
A Prioritized h-out of-k Mutual Exclusion Algorithm with Maximum
Degree of Concurrency for Mobile Ad Hoc Networks and Distributed

Systems
Jehn-Ruey J iang

Department of Information Management, Hsuan Chuang University
HsinChu, 300, Taiwan

Emdjr j iang @hcu.edu.tw

Abstract--In this paper, we propose a distributed prioritized
h-out of-k mutual exclusion algorithm for a mobile ad hoc
network (MANE7) with real-time or prioritized applications.
The h-out of-k mutual exclusion problem is a generalization
of the k-mutual exclusion problem and the mutual exclusion
problem. The proposed algorithm is sensitive to link
forming and link breaking and thus is suitable for a
MANET. If we do not consider the link breaking and
forming, the proposed algorithm can also be applied to
distributed systems consisting of stationary nodes that
communicate with each other by exchanging messages over
wired links. For non-real-time applications, we may
associate the priority with the number of requested
resources to achieve the muximum degree of concurrency.
Keywords: mobile ad hoc networks, distributed systems,
mutual exclusion, concurrency, real- time systems

I. Introduction
In this paper, we propose a distributed prioritrzed h-our

ofk mutual exclusion algorithm for a mobile ad hoc
network (MANET) with real-time or prioritized applications.
A MANET consists of mobile nodes that can communicate
with each other by sending messages either over a direct
wireless link, or over a sequence of wireless links including
one or more intermediate nodes. Wueless link “failures”
occur when nodes move so that they are no longer within
transmission range of each other. Likewise, wireless link
“formation” occurs when nodes move so that they are again
within transmission range of each other. If we do not
consider the link breaking and forming, the proposed
algorithm can also be applied to distributed systems
consisting of stationary nodes that communicate with each
other by exchanging messages over wired links. For
non-real-time applications, we may associate the priority
with the number of requested resources to achieve the
muximum degree of concurrency.

Consider a MANET with k identical shared resources. The
h-out of-k mutual exclusion algorithm for a MANET is
used to control nodes so that each node can access h
resources out of totally k shared resources, 1 5 h 5 k, with
the constraint that no more than k resources can be accessed
concurrently [17]. It is a generalization of the k-mutual
exclusion algorithm [l] and the mutual exclusion algorithm
[31. If we choose h to be 1, then the h-out of-k mutual

exclusion algorithm is a k-mutual exclusion one. If we
choose both h and k to be 1, then the Ir-out of-k mutual
exclusion algorithm becomes a mutual. exclusion algorithm.

In the h-out of-k mutual exclusion problem, nodes access
the shared resource in the “first come first serve (FCFS)”
manner; however, in the prioritized h-out of-k mutual
exclusion problem, nodes access the shared resource in the
“highest priority first s e n e (HPFS)” manner. The HPFS
criterion arises in real time systems where the tasks have to
meet deadlines; it also arises in prioritized systems where
key tasks must proceed quickly for good performance. In
real-time systems, the node with the task of the earliest
deadline is assumed to have the highest priority; while i n
the prioritized systems, the node with the most significant
task is assumed to have the highest priority. In
non-real-time systems, we may associated the priority with
the number of requested resources to achieve the maximum
degree of concurrency.
There are several distributed prioritized mutual exclusion

algorithms [11[2][5][6][7][8][15][16][191 proposed in the
literature. There are also several algorithms [12][13][14]
proposed to solve the h-out of-k mutual exclusion problem
for distributed systems. One possible way to provide mutual
exclusion.related primitives for MANETS is to execute the
existent distributed algorithms on top of routing protocols,
as depicted in Fig. 1. The other way to provide the mutual
exclusion related primitives is to consider the essence of the
primitives and dose not rely on any routing protocols (refer
to Fig. 2). Some mutual exclusion algorithms for MANETs
[1 01 [1 1 I U01 [2 1 I take this approach.

User Applications ! Routine RotmIs

Distributed t’rimitivc?
(mutuul exdosion. erc.)

