in distributed systems. Consider a distributed system with N nodes, which are identified with 1,...,N and can communicate with one another by exchanging messages. The system may have shared resources that must be accessed in a mutually exclusive way. A node is said to be in its critical section when it is accessing a shared resource. How to control the access of a shared resource such that there is at most one node in the critical section is an important problem; it is called the mutual exclusion problem in the literature. In addition to the access control of shared resources, the solution for mutual exclusion may also be applied in solving many problems, such as replicated data consistency [1], [6], [11], atomic commitment [1] and so on.

If a shared resource allows multiple nodes to access it simultaneously, we say that multiple entries to the critical section are allowed. There are at least three papers—Raymond [16], Srimani and Reddy [20], Kakugawa, Fujita, and Ae [9]—discussing multiple-entry critical sections. In the first two solutions, any node failure and/or network partitioning [2] caused by communication link failure may reduce the number of entries allowed to the critical section. The third solution is resilient to node failure and/or network partitioning, but as shown in [9], the degree of resilience (especially in terms of all entries to critical sections being available) is unsatisfactory. Moreover, the third solution incurs a large O(N) message overhead. Inspired by the success of several mutual exclusion algorithms [1], [11], [18] that pursue low message cost and high degree of fault-tolerance, we try to devise a more message-efficient, more fault-tolerant solution than the known ones for multiple-entry critical sections. As will be shown, our solution achieves constant expected message cost while maintaining comparably high degree of fault-tolerance.

In 1981, Ricart and Agrawala proposed a distributed algorithm [17] which needs 2((N(1) messages for a node to enter the critical section. When a node wants to enter the critical section, it broadcasts request messages to all other nodes. On receiving a request message, a node sends back a reply message if it does not want to enter the critical section; otherwise it may defer sending the reply message. Logical timestamps [12] are attached to request messages for nodes to decide whether they should defer replying or not. Only the node which has sent a request message of a timestamp earlier than that of the received request message may defer replying. After a node receives reply messages from all other N(1 nodes, it may then enter the critical section. Although this algorithm is deadlock-free and starvation-free, it is vulnerable to node and communication failures and is expensive in message cost because it requires a node to communicate with all other nodes to enter the critical section.

Based on Ricart and Agrawala's algorithm, Raymond [16] proposed a distributed algorithm that allows k nodes to access the critical section simultaneously. This algorithm resembles Ricart and Agrawala's except that only N(k reply messages are sufficient for a node to enter the critical section. So, the lower bound of the message cost for each entrance of the critical section is
2(N(k(1. However, each request message will incur a reply message, and thus 2((N(1) is the upper bound of the message cost. Raymond's algorithm also suffers the same drawbacks as Ricart and Agrawala's.

There is a large class of algorithms using the token passing concept for the access control of the critical section. The basic idea of this type of algorithms is simple—a node must own the unique token (named privilege message in some papers) before entering the critical section. So, in the best case, if a node has already owned the token, it can enter the critical section immediately without any message overhead. Otherwise, a mechanism is needed to locate the token. In Suzuki and Kasami's algorithm [21], a node sends out N(1 request messages to all other nodes and waits until the token is received. Raymond [15] utilized a spanning tree of the network to locate the token and showed that the average message cost is O(log N). Singhal [19] tried to reduce the message cost by using heuristics to locate the token. The degree of fault-tolerance for token-based algorithms is low. If the token is lost, complex token-loss detection and token regeneration algorithms must be executed [14].

Based on Suzuki and Kasami's algorithm, Srimani and Reddy [20] proposed another distributed algorithm that can allow k nodes to access the critical section simultaneously. There are k tokens in the system; if a node owns the token, it may enter the critical section directly. Thus, the lower bound of the message cost per critical section of this algorithm is 0 because no message is needed when the token is present locally. If a node does not own the token, it sends out request messages to all the other N(1 nodes. When none of the nodes wants to enter the critical section and each token is resident at a different node, the requesting node will receive all the k tokens. Thus, N+k(1 is the upper bound of message cost for this algorithm. Like Suzuki and Kasami's algorithm, Srimani and Reddy's algorithm has low degree of fault-tolerance.

There is another class of algorithms using an elegant concept—quorum—to achieve mutually exclusive access of the critical section. They are usually called quorum-based algorithms. Quorum-based algorithms are resilient to node failures and/or network partitioning and usually have lower message cost. The basic idea of this type of algorithms is simple: a node should collect enough permissions (votes) to form a quorum for entering the critical section. Mutual exclusion is guaranteed if we can assure that only one quorum can be formed at any instance. Garcia-Molina and Barbara have proposed a structure named coterie to generalize the concept of quorums [5]. A coterie is a set of sets with the property that any two members of a coterie have a non-empty intersection. By the intersection property, the members in a coterie can be used as quorums to guarantee mutual exclusion in distributed systems.

The majority quorum algorithm [22], the
[image: image1.wmf]N

 algorithm [13], the tree quorum algorithm [1], the hierarchical quorum algorithm [11], and the level quorum algorithm [18] are all quorum-based algorithms. The message cost of the quorum-based algorithm is proportional to the quorum size, so all the quorum-based algorithms try to reduce the quorum size while keeping the high degree of fault-tolerance.

