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Abstract 

This paper presents a quorum-based solution to distributed mutual exclusion, which is resilient to network partitioning. The solution utilizes a logical structure named Cohorts and is formalized as deriving coteries whose smallest quorum is of O(1) (constant) size. On the basis of a Boolean theorem about coteries, the derived coteries are proved to be nondominated, meaning that the solution biases towards the highest availability. The proposed solution is further compared with related ones in terms of the quorum size and the nondomination property.
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1. Introduction

Quorum-based algorithms are an important class of algorithms for mutual exclusion in distributed systems. Such algorithms usually incur low message cost and can tolerate site and/or network link failures, even when they lead to network partitioning [2]. The basic idea of this type of algorithms is simple—a site should collect permissions (votes) from all sites of a quorum to enter the critical section. Mutual exclusion is guaranteed if we can assure that any pair of quorums have at least one common site. The majority quorum consensus algorithm (MQC) [8], the tree quorum algorithm (TQ) [1] and the hierarchical quorum consensus algorithm (HQC) [5] are typical quorum-based algorithms.

The coterie concept [3] is usually used to formalize quorum-based mutual exclusion algorithms. A coterie [3] is a family of sets (quorums) with the property that any pair of sets have a non-empty intersection. Among all the coteries, nondominated (ND) coteries [3] are preferable because they bias toward the highest availability, the probability that a quorum can be formed. Some classes of coteries, such as the majority coterie (MC), the tree coterie (TC), the hierarchical coterie (HC) and the Lovasz coterie (LC) [6] have been shown to be ND. Note that the first three classes of coteries correspond to the algorithms MQC [8], TQ [1] and HQC [5], respectively.

In this paper, we propose a fault-tolerant quorum-based solution to distributed mutual exclusion, where fault-tolerance means the resilience to network partitioning [2]. The solution utilizes a logical structure named Cohorts and is formalized as deriving coteries whose smallest quorum is of O(1) (constant) size. This is a desirable property since the message overhead to achieve mutual exclusion is proportional to the quorum size. On the basis of a Boolean theorem about coteries, the derived coteries are proved to be nondominated, meaning that the solution biases towards the highest availability. The proposed solution is further compared with related ones in terms of the quorum size and the nondomination property.

The rest of this paper is organized as follows. In Section 2, we elaborate some preliminaries of coteries. Then, in Section 3, we propose the solution to mutual exclusion and prove its correctness. We compare the coteries corresponding to our solution with related coteries in Section 4, and conclude this paper with Section 5.

2. Preliminaries

In this section, we show some preliminaries for coteries. In the following discussion, we assume u1,...,un are all system sites and let U = {u1,...,un} be the underlying set that contains all system sites.

A coterie C is a family of subsets of U. Each member Q in C is called a quorum and should observe the following two properties:

Intersection Property: (G,(H: G,H(C: G(H((.

Minimality Property: (G,(H: G,H(C: G(H.

For example, C ={ {u1, u2}, {u1, u3}, {u2, u3} } is a coterie under U={u1, u2, u3} because every pair of sets in C have a non-empty intersection, and no set in C is a super set of another set in C.

By the intersection property, the coterie can be used to develop algorithms for mutual exclusion in distributed systems. To enter the critical section, a site is required to receive permission from all the members of some quorum in the system. Since any pair of quorums have at least one member in common, mutual exclusion is then guaranteed. The reader should note that the minimality property is not necessary for the correctness of mutual exclusion but is used to enhance efficiency.

Let C and D be two distinct coteries. C is said to dominate D if  (G,(H: G(D, H(C : H ( G [3]. For example, coterie C = {{u1, u2}, {u1, u3}, {u1, u4}, {u2, u3, u4}} dominates coterie D = {{u1, u2, u3}, {u1, u2, u4}, {u1, u3, u4}, {u2, u3, u4}} because for every quorum G in D we can find a quorum H in C such that H is a subset of G. A dominating coterie, such as C, is more resilient to site and/or network link failures than a dominated coterie, such as D since if a quorum can be formed in the dominated one then a quorum can be formed in the dominating one. Thus, we should always concentrate on nondominated (ND) coteries that no coterie can dominate, and we can claim that ND coteries bias toward the highest availability.