I Mobile Ad Hoc Nenvork I
Figure 1. Roviding mutual exclusion primitives based an routing

proi~c0Is for MANETS.

0-7803-7840-7/03/$17.00 02003 IEEE

-329

User Applications

Distributed Rimitives
(mutual exclusion, eic.)

Routing
FTOtu'OlS

Mobile Ad Hu' Nenvmk

Figure 2. Providing mutual exclusion plimitives not bawl on routing
protmls for MANETs.

With the suucture of Fig. 2, Jiang proposed a token-based
algorithm to solve the h-out of-k mutual exclusion problem
for MANETs in [l l] . Jiang's algorithm applies the RL
(Reverse Link) technique to maintain a token oriented DAG
(directed acyclic graph). A node should gain the token
along the DAG to access the shared resource. The RL
technique endows Jiang's algorithm with the ability of
being sensitive to link forming and link breaking. This is
why Jiang's algorithm can be applied to MANETs.

However, the algorithm in [l l] has the drawback of low
concurrency. For example, consider a MANET with 5
resources, where 2 of them are occupied. Now, suppose
node a holds the token and nodes a , b, and c are requesting
for 4, 2 and 1 resources, respectively. According to the
algorithm in [l l] , node a still cannot enter the CS since the
number of available resources is less then the number of
requested resources. At the same time, node b and node c
cannot enter the CS although the available resources can
fulfill the requests of node b and c simultaneously. The
degree of concurrency will be increased if we allow nodes b
and c to enter the CS without waiting for node a .
In this paper, we also utilize the concept of RL to

implement prioritized h-out of-k mutual exclusion
algorithm for MANETS. In addition to the concept of the
RL technique, we also utilize the concept of priority queue
and prioriry update to endow the algorithm with the ability
of'HPFS property. Furthermore, we adopt the concept of
aging to prevent a node from being always preempted by
nodes with higher priorities. Thus, the proposed algorithm
is starvation-free and can be properly applied to h4ANETs
with real-time or prioritized applications. For non-real-time
applications, the algorithm can achieve the maximum
degree of concurrency if we associate the priority with the
number of requested resources.

The rest of this paper is organized as follows. In section 2,
we intloduce some preliminaries. We present the proposed
algorithm in section 3, and prove the algorithm correctness
in section 4. At last, we give concluding remarks in section
5 .

II. Preliminaries
In [21], a token-based mutual exclusion algorithm, named

RL (Reverse Link), for a MANET is proposed. The RL
algorithm takes the following 6 assumptions, which we also
take in this paper.
1. The nodes have unique node identifiers.
2. Node failures do not occur.
3. Communication links are bidirectional and FIFO.

4. A link-level protocol ensures that each node is aware of
the set of nodes with which it can currently directly
communicate by providing indications of link formations
and failures.

5. Incipient link failures are detectable.
6. Partitions of the network do not occur.

The RL algorithm also assumes that there is a unique
token initially and utilizes the partial reversal technique in
[4] to maintain a token oriented DAG (directed acyclic
graph). In the RL algorithm, when a node wishes to access
the shared resource, it sends a request message along one of
the communication link. Each node maintains a queue
containing the identifiers of neighboring nodes from which
it has received requests for the token. The RL algorithm
totally orders nodes so that the lOWeSt-ordered node is
always the token holder. Each node dynamically chwses its
lowest-ordered neighbor as its outgoing link to the token
holder. Nodes sense link changes of immediate neighbors
and reroute requests based on the order newly created. The
token holder grants the token according to the requests'
positions in the queue, and thus requests are eventually
served while the DAG is being re-oriented and blocked
requests are being rerouted.
Now we present the scenario for the prioritized h-out of

k-mutual exclusion problem. Consider a MANET
consisting of n nodes and k shared resources. Nodes are
assumed to cycle through a non-critical section (NCS), an
entry section (ES), and a critical section (CS). A node i can
access the shared resource only within the critical section.
Every time a node i wishes to access h shared resources,
node i moves from its NCS to the ES, waiting for entering
the CS. The prioritized h-out of-k mutual exclusion
problem is concerned with how to design an algorithm
satisfying the following properties:
Mutual Exclusion:
No more than k resouces can be accessed concurrently.
Highest Priority First Serve:
If there are nodes competing for entering the CS, the node
with the highest priority will proceed first.
Bounded Delay:
If a node enters the ES, then it eventually enters the CS.