To form a quorum in the majority quorum algorithm [22] requires permissions from over half of the nodes. It is easy to show that any two majority quorums have a non-null intersection and the size of a majority quorum is ((N+1)/2(. In the
[image: image2.wmf]N

 algorithm [13], Maekawa used the concept of finite projective plane to assure the intersection property and the fully distributed property—every quorum is of the same size and every node bears an equal amount of responsibility for mutual exclusion control. As the title of the algorithm suggests, the quorum in the
[image: image3.wmf]N

 algorithm is of size
[image: image4.wmf]N

.

Some algorithms [1], [11], [18] utilize logical structures as assistants in forming quorums. Assuming the system is logically organized into a binary tree, the tree quorum algorithm [1] has size (log N(in the best case for a quorum. The quorum forming in this algorithm is recursive. It can be regarded as attempting to obtain permissions from nodes along a root-to-leaf path. If the root fails, then the obtaining should follow two paths: one root-to-leaf path on the left subtree and one root-to-leaf path on the right subtree. The largest tree quorum, which is of size ((N+1)/2(, is the one comprising all leaf nodes. The hierarchical quorum algorithm [11] uses multilevel tree to aid the quorum forming. The basic idea of the algorithm is described as follows: a quorum of a node at level i is formed only if enough (over half) quorums of its child nodes at level i+1 are formed. As shown in [11], a hierarchical quorum may have size N0.63. By logically organizing nodes in different levels, the level quorum algorithm [18] tries to form a quorum by obtaining permissions from all nodes of some level (say level i) and one node of each level before level i. In an extreme case, all nodes in the first level can form a level quorum whose size is a constant independent of N. As we will show later, the level quorum algorithm [18] is identical to our solution for a special case.

To suit to the access control of k (k > 0) entries to a critical section, a coterie should be extended into a k-coterie, which allows up to k quorums to be formed simultaneously. The k‑coterie concept sustains the advantages of the coterie concept—fault-tolerance and low message cost. Two papers [4], [8] discussed the extension from coteries into k-coteries. The paper [4] gave a more restrict definition of the k-coterie than the paper [8] did; here in this paper, we will adopt the more restricted definition. As shown in [9], the majority quorum algorithm can be easily modified to form quorums in a k-coterie—any permissions from ((N+1)/(k+1)(nodes would form a quorum in a k-coterie. Such an algorithm has O(N) quorum size and will be called k-majority quorum algorithm later; the quorums formed will be called k-majority quorums.

In this paper, we propose a structure named Cohorts for the construction of quorums in a k‑coterie; the constructed quorums will be called Cohorts quorums. Later, we will show that, by the Cohorts structure, we can form quorums in a k-coterie properly and thus achieve a fault-tolerant multiple-entry critical section. As we will show, our solution invokes constant message cost and has relatively high degree of fault-tolerance in comparison with relevant schemes.

The remainder of this paper is organized as follows. In section 2, we elaborate the ideas of the coterie and the k-coterie. Then, we propose the Cohorts structure, and prove that by utilizing the structure, we can form quorums in a k-coterie properly. In Section 3, a solution that can efficiently construct Cohorts quorums is introduced. In Section 4, the message cost and the availability of our solution are analyzed and compared with those of other related schemes. Finally, we give some concluding remarks in Section 5.

2. Coterie, k-coterie, and Cohorts

2.1 Coterie

A coterie C is a set of sets where each set Q in C is called a quorum. The following properties hold for the quorums in a coterie C.

Intersection Property:

There are no two quorums Q1 and Q2 in C such that Q1 (Q2 = ((i.e., any two quorums have a non-empty intersection).

Minimality Property:

There are no two quorums Q1 and Q2 in C such that Q1 is a super set of Q2 (i.e., any quorum is not a super set of another quorum).

By the intersection property, the coterie can be used to develop algorithms for mutual exclusion in a distributed system. To enter the critical section, a node is required to receive permissions from all the members of some quorum in the system. Since any pair of quorums have at least one member in common, mutual exclusion is then guaranteed. The reader should note that the minimality property is not necessary for the correctness of mutual exclusion but can be used to enhance efficiency.

2.2 k-coterie

A k-coterie C, extended from the definition of coteries, is a set of sets where each set Q in C is called a quorum. The following properties should hold for the quorums in a k-coterie C. The reader should note that an 1-coterie (the value of k is taken as 1) is exactly the coterie mentioned above.

Non-intersection Property:

For any h (< k) pairwise disjoint quorums Q1,...,Qh in C, there exists a quorum Qh+1 in C such that Q1,...,Qh+1 are pairwise disjoint.

Intersection Property:

There are no m, m > k, pairwise disjoint quorums in C (i.e., there are at most k pairwise disjoint quorums in C).

Minimality Property:

There are no two quorums Q1 and Q2 in C such that Q1 is a super set of Q2 (i.e., any quorum is not a super set of another quorum).

For example, {{1, 3}, {1, 4}, {2, 3}, {2, 4}} is a 2‑coterie because it satisfies all the properties of a 2-coterie—given one quorum Q1, we can always find another quorum Q2 such that Q1 and Q2 are disjoint; there are at most two pairwise disjoint quorums; and every quorum is not a super set of another quorum.

By the intersection and the non-intersection properties, the k‑coterie can be used to develop algorithms to achieve k‑entry critical sections. To enter the critical section, a node is required to receive permissions from all the members of some quorum in the system. By the intersection property, no more than k nodes can form quorums simultaneously, so no more than k nodes can access the critical section at the same time. The non-intersection property assures that if there exists one unoccupied entry of the critical section, then some node that waits for entering the critical section can proceed. Again, the minimality property for the k‑coterie is for the enhancement of efficiency.