In Ibaraki and Kameda's work [4], any subset of U is represented by an n‑tuple vector X, X=(x1,...,xn) ( {0,1}n where xi is 1(0) if ui is in (not in) the subset. Let C be a family of subsets of U. Then, a Boolean function fC : {0,1}n ({0,1} associated with C is defined as fC(X) ( 
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ui}. Note that we follow the convention in [4] and use ui (which is an element of U) as the ith component of vector X. The function fC so defined has the property: fC(X)=1 if vector X represents a super set of some quorum in C; otherwise fC(X)=0. The dual 
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=f '(X' ), where X' and f ' are complements of X and f, respectively. For example, under U={u1, u2, u3}, the set {u1, u2} is represented as (1,1,0); and {u2, u3}, as (0,1,1). Let C={{u1, u2}, {u2, u3}, {u1, u3}}, then fC(X) = (u1u2 ( u2u3( u1u3). 
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The association of a Boolean function with a family of subsets provides a facile way for checking some properties of the family. For example, the following Theorem 1 is actually Theorem 2.2 in [4] which can be used to check whether a family of sets is an ND coterie.

Theorem 1. Let C be a family of non-empty subsets of U satisfying minimality property. Then, C is an ND coterie if and only if 
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3. The solution

In this section, we propose a quorum-based solution to distributed mutual exclusion. We introduce the data structure used, the definition of quorums, and a function that can generate the defined quorums. We also prove the correctness of the solution in this section.

A Cohorts structure Coh(k) ({C1,...,Ck} is a family of subsets of U. Each member Ci is called a cohort and should observe the following properties:

P1.
(C1( = 1.

P2.
(i : i ( 1: (Ci( ( 2.

P3.
( i : :Ci ( 
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To sum up, the first cohort in a Cohorts structure should have only one member with other cohorts having at least two members and each cohort should have at least one unique member that does not appear in any other cohort. For example, the following are Cohorts structures: {{u1}}, {{u1}, {u2,u3,u4}} and {{u1},{u2, u3},{u3, u4}}, which are a Coh(1), a Coh(2) and a Coh(3), respectively.

For a Cohorts structure Coh(k)={C1,...,Ck}, a set Q is said to be a quorum under Coh(k) if Q satisfies both (D1) and (D2).

D1. Q contains all the members of some cohort Ci, 1(i(k (we say that Q fully covers Ci or that Ci is Q's primary cohort).

D2. Q contains at least one member of each cohort Cj, i<j(k (we say that Q covers Cj or that Cj is Q's supporting cohort).

For a quorum under Coh(k)={C1,...,Ck}, the larger is the index of the primary cohort, the smaller is the quorum size. In an extreme case, if Ck is the primary cohort, then no supporting cohort is necessary. In such a case, the quorum size is a constant (Ck(. In another extreme case, if C1 is the primary cohort with the other cohorts being supporting cohorts, then the quorum may be of size O(n). To sum up, a quorum under Coh(k) is of constant size in the best case, and may be O(n) in the worst case.

Figure 1 presents a function Get_Quorum that can produce quorums under Coh(k). Below, we show that all quorums generated by Get_Quorum are minimal. Note that a quorum Q under Coh(k) is said to be minimal if and only if any proper subset of Q is not a quorum under Coh(k).

Lemma 1. (Minimality property) The quorums returned by Get_Quorum are minimal.