the following additional property.
Maximum Degree of Concurrency:
Under the constraint of no more than k resources can he
accessed simultaneously, there should always be a
maximum number of nodes in the CS concurrently.
The Proposed Solution
In this section, we propose a distributed token-based

algorithm to solve the prioritized h-out of k-mutual
exclusion problem for a MANET. The algorithm is assumed
to execute in a system consisting of n nodes and k shared
resources. Nodes are labeled as 0, 1, ..., n-I. We assume
there is a unique token held by node 0 initially. The
variables used in the algorithm for node i are listed below.
Note that the subscript "i" is included when needed.
0 state: Indicates whether node i is in the ES, CS, or NCS

For non-real-time applications, we would like to have

-330-

state. Initially, smte = NCS.
0 N: The set of all nodes (neighbors) in direct wireless
contact with node i. Initially, N contains all neighbors of
node i .
0 height: A triplet (h,, h2, i) representing the height of node
i. Links are considered to be directed from higher-height
nodes toward lower-height nodes, based on lexicographic
ordering. For example, if the height of node 1, height,, is (2,
3, I) and the height of node 2 , height2, is (2, 2, 2), then
height, z height? and the link would he directed from node
1 to node 2. Initially, heighto = (0, 0, 0), and heightj,@ 0, is
initialized so that the directed links form a DAG where
each node has a directed path to node 0.
0 htkctor: An array of triplets representing node i s view
of height of node j , j e N . Initially, htVector[il = height of
n d e j . From node i’s viewpoint, the link between i and j is
incoming to node i if htVector[i] >height,, and outgoing
from node i if htkctortj] < heighti.
0 next: Indicates the location of the token from node is
viewpoint. When node i holds the token, next = i , otherwise
next is the node on an outgoing link. Initially, next = 0 if i =
0, and next is an outgoing neighbor otherwise.
0 tokenHolder: a boolean variable indicating whether or
not node i holds the token. If node i holds the token,
tokenHolder is set to true. It is set to false, otherwise.
0 Q: a queue which contains requests of neighbors.
Initially, Q = 0. Operations on Q include enqueue, dequeue;
and delete. The enqueue operation inserts an item at the rear
of Q, and the dequeue operation returns and removes the
item at the front of Q, and the delete operation removes a
specified item from Q, regardless of its location.
0 receivedlinkb]: a boolean array indicating whether
LINK message has been received from node j , to which a
token message was recently sent. Any height information
received at node i from a node j for which receivedLJN,Q]
is false will not be recorded in htVector. Initially,
receivedLINK;~] = true for all j e N i .
0 formingb]: a boolean array set to true when link to node
j has been detected as just forming and reset to false when
first L W K message arrives from node j . Initially,
formingib]=false for all jt Ni.
0 formHeight[jl: an array of triplets storing value of i’s
height when new link to j f i s t detected. Initially,
formh‘eightjb]=heighti for all j e N;.

The following are the messages used in the algorithm.
Note that each message is attached with the height value,
denoted by ht, of the node sending the message. Also note
that we use “the front node of Q to indicate “the node
whose request message is at the front of queue Q.”
0 TOKEN@): a unique message for nodes to enter the CS.
The data field t, OQSk, of the message indicates the number
of available resources.