There may exist many approaches to construct k‑coteries. Below, we propose a structure named Cohorts for the construction of k‑coteries.

2.3 Cohorts

A Cohorts Coh(k,n)((C1,...,Cn) is a list of pairwise disjoint sets; each set Ci is called a cohort. The Cohorts structure Coh(k,n) should observe the following two properties:

(P1)
(C1(= k.

(P2)
(i : 1< i (n : (Ci (> max(2k(2, k), where max(a,b)=a, if a (b; otherwise, max(a,b)=b.

(Note that max(2k(2, k)=2k(2 when k >1; max(2k(2, k)=k when k=1.)

To sum up, a Cohorts Coh(k,n) has n pairwise disjoint cohorts with the first cohort having k members and the other cohorts having more than 2k(2 members (or more than one member when k=1). For example, ({1, 2}, {3, 4, 5}, {6, 7, 8, 9, 10}) is Coh(2,3) since it has three pairwise disjoint cohorts with the first cohort and the other cohorts having 2 (=k) and more than 2 (=2k(2) members, respectively.

In this paper, a member of a cohort is assumed as a physical node in the system, and henceforth, the words "node" and "member" are used exchangeably.

A set Q is said to be a quorum under Coh(k,n) if some cohort Ci in Coh(k,n) is Q's primary cohort, and each cohort Cj, j > i, is Q's supporting cohort, where

(D1)
a cohort C is Q's primary cohort if (Q(C(=(C(((k(1) (i.e., Q contains all except k(1 members of C), and

(D2)
a cohort C is Q's supporting cohort if (Q(C(=1 (i.e., Q contains exactly one member of C).

In the following, quorums under Coh(k,n) will be called Cohorts quorums; they can form a k-coterie, as we will prove in the next subsection. For example, the following sets are quorums under Coh(2,2)=({1, 2}, {3, 4, 5}): Q1={3, 4}, Q2={3, 5}, Q3={4, 5}, Q4={1, 3}, Q5={1, 4}, Q6={1, 5}, Q7={2, 3}, Q8={2, 4} and Q9={2, 5}. Quorums Q1,...,Q3 take {3, 4, 5} as their primary cohort and no supporting cohort is needed, and quorums Q4,...,Q9 take {1, 2} as their primary cohort and {3, 4, 5} as their supporting cohort. It is easy to check that these nine sets constitute a 2-coterie. Note that even when system nodes split into partitions and/or some nodes are down, quorums under Coh(2,2)=({1, 2}, {3, 4, 5}) may still be formed. For example, assume that node 2 is down and other nodes split into two partitions: {1,5} and {3,4}. Quorums Q6={1,5} and Q1={3, 4} can still be formed in the first and the second partitions, respectively.

For a quorum Q under Coh(k,n), the larger Q's primary cohort's index (subscript) is, the fewer the number of Q's supporting cohorts is. No supporting cohort is necessary when Cn is selected as Q's primary cohort. Note that quorums under Coh(1,n) (i.e., k=1) are exactly level quorums [18] formed under the level structure with one node in the last level (remember the index orders of levels and cohorts are reverse). That is, the level quorum algorithm is identical to our solution for the special case just mentioned.

2.4 Correctness

In this subsection, we prove that quorums under Coh(k,n) constitute a k-coterie.
Theorem. The collection of quorums under Coh(k,n) is a k-coterie for any n, n(1.

Proof: (by induction on the value of n)

Basis: n=1.

Let C1={u1,...,uk} (by (P1) (C1(=k). Then, all the quorums under Coh(k,1) are {u1},...,{uk}. Those quorums obviously satisfy the non-intersection, the intersection, and the minimality properties of a k-coterie; hence, the theorem holds for the basis case.

Induction Hypothesis:

Assume the collection of quorums under Coh(k,n(1) is a k-coterie, i.e., quorums under
Coh(k,n(1) satisfy the non-intersection, the intersection, and the minimality properties.

Induction Step:

On the basis of the induction hypothesis, we show below that quorums under Coh(k,n) satisfy the non-intersection, the intersection, and the minimality properties of a k-coterie.

Let Cn={v1,...,vs}, where s=(Cn(>max(2k(2, k) (by (P2)). Then, a quorum under Coh(k,n) may be of the form: either (form-1) a set of s((k(1) members of Cn, or (form-2) {vi} (a quorum under Coh(k,n(1), 1(i(s. Note that Cn serves as the primary cohort for a form-1 quorum, and serves as a supporting cohort for a form-2 quorum.

symbol 183 \f "Symbol" \s 14 \h
Satisfaction of the non-intersection property:

Suppose there are h, h<k, pairwise disjoint quorums Q1,...,Qh under Coh(k,n). We show that there still exists one quorum Qh+1 under Coh(k,n) such that Q1,...,Qh+1 are pairwise disjoint. There are two cases to consider: (i) all h quorums are of form-2, and (ii) one quorum is of form-1 and h(1 quorums are of form-2. Note that at most one of the quorums Q1,...,Qh can be of form-1, for any two quorums of form-1 are not disjoint because s((k(1)+s((k(1)>s (by s>max(2k(2, k)).