Proof:

Let Q1 and Q2 be two quorums returned by Get_Quorum such that Q1 takes Ci as its primary cohort and Ci+1,...,Ck as its supporting cohort, while Q2 takes Cj as its primary cohort and Cj+1,...,Ck as its supporting cohorts. We want to show that neither Q2 ( Q1 nor Q1 ( Q2. There are three cases to consider: (1) i = j, (2) i < j and (3) i > j.

Case (1). i = j.
According to function Get_Quorum, we have Q1=Min( R1, Ci,...,Ck) and Q2=Min( R2, Ci,...,Ck) for some R1 and R2 both of which cover Ci+1,...,Ck and fully cover Ci. Function Min will remove all the sites that are not essential for the coverage of Ci,...,Ck. So, we have neither Q2 ( Q1 nor Q1 ( Q2.

Case (2). i < j. The proof is by contradiction.

Assume Q1 ( Q2, then by Ci ( Q1, Q1 ( Q2 and Q2 ( (Cj(...(Ck ), we have Ci ( (Cj (...( Ck), which contradicts (P3). So, the assumption Q1 ( Q2 is not correct. On the other hand, let us assume Q2 ( Q1, then we have Cj ( Q1 (by Cj ( Q2 ( Q1). By (P3), there exists one member u in Cj such that u does not belong to any other cohorts. Since Cj ( Q1, all the sites, including u, in Cj belong to Q1; i.e., function Min returns Q1 with u involved. Because u only belongs to Cj and function Min does not remove u from Q1, we have that Q1({u} does not cover Cj. By Cj ( Q1 and (Q1({u}) ( Cj = ( (Q1({u} does not cover Cj), we have Cj={u}, which contradicts (P2). Therefore, the assumption Q2 ( Q1 is not correct either.

Case (3). i > j. The proof of this case is similar to that of case (2) and is omitted.

�

By now, we have shown that Get_Quorum generates minimal quorums under Coh(k)={C1,...,Ck}. Below, we further show that the family of all minimal quorums under Coh(k) constitutes an ND coterie. We start with the proof of 
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, where G(k) stands for the family of all minimal quorums under Coh(k).
Lemma 2. 
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Proof: The proof is by induction on the value of k.

Basis (k=1): 

By (P1), Coh(1)={{u1}}, from which the only derived quorum is {u1}. So, we have fG(1) = u1. The theorem holds for the basis case because 
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Induction Hypothesis:

We assume that 
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Induction Step:

Consider Coh(k+1)={C1,...,Ck+1}. Let Ck+1={u1,...,um}, where m(2. By (D1) and (D2), a quorum under Coh(k+1) is composed of either (form-1) all sites in Ck+1 or (form-2) one of the sites in Ck+1 and a quorum under Coh(k). Thus, we have

fG(k+1)=(
[image: image17.wmf]Ù

=

i

m

1

,

.

.

.

,

 ui )((
[image: image18.wmf]Ú

=

i

m

1

,

.

.

.

,

 ui fG(k) (X)), where X is a vector that can represent subsets of C1(...(Ck.

Therefore, by the definition of dual Boolean function, we have
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Theorem 2. G(k) is an ND coterie for k(1.

Proof: This is a direct consequence of Theorem 1, Lemma 1 and Lemma 2. �

4. Comparison

In this section, we compare the cohort coterie (i.e., G(k)) with the majority, the tree, the hierarchical and the Lovasz coteries in terms of quorum size and the nondomination property.

Every quorum in the majority coterie is composed of over half of the system sites; thus, its quorum size is ((n+1)/2(. The majority coterie is shown to be ND [3] if the system has odd number of sites.

The tree coterie is based on organizing system sites into a binary tree of (log n( levels. A quorum in a tree coterie is formed by obtaining all the sites along a root-to-leaf path, and if the root fails, the obtaining should then follow two paths: one root-to-leaf path of the left subtree plus one root-to-leaf path of the right subtree. The smallest quorum comprises all the sites along a root-to-leaf path, which is of size (log n(, while the largest quorum comprises all leaf sites, which is of size ((n+1)/2(. The tree coterie is shown to be ND in [7].