REQUEST(i, p): When i wishes to enter the CS to access
h resources with priorityp, it sends out REQUEST(i, p) to
the neighbor indicated by next.
0 RELEASE(r): When i leaves the CS to release r copies

of resources, it first calls aging procedure to increase the
priority of every request message in Q. And if node i is the
token holder, it just increases t of TOKEN@) by r and sends
TOKEN@) to the front node (if exists) of Q. If i is not the
token holder, it just sends RELEASE(r) to the neighbor
indicated by next.
0 UF’DATE(i, U) : When i receives a new request with
priority U, which is higher than those of messages in Q, it
sends out UPDATE(i, U) to the neighbor indicated by next
to update its request priority to be U to reflect the priority
change.
0 LINK a message used for nodes to exchange their
height values with neighbors.
The proposid algorithm is event-driven. An event at node

i consists of receiving a message from another node, or an
indication of link failure or formation from the link layer, or
a signal from the application layer for accessing or
releasing resources. Each event triggers a procedure which
is assumed to be executed atomically. Below, we present
the overview of the event-driven procedures:
0 Requesting h copies of resources with priority p : When
node i requests to enter the CS with priority p to access h
resources, it enqueues the message REQUEST(i, p) on Q
and sets s fafe to ES. If node i does not currently hold the
token and i has a single element on its queue (the single
element must he REQUEST(;, p)) , i t callsfowurdRequestO
to send a REQUEST(i, p) message to the neighbor
indicated by next. If node i holds TOKEN(t), i then checks
if t t h . If so, i sets PI- h, removes i from Q and sets state to
CS to access h resources, since i will be at the front of Q.
On the contrary, if t<h, then node i persists in waiting for
the condition t2h to be true to enter the CS. Note that after
node i enters the CS, if Q is not empty, then i sends
TOKEN(t) to the requesting neighbor at the front of Q (by
cal1,ing giveTokenToFmntOfQ() procedure) to allow the
concurrent access of resources.
0 Receiving a priority update message: When a UPDATEG,
U) message sent by a neighbor j is received at node i , i
changes the priority of j ’ s request message and adjust its
position in Q according to the new priority if j’s request
message is in Q. If j ’ s request is moved to the front of Q
due to the priority update and i does not hold the TOKEN,
then i should also send out a W D A T E (i , U) message to the
neighbor indicated by next to report the priority change on
behalf of j .
0 Releasing r copies of resources: When node i leaves the.
CS to release r copies of resources, it sets stute=NCS. If
node i does not hold the token, it calls fonvardRelease(r) to
send out RELEASE(r) message to the neighbor indicated
by next. On the other hand, if i holds the token TOKEN(& i
sets f=t+r.
0 Receiving a request message: When a REQUESTQ, p)
message sent by a neighborj is received at node i, i ignores
the message if ~ c e i v e d L J N ~] is false. Otherwise, i
changes hfVectorb1 according to the height value attached
with REQUESTG, U). And i enqueues the request on Q if

-331-

the,link between i and j is incoming at i. If Q is non-empty,
and state # CS, i calls giveTokenToFmntOfQ() provided i
holds the token. Non-token holding node i calls
fonvardRequest() if I Ql =I or if Q is non-empty and the
link to next has reversed. If I Q l t 2 and REQUESTU, p) is
at the front of Q, then i sends out a UPDATE(i, p) message
to report that the highest priority of the messages in Q of
node i is changed to be p .
0 Receiving a release message: Suppose node i holds the
token, then when a RELEASE(r) message sent by a
neighboring node j is received at node i , i sets t=t+r. Note
that if state = ES at this time point, it means that i is waiting
for r2h (within the giueTokenToFrontOfQ() procedure) to
enter the CS, where h is the number of resources i requests.
After i=t+l is executed, if t2h, then node i can stop the
waiting and can enter the CS. Otherwise, node i keeps
waiting within the giveTokenToFrantOfQ() procedure for
the condition t2h to be true to enter the CS. For the
condition that node i does not hold the token, i just calls
fonvardRelease(r) to forward the release message when it
receives a RELEASE(r) message.
0 Receiving the token message: When node i receives a
TOKEN(1) message from some neighbor j , i sets
tokenHolder to true. Then i lowers its height to he lower
than that of the last token holder (i.e., node j) , and informs
all its neighbors of its new height by sending LINK
messages, and calls giveTokenToFmntOfQ() if I Ql >O.
0 Receiving a link information message: When a link
information message LINK from node j is received at node
i , j is added to N and j’s height is recorded in htVectoru]. If
j’s request message is in Q and j is an outgoing link, then j’s
request message is removed from Q. If node i has no
outgoing links and is not the token holder, i calls
raiseHeightO so that an outgoing link will be formed.
Otherwise, if Q is non-empty and the link to next has
reversed, i calls fonvanfRequest() since it must send
another request (reroute the request) for the token.
0 Link failing: When node i senses the failure of a link to a
neighboring node j , it removes j from N and sets
receivedLlNfi] to m e . And ifj’s request message is in Q,
the request is deleted from Q. Then, if i is not the token
holder and i has no outgoing links, i calls raiseHeight0. If
node i is not the token holder, Q i s non-empty, and the link
to nexf has failed, i calls fonvardRequesf() since it must
send another request (reroute the request) for the token.
0 Link forming:,When node i detects a new link to node j ,
i sends a LINK message to j .
Below, we introduce the procedures called by the event