(i) All h quorums Q1,...,Qh are of form-2:

It follows that Q1,...,Qh take totally h (h<k) nodes from Cn with s(h nodes left. Note that s(h>s(k(s((k(1). Let Qh+1 be a set that involves s(k+1 nodes left in Cn. It is obvious that Qh+1 is a quorum under Coh(k,n) and Q1,...,Qh+1 are pairwise disjoint.

(ii) One quorum (say Qh) is of form-1, and h(1 quorums (say Q1,...,Qh(1) are of form-2:

It follows that Qh takes s((k(1) nodes from Cn and each of Q1,...,Qh(1 takes one node from Cn. So, there are s((s((k(1)+(h(1))=k(h (> 0, by h<k) nodes left in Cn. Suppose that each form-2 quorum Qi, 1(i(h(1, contains a quorum Ri under Coh(k,n(1), where R1,...,Rh(1 are pairwise disjoint. Then, by hypothesis, we can find a quorum R under Coh(k,n(1) such that R1,...,Rh(1 and R are pairwise disjoint. Let Qh+1 = R (the set of one arbitrary node left in Cn. It is obvious that Qh+1 is a quorum under Coh(k,n) and Q1,...,Qh+1 are pairwise disjoint.

symbol 183 \f "Symbol" \s 14 \h
Satisfaction of the intersection property:

Assume that there are m, m>k, pairwise disjoint quorums under Coh(k,n). There are three cases to consider: (i) all m quorums are of form-2, (ii) one quorum is of form-1 and m(1 quorums are of form-2, and (iii) at least two quorums are of form-1. For each case, we show that a contradiction occurs to conclude that there are at most k pairwise disjoint quorums under Coh(k,n).

(i) All m quorums are of form-2:

This means that there are m, m>k, pairwise disjoint quorums under Coh(k,n(1), which is a contradiction to hypothesis.

(ii) One quorum (say Qm) is of form-1, and m(1 quorums (say Q1,...,Qm(1) are of form-2:

This means that Qm obtains s((k(1) nodes from Cn, and Q1,...,Qm(1 obtain totally m(1 nodes from Cn. This is a contradiction since s((k(1)+m(1=s+(m(k)>s (by m>k).

(iii) At least two quorums are of form-1:

Let Q1 and Q2 be two of the quorums of form-1. Then both of Q1 and Q2 take s((k(1) nodes of Cn. This is a contradiction because s((k(1)+s((k(1)>s (by s>max(2k(2, k)).

symbol 183 \f "Symbol" \s 14 \h
Satisfaction of the minimality property:

By the Cohorts structure definition, Cn and Cn(1 are pairwise disjoint. Therefore, any form-1 quorum (only involving members of Cn) is not a super set of any form‑2 quorum (involving members of Cn(1). Since a form-2 quorum contains only one member of Cn and a form-1 quorum contains s((k(1)>1 (by s>max(2k(2, k)) members of Cn, any form-2 quorum is not a super set of any form-1 quorum. Any form-1 quorum is obviously not a super set of another form‑1 quorum. And any form-2 quorum is not a super set of another form-2 quorum since by hypothesis any quorum under Coh(k,n(1) is not a super set of another quorum under Coh(k,n(1).

By now, on the basis of induction hypothesis, we have shown that the collection of quorums under Coh(k,n) is a k-coterie. By the induction principle, the theorem thus holds for any n, n(1. (
3. Cohorts quorums formation

In this section, we introduce an algorithm (function) to form Cohorts quorums efficiently. Given a Cohorts Coh(k,n)=(C1,...,Cn), algorithm Get_Quorum tries to form a quorum under Coh(k,n). It polls first all the nodes in Cn to see if there are enough available (responsive) nodes in Cn to make Cn the primary cohort. If so, a set of (Cn((k+1 available nodes are returned as a quorum. If not so, one of the available nodes is chosen (for the purpose of making Cn a supporting cohort), and the algorithm goes further to poll all the nodes in Cn(1. The algorithm so goes; it terminates with returning a proper quorum once it finds that some cohort Ci can be the primary cohort and cohorts Ci+1,...,Cn can be supporting cohorts. However, if the algorithm finds that no node in some cohort Ci is available (thus Ci can not even be a supporting cohort), the algorithm terminates with returning an empty set.

Algorithm Get_Quorum is described below as a function. Note that function Poll(C) evoked in Get_Quorum performs the task of polling all the nodes in set C. It returns a set of available nodes of C. The returned set may be (i) a set of (C(((k(1) available nodes if there are at least (C(((k(1) available nodes, or (ii) a set of one arbitrary available node if there are at least one but less than (C(((k(1) available nodes, or (iii) an empty set if no node in C is available.