By organizing sites in leaves of a mutilevel tree with non-leaf nodes being logical, the hierarchical coterie has quorums of size O(n0.63). The quorum forming is hierarchical: a quorum corresponding to a node at level i is formed by collecting enough (over half) quorums corresponding to its child nodes at level i+1. Thus, any two quorums corresponding to the root have a non-empty intersection. The nondomination property of the hierarchical coterie, although not explicitly stated, can be inferred from some remarks (about coterie composition for hierarchical coteries) in [7].

The Lovasz coterie [6] is based on the partition of the underlying set U. Let {P1,...,Pk} be a partition of U (i.e., Pi(Pj=( for i(j and P1(...(Pk = U) such that (Pi ( = i. Then a quorum in a Lovasz coterie is formed by obtaining all the sites in Pi and one site from each Pj for all j > i. All quorums in a Lovasz coterie are of the same O(n0.5) size, and the Lovasz coterie has been shown to be ND in [6] on the basis of a classical theorem, Theorem 2.1 in [3]. It is obvious that partition {P1,...,Pk} of U is a special type of Cohorts structure; therefore, Lovasz coteries are a special case of cohort coteries.

Table 1 summarizes the lower bounds and the upper bounds of quorum size for various nondominated coteries.

5. Conclusion

A quorum-based solution to distributed mutual exclusion, which is resilient to network partitioning, has been proposed in this paper. With the aid of a Boolean theorem about coteries, we have proved that the quorums generated by the solution constitute an ND coterie, which in term concludes the correctness and the toward-the-highest-availability property of the solution. It is worth mentioning that the proposed solution has constant-size quorums in the best case, which means it is message-efficient. We have further compared the solution with related ones.
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Function Get_Quorum( Coh(k)={C1,...,Ck}: Cohorts Structure): Set;

Var R,S,T: Set;

R = (;   






|| R: The set of all the sites that have granted permission. ||

For (i = k,...,1 ) Do


S = Ci ( R; 


|| S: The set of the sites whose permissions are necessary to make Ci the primary cohort. ||


T = Obtain(S);
|| Obtain(S) will try to get permissions form sites of S and return a set of sites that can grant permissions. ||


If T = S Then Return( Min( R(T, Ci,...,Ck) );

|| Ci can be the primary cohort, and a minimal quorum is returned. ||

If (R(T) ( Ci = ( Then Exit(failure);






|| No member of Ci grants its permission. Claim failure. ||

If (Ci ( R) = ( Then R=R({t}, where t(T.


|| R does not cover Ci  So, add t of T into R  to make R covers Ci. ||
EndFor


Exit(failure);



|| No quorum can be formed. Claim failure. ||
End Get_Quorum

Function Min(R, Ci, ... ,Ck : Set): Set;

For ( r ( R ) Do If Cover(R({r}, Ci,...,Ck) Then R= R ( {r}; EndFor

|| If r is not essential in the coverage of Ci,...,Ck, remove r from R. Note that we assume Cover(R, Ci,...,Ck) is a predicate

   that returns true if R covers Ci+1,...,Ck and fully covers Ci for some i, and returns false, otherwise. ||
Return(R);

End Min

Figure 1. A function that can generate minimal quorums under Coh(k).

	
	MC
	TC
	HC
	LC
	CC

	Quorum size

(Lower Bound)
	((n+1)/2(
	(log n(
	O(n0.63)
	O(n0.5)
	O(1)

	Quorum size

(Upper Bound)
	((n+1)/2(
	((n+1)/2(
	O(n0.63)
	O(n0.5)
	O(n)


MC: The majority coterie.
TC:  The tree coterie. 
HC:  The hierarchical coterie.

LC:  The Lovasz coterie.

CC:  The cohort coterie.

Table 1. Summary of quorum sizes for various nondominated coteries.
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