handling procedures mentioned above.
0 Procedure giveTokenToFmntOfQ(): Node i dequeues the
fist element on Q and sets nexf equal to the first element. If
next = i , then i checks if tzh, where t is the field of
TOKEN(t) message recording the number of unoccupied
resources and h denotes the number of resources node i
requests. If ,so, i sets et-h and then j enters the CS.
Otherwise, i waits for the condition tSh to be true. After i

enters the CS, if Q is not empty then i recursively calls
giueTokenToFrantOfQ() procedure to pass TOKEN
message to the node at the front of Q to allow concurrent
access of the resources. Now, consider the case of next # i.
In this case, i lowers hfVector[next] to (height.h,, height.h,
-1, next), so that any incoming REQUEST message will be
sent to next. Node i also sets tokenHolder to false, and then
sends a TOKEN@) message to next. If Q is non-empty after
sending the token message to next, a request message
REQUEST(i, p) (p is the priority of the request message at
the front of Q) is sent to nexf immediately following the
token message so that the token will eventually be returned
to i.
0 Procedure raiseHeighf(): Called at non-token holding
node i when i loses its last outgoing link. Node i raises its
height using the partial reversal method of [GBSl] and
informs all its neighbors of its height change with LINK
messages. Every node v is deleted from Q if v is at a
outgoing link. If Q is not empty at this point,
foiwardRequesy) is called since i must send another request
(reroute request) for the token.
0 Procedure forwardRequesf0: Selects node i’s
lowest-height neighbor to be next. Sends a request message
REQUEST to next.
0 ProcedurefonvardReleoseir): A non-token holding node
i selects its lowest-height neighbor to he next and sends a
release message RELEASE(r) to next. Note that the
fonvardRelease(r) procedure is never called by a
token-holding node.

m. Comctness
Theorem 1. The algorithm ensures the mutual exclusion
property.
Proof: The algorithm assumes a unique token with the field
t for recording the number of unoccupied resources out of k
shared resources, where t=k initially. When a node wishes
to enter the CS, it must fust own the token and then checks
if f is larger than the number of requested resources. If so,
the node decreases the number of requested resources from
f and enters the CS. Thus, no more than k resources can be
accessed concurrently. The theorem holds.
Theorem 2. The algorithm ensures the highest priority first
serve (HPFS) property.
Proof: When a node receives a request, it checks whether or
not the request’s priority exceeds the priority of the request
at the front of its local queue. If so, the priority of the
received message exceeds all the priorities of the requests
in the local queue, An UPDATE message is sent to next to
report the higher priority newly found. The UPDATE
message propagates along the path indicated by next until
the token holder is reached or until the priority of the
received request does not exceed the priority of the request
at the front of the local queue, Nodes receiving UPDATE
messages will adjust requests’ positions in local queues
according to the updated priorities. Thus, the token Will first
be passed to the node with the highest priority. According to

-332-

the proposed algorithm, the node with the highest priority
will hold the token until it acquires enough resources and
enters the CS. The theorem holds.