Function Get_Quorum(k: Integer; (C1,...,Cn): Cohorts): Quorum;

VAR R, S: Set;

R = (;

// R: The set of available nodes that will be returned //

For (i =n,...,1) Do
S = Poll(Ci);

If (S(= (Ci(((k(1) Then Return(R(S);

// Ci can be the primary cohort //

If (S(= 1 Then R=R(S;

// Ci can be a supporting cohort but not the primary cohort //

If S = (Then Return(();

// Ci can not even be a supporting cohort //

EndFor

End Get_Quorum

Algorithm Get_Quorum can be modified to solve the problem of access control of multiple entries to a critical section. In such a case, as in other quorum-based algorithms [1], [10], [11], [13], [18], a node is allowed to enter the critical section only after a quorum of nodes have granted their permissions, and those permissions are returned after the node leaves the critical section. Thus, function Poll(C), instead of solely polling, should lock (request permissions from) nodes in C. Because a node grants its permission to only one node at a time and because there are at most k pairwise disjoint quorums under Coh(k,n), no more than k quorums can simultaneously be formed by executing algorithm Get_Quorum. However, in the presence of contention for accessing the critical section, a node may seem to be unavailable when it has granted its permission for a pervious request. Thus, the algorithm should not just terminate if it finds that there is some cohort in which all nodes appear unavailable. Waiting-in-queue mechanism as used in Kakugawa et al.'s algorithm [10] should be adopted to guarantee the success of quorum forming when contention for entering the critical section occurs. Note that the waiting mechanism added may cause the problems of deadlock and starvation. Hence, timestamps [12] and several types of messages used in Kakugawa et al.'s algorithm to avoid deadlock and starvation should also be included. The message cost per critical section may thus increase; however, this is a typical problem faced by many other quorum-based mutual exclusion algorithms [1], [9], [11], [13], [18], [22].

4. Analysis and comparison

In this section we analyze the message cost and availability for our solution. The analyzed results are then compared with those of other related schemes. Note that below we assume that all the system nodes have the same up-probability, p, which is the probability that a single node is up (accessible). And we use PR(s, a, b) to denote
[image: image5.wmf]i

a

b

=

S

 [C(s, i) (pi ((1(p)s(i], the probability that there exist a or a+1 or ... or b up members in a cohort with s members. Also, we use <S1,...,Sn> to stand for the Cohorts structure Coh(k,n)=(C1,...,Cn), where Si =(Ci(for 1(i(n.

4.1 Message Cost

The number of messages needed to form a quorum is proportional to the size of quorums, as suggested in many related researches [1], [11], [18]. It is thus worth while to investigate the size of Cohorts quorums. Below, we first analyze the lower and upper bounds of Cohorts quorum size, and then analyze the expected size of Cohorts quorums.

As mentioned earlier, for a quorum Q under Coh(k,n), the larger Q's primary cohort's index is, the fewer the number of Q's supporting cohorts is. No supporting cohort is necessary when Cn is selected as Q's primary cohort. In such a case, Q has size L, L=Sn((k(1). For n=1, we have L=S1(k+1=1 since by (P1) S1=k. For n>1, we have L>max(2k(2, k)((k(1) since by (P2) Sn>max(2k(2, k). If k=1, max(2k(2, k)=k; thus, we have L>max(2k(2, k)((k(1)=k((k(1)=1 (i.e., L(2). If k>1, then max(2k(2, k)=(2k(2); thus, we have L>max(2k(2, k)((k(1)=2k(2((k(1)=k(1 (i.e., L(k). To sum up, the lower bound of the sizes of quorums under Coh(k,n) is k if n>1 and k>1, is 2 if n>1 and k=1. As for the upper bound of the sizes of quorums under Coh(k,n), it depends on the structure of Coh(k,n); it may be of O(N), however. For example, under Cohorts structure Coh(k,n)=<k,s,...,s>, where n=((N(k)/s)+1 and n>>s, the largest quorum is of O(N) size ((N(k)/s)+1. Such a case occurs when C1 is chosen as the primary cohort with others being supporting cohorts.

	
	
[image: image6.wmf]N

Q
	HQ
	TQ
	k-MQ
	CQ (for quorums under

Coh(k,n)=<k,s,...,s>, n>>s)

	Quorum size

(Lower Bound)
	N0.5
	N0.63
	(log N(
	((N+1)/(k+1)(
	2 (if k=1)

k (if k>1)

	Quorum size

(Upper Bound)
	N0.5
	N0.63
	((N+1)/2(
	((N+1)/(k+1)(
	n (i.e., (N(k)/s + 1)

[image: image7.wmf]N

Q: The quorums under the
[image: image8.wmf]N

 algorithm [13]. HQ: Hierarchical quorums [11].

TQ: Tree quorums [1]. k-MQ: k-majority quorums [9]. CQ: Cohorts quorums.

Table 1. Bounds on sizes for different types of quorums.

The lower bounds and upper bounds of the quorum sizes of our solution and other related quorum-based algorithms are shown in Table 1.

The lower and upper bounds of Cohorts quorum sizes may be too optimistic and too pessimistic, respectively. Below, we analyze the expected size of Cohorts quorums. As we will show, the expected size of Cohorts quorums remains constant as N approaches infinity.

We apply the parameter f, as also used in [1], to indicate the fraction of quorums that take the last cohort as the primary cohort (note that f is used in the tree quorum algorithm [1] to indicate the fraction of quorums including the root node). Thus, 1(f is the fraction of quorums that take the last cohort as a supporting cohort rather than the primary cohort.

Let ES(n) be the function evaluating the expected size of quorums under Coh(k,n). When n>1, we have

ES(n)= f(Sn(k+1) + (1(f)(1+ES(n(1))
(1)

The term f(Sn(k+1) arises because there are f quorums of size (Sn(k+1); such quorums take Cn as the primary cohort and are composed of (Sn(k+1) members of Cn. And the term
(1(f)(1+ES(n(1)) arises because there are (1(f) quorums of size ES(n(1)+1 that are composed of one member of Cn and one quorum under Coh(k,n(1). Since (C1(=k, a quorum under Coh(k,1) has size (C1((k+1=k(k+1=1. That is, ES(1)=1.

Now we consider a special Cohorts structure, Coh(k, n)=<k,s,...,s> (i.e., S2=...=Sn=s), where n>>s. Under such a Cohorts structure, the case of f=1 corresponds to the lower bound of the quorum size, which occurs when Cn is always chosen as the primary cohort. On the other hand, the case of f=0 corresponds to the upper bound of the quorum size, which occurs when a larger quorum is always chosen instead of a smaller one (i.e., C1 is chosen as the primary cohort with others being supporting cohorts). Note that if we neglect the contention of nodes for entering the critical section, the probability that at least s(k+1 nodes in Cn are up (i.e., PR(s,s(k+1,s)) may reflect the value of f. For example, the value of f may be reflected by PR(3,2,3)=0.71825 when s=3, k=2 and p=0.65.

The special condition of S2=...=Sn=s also makes equation (1) a first-order linear difference equations [3]
, which can be solved analytically. We have, for n>1 and f(0,

ES(n)= (1(f)n(1(1(s+k((1/f)) + (s(k+(1/f))
(2)

As n goes to infinity (and so does N), the term (1(f)n(1 goes to 0 for f(0. Hence, ES(n) goes to s(k+(1/f), which is a constant. In other words, the expected size of quorums under Coh(k,n)=<k,s,...,s> remains constant when N approaches infinity. It is easy to see that smaller s or larger f produces smaller limiting case expected quorum size. Take the following four conditions as examples: (i) f=0.5, s=3 (ii) f=0.5, s=5 (iii) f=0.25, s=3 and (iv) f=0.25, s=5. When k=2, the limiting case expected quorum sizes for these four conditions are 3, 5, 5 and 7, respectively.

The expected quorum size considers only the nodes involved in a quorum. However, before a quorum is constructed, a node may have polled more nodes than is contained in a quorum. For example, a node may have polled all the system nodes to construct a quorum which takes the first cohort as the primary cohort with others being supporting cohorts. Such a problem also arises in other related schemes [1], [9], [11], [18], and [22]. Below, we analyze the expected number of nodes polled to reflect more precisely the message traffic needed for a Cohorts quorum to be formed.

Let EN(n) be the function evaluating the expected number of nodes polled before algorithm Get_Quorum terminates with returning a quorum under Coh(k,n) (or terminates with returning an empty set if no quorum can be formed). We have, for n>1,

EN(n)=Sn + PR(Sn, 1, Sn(k)EN(n(1)
(3)

The term Sn arises because all nodes in Cn must be polled. And if at least one but no more than
(Cn((k nodes are available (the occurrence probability of such a case is PR(Sn, 1, Sn(k)), the algorithm should go further and poll nodes in Cn(1. Hence, the term PR(Sn, 1, Sn(k)EN(n(1) arises. Note that EN(1)=S1=k.

If again we consider the special case of S2=...=Sn=s, equation (3) can be regarded as a first-order linear difference equation and be solved analytically. For n>1 and PR(s, 1, s(k)(1, we have

EN(n)=PR(s, 1, s(k)n(1(k(s/(1(PR(s, 1, s(k))) + s/(1(PR(s, 1, s(k))
(4)

When n goes to infinity (and so does N), the term PR(s, 1, s(k)n(1 goes to 0 for PR(s, 1, s(k)(1. Hence, EN(n) goes to s/(1(PR(s, 1, s(k)), which is a constant independent of N. In other words, the expected number of nodes polled remains constant as N approaches infinity.

By now, we have shown that our solution has constant expected quorum size and constant expected number of nodes polled even when N approaches infinity. Thus, we may well say that our solution invokes constant expected message cost.

4.2 Availability

The availability of a coterie is defined as the probability that a quorum can be successfully formed. Since up to k pairwise disjoint quorums can be simultaneously formed in a k-coterie, we should discuss up to k cases for the availability of a k-coterie: the probability of a quorum being formed successfully, the probability of two pairwise quorums being formed successfully,..., and the probability of k pairwise disjoint quorums being formed successfully. The (k,h)-availability, 1(h(k, [9] is defined to be the probability that h pairwise disjoint quorums of a k-coterie can be formed successfully; it is used as a measure for the fault-tolerant ability of a solution using k-coterie.

Let AV(h, n) be the function evaluating the probability that h pairwise disjoint quorums under Coh(k,n) can be formed simultaneously. There are two possibilities for h quorums under Coh(k,n) to be (recursively) constructed:

(i) One quorum is constructed with Sn(k+1 up nodes of Cn (Cn thus serves as the primary cohort), and each of the other h(1 quorums is constructed with a quorum under Coh(k,n(1) and an up node in Cn (Cn thus serves as a supporting cohort). Note that no two pairwise disjoint quorums can take Cn as their primary cohort, for (P2) Sn>max(2k(2, k) implies 2(Sn(k+1)>Sn.

(ii) Each of the h quorums is constructed with a quorum under Coh(k,n(1) and an up node in Cn (Cn thus serves as a supporting cohort).

For the first case, Cn should have at least (Sn(k+1)+(h(1)=Sn(k+h up members to be the primary cohort for one quorum and supporting cohorts for the remaining h(1 quorums. And for the second case, Cn should have at least h up nodes to be supporting cohorts for the h quorums. However, the possibility of Cn having at least Sn(k+h up members should be ruled out from the second case since it has already been considered in the first case. Hence, we have

AV(h, n) = AV(h(1, n(1) (PR(Sn, Sn(k+h, Sn) + AV(h, n(1) (PR(Sn, h, Sn(k+h(1)
(5)

Note that function AV(h, n) has the following two boundary conditions: (i) AV(0, n) = 1 and (ii) AV(h, 1) = PR(S1, h, S1) (note that a quorum takes only one member from C1 to make it the primary cohort, for (P1) S1=k implies S1(k+1=1).

Figure 1 illustrates the (k,h)-availability, k=1,...,4 and h=1,..,k, of Cohorts quorums for 53-node system. Note that we choose the 53-node system so that the Cohorts structure <k, 2k(1,...,2k(1> (for k>1) or <1, 2,...,2> (for k=1) may fit for the system size. The curves for k-majority quorums and tree quorums (in the case of k=1) are also depicted for comparison. In the k-majority quorum algorithm, h (1(h(k) quorums can be formed simultaneously if there are at least h(((N+1)/(k+1)(up nodes. Let H=h(((N+1)/(k+1)(. The (k,h)-availability of k-majority quorums is then given as:

(k,h)-availability of k-majority quorums =

 Probability(H nodes are available) + Probability(H+1 nodes are available)

 + ... + Probability(N nodes are available) =
[image: image9.wmf][

]

C(

,

)

[

(1

)

]

(

)

N

i

p

p

i

N

i

i

H

N

´

´

-

-

=

å

For tree quorums constructed under binary tree structure Tree, its availability is given in [1] as:

Availability(Tree) =

Probability(root node is up) (Availability(Left subtree) (Unavailability(Right subtree) +

Probability(root node is up) (Unavailability(Left subtree) (Availability(Right subtree) +

Probability(root node is up) (Availability(Left subtree) (Availability(Right subtree) +

Probability(root node is not up) (Availability(Left subtree) (Availability(Right subtree)

As shown in Figure 1, when one-entry critical sections are concerned (i.e., k=1), the availability (i.e., (1,1)-availability) of Cohorts quorums is better (respectively, worse) than that of k-majority quorums when up-probability p is smaller (respectively, larger) than 0.5. And the availability of tree quorums is between those of Cohorts quorums and k-majority quorums for every up-probability. And as far as multiple-entry critical sections are concerned (i.e., k>1), Cohorts quorums are better than k-majority quorums for almost every up-probability in (3,3)-, (3,4)-, and (4,4)-availability. Cohorts quorums are better (respectively, worse) than k-majority quorums in (2,1)-, (2,2)-, (3-1), and (3,2)-availability if p is smaller (respectively, larger) than a specific value (e.g., for k=3 and h=2, the specific value is about 0.5).

5. Conclusion

In this paper, we have proposed a structure named Cohorts for constructing quorums of a k‑coterie, which can be used to control the access of multiple entries to a critical section. Like other quorum-based mutual exclusion algorithms, our solution is fault-tolerant; it is resilient to node failures and/or network partitioning. Our solution has been analyzed in terms of message cost and quorum availability and the analyzed results have been compared with those of related schemes. As we have shown, our solution invokes constant expected message cost and has comparably high availability.

Our solution also well suits the heterogeneous system that has nodes of different up‑probabilities. For heterogeneous systems, in the tree quorum algorithm the most reliable node is used as the root and the least reliable nodes are used as leaves; i.e., the nodes should be so arranged that their up-probabilities decrease from the root to leaves. Such an arrangement makes the tree quorum algorithm work well in heterogeneous systems. We may arrange nodes according to their up-probabilities in ascending order so that nodes with larger up-probabilities are placed in cohorts with larger indices. Since an attempt to form a quorum always processes the larger-indexed cohorts first, the nodes of larger up-probabilities are processed first. Thus, our solution also works well in heterogeneous systems.

Acknowledgment

We would like to thank the anonymous referees for their comments, which helped make the proof more robust, and the presentation more concise.

References

[1]
D. Agrawal and A. El Abbadi, "An efficient and fault-tolerant solution for distributed mutual exclusion," ACM Trans. Comp. Syst., vol. 9, no. 1, pp. 1-20, Feb. 1991.

[2]
S. B. Davidson, H. Garcia-Molina, and D. Skeen, "Consistency in partitioned networks," ACM Comput. Surv., vol. 17, no. 3, pp. 341-370, Sept. 1985.

[3]
J. A. Dossey, A. D. Otto, L. E. Spence and C. V. Eynden, Discrete Mathematics, Scott, Foresman and Company, 1986.

[4]
S. Fujita, M. Yamashita and T. Ae, "Distributed k-mutual exclusion problem and k-coteries," in Proc. 2nd Internl. Symp. on Algorithms, Lecture Notes in Computer Science 557, Springer, Berlin, pp. 22-31, 1991.

[5]
H. Garcia-Molina and D. Barbara, "How to assign votes in a distributed system," JACM., vol. 32, no. 4, pp. 841-860, Oct. 1985.

[6]
D. K. Gifford, "Weight voting for replicated data," in Proc. 7th ACM SIGOPS Symp. Oper. Syst. Principles, Pacific Grove, CA, pp. 150-159, Dec. 1979.

[7]
J. M. Helary, N. Plouzeau, and M. Raynal, "A distributed algorithm for mutual exclusion in an arbitrary network," Computer J. vol. 31, no. 4, pp. 289-295, 1988.

[8]
S. T. Huang, J. R. Jiang, and Y. C. Kuo, "K-coteries for fault-tolerant k entries to a critical section," in Proc. 13th IEEE Internat. Conf. on Dist. Comput. Systems, pp. 74-81, May 1993.

[9]
H. Kakugawa, S. Fujita, M. Yamashita, and T. Ae, "Availability of k-coterie," IEEE Trans. Comput., vol. 42, no. 5, pp. 553-558, May 1993.

[10]
—— "A distributed k-mutual exclusion algorithm using k-coterie," Inf. Process. Lett., vol. 49, pp. 213-218, Mar. 1994.

[11]
A. Kumar, "Hierarchical quorum consensus: A new algorithm for managing replicated data," IEEE Trans. Comp., vol. 40, no. 9, pp. 996-1004, Sept. 1991.

[12]
L. Lamport, "Time, clocks, and the ordering of events in a distributed system," CACM., vol. 21, no. 7, pp. 145-159, July 1978.

[13]
M. Maekawa, "A
[image: image10.wmf]N

 algorithm for mutual exclusion in decentralized systems," ACM Trans. Comput. Syst., vol. 3, no. 2, pp. 145-159, May 1985.

[14]
J. Misra, "Detecting termination of distributed computations using markers," In Proc. of the 2nd ACM Annu. Symp. on PODC, pp. 237-249, Aug. 1985.

[15]
K. Raymond, "A tree-based algorithm for distributed mutual exclusion," ACM. Trans. Comput. Syst. vol. 7, no. 1, pp. 61-77, 1987.

[16]
——, "A distributed algorithm for multiple entries to a critical section," Inf. Process. Lett., vol. 30, no. 4, pp. 189-193, Feb. 1989.

[17]
G. Ricart and A. K. Agrawala, "An optimal algorithm for mutual exclusion in computer networks," CACM., vol. 24, no. 1, pp. 9-17, Jan. 1981.

[18]
D. Shou and S. D. Wang, "An efficient quorum generating approach for distributed mutual exclusion," Journal of Information Science and Engineering, vol. 9, pp. 201-227, June 1993.

[19]
M. Singhal, "A heuristically-aided algorithm for mutual exclusion in distributed systems," IEEE Trans. Comput., vol. 38, no. 5, pp. 651-662, May 1989.

[20]
P. K. Srimani and R. L. N. Reddy, "Another distributed algorithm for multiple entries to a critical section," Inf. Process. Lett., vol. 41, no. 1, pp. 51-57, Jan. 1992.

[21]
I. Suzuki and T. Kasami, "A distributed mutual exclusion algorithm," ACM Trans. Comput. Syst., vol. 3, no. 4, pp. 344-349, Nov. 1985.

[22]
R. H. Thomas, "A majority consensus approach to concurrency control," ACM Trans. Database Syst., vol. 4, no. 2, pp. 180-209, June 1979.

[image: image11.wmf]CQ(h=1)

k-MQ(h=1)

CQ(h=2)

k-MQ(h=2)

CQ(h=3)

CQ(h=4)

k-MQ(h=4)

TQ(h=1)

k-MQ(h=3)

[image: image12.wmf]Up-probability

A

v

a

i

l

a

b

i

l

i

t

y

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(k,N,n)=(1,53,27)

[image: image13.wmf]Up-probability

A

v

a

i

l

a

b

i

l

i

t

y

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(k,N,n)=(2,53,18)

[image: image14.wmf]Up-probability

A

v

a

i

l

a

b

i

l

i

t

y

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(k,N,n)=(3,53,11)

[image: image15.wmf]Up-probability

A

v

a

i

l

a

b

i

l

i

t

y

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(k,N,n)=(4,53,8)

Figure 1. The (k,h)-availability of k-majority quorums (k-MQ), tree quorums (TQ),
 and Cohorts quorums (CQ) for the 53-node system.

Index Terms:

Availability, coteries, distributed systems, fault-tolerance, mutual exclusion, quorums

Figure Caption:

Figure 1.

The (k,h)-availability of k-majority quorums (k-MQ), tree quorums (TQ), and Cohorts quorums (CQ) for the 53-node system.

Footnotes:

†
Jehn-Ruey Jiang is with the Management Information Systems Department, Chung Yuan Christian University, Chung Li, Taiwan, R. O. C.

‡
Shing-Tsaan Huang and Yu-Chen Kuo are with the Department of Computer Science, National Tsing Hua University, Hsin Chu, Taiwan, R. O. C.

*
This paper is an enhanced version of a paper presented in Proceedings of 13th IEEE International Conference on Distributed Computing Systems, Pittsburgh, PA., May 1993, pp. 74-81.

1
A first-order linear difference equation of the form Xn=aXn(1+b for n(2 with X1 being the first term has as its nth term Xn=an(1(X1+b/(a(1))((b/(a(1)) if a(1.

�	A first-order linear difference equation of the form Xn=aXn(1+b for n(2 with X1 being the first term has as its nth term Xn=an(1(X1+b/(a(1))((b/(a(1)) if a(1.

18

_1061277951

_1061277953

_1061277954

_1061277952

_1061277947

_1061277949

_1061277950

_1061277948

_1061277945

_1061277946

_1061277943

_1061277944

_1061277941

_1061277942

_1061277940