Below, we prove that the proposed algorithm satisfies the
bounded delay property by first showing that a requesting
node owns the token eventually. Consider the logical graph
whose arcs are indicted by next variables (from the node of
a larger height value to the node of a smaller height value).
Since the next variable stores the neighboring node with the
smallest height value and all the height values are totally
ordered, the logical graph has no cycles and thus is a DAG
(Directed Acyclic Graph). We want to show that the DAG
is token oriented, i.e., for every node i , there exists a
directed path originating at node i and terminating at the
token holder. We present Lemma I , which has been proved
in [21].
Lemma 1. If link changes cease, the logical graph whose
arcs are indicated by next variables is a token oriented DAG
On the basis of L e m a 1, we can prove that a requesting
node (a node in the ES) owns token eventually.
Theorem 3. The algorithm ensures the hounded delay
property.
Proof When a token holder i is not in the ES, it passes the
token to the node j at the front of the queue Q. Node i then
removes j from Q after passing the token. Afterwards, if Q
is not empty, i will send a request message to j so that the
token will eventually be returned to i . Furthermore, the
proposed algorithm applies aging procedure to increase the
priorities of pending requests in queue. Thus, every node’s
request will eventually be of the highest priority and be at
the front of the queue to have the opportunity to own the
token. Since the algorithm make a node send request
message to the node indicated by next, we have, by Lemma
1, that there is a request chain toward the token holder for
every requesting node with pending request. Hence, a
requesting node owns the token eventually.

According to the proposed algorithm, the node with the
highest priority will hold the token and enter the CS when
f z h , uhere t i s the field in the token message recording the
number of unoccupied resources out of totally k shared
resources, and h is the number of resources the node
requests, O m , IS/&. Since each node sends release
message to the token-holding node along the path indicated
by nexf pointer to add the number of released resources to t
when it leaves the CS, the condition t t h eventually holds
and the node with the highest priority will eventually enter
the CS.
To sum up, every node will eventually become the node

with the highest priority and will eventually enter the CS.
The theorem holds.

For non-rea-time applications, we may define the priority
to be the ordered pair (r, i), where r is the number of
requested resources and i is the node id. Then, the proposed
algorithm ensures the maximum degree of concurrency
property.
Theorem 4. The algorithm ensures the maximum degree of

concurrency property.
Proof: When a node receives a request, it checks whether or
not the request’s priority exceeds the priority of the request
at the front of its local queue. If so, the priority of the
received message exceeds all the priorities of the requests
in the local queue. An UPDATE message is sent to nexf to
report the higher priority newly found. The UPDATE
message propagates along the path indicated by next until
the token holder is reached or until the priority of the
received request does not exceed the priority of the request
at the front of the local queue. Nodes receiving UPDATE
messages will adjust requests’ positions in local queues
according to the updated priorities. Thus, the token will first
be passed to the node with the highest priority. According to
the priority definition, the node requesting for the fewest
resources will have the highest priority. Thus, the node
requesting the fewest resources will enters the CS first.
Moreover, when a node is in the CS, it will pass its token to
the node, say j , whose request is at the front of priority
queue. Node j must be the node with the priority only lower
than i’s. We can conclude that the node requesting the
fewest resources, the second fewest resources, the third
fewest resources, will be in the CS one by one. Thus, the
degree of the concurrency is maximized.

IV. Concluding Remarks
In this paper, we have proposed a prioritized distributed

h-out of-k mutual exclusion algorithm for MANETs with
rea-time or prioritized applications. The proposed
algorithm is sensitive to link forming and link breaking and
thus is suitable for MANETs. However, if we do not
consider the link breaking and forming, the proposed
algorithm can also be applied to distributed systems
consisting of stationary nodes that communicate with each
other by exchanging messages over wired links. The
proposed algorithm ensures the “highest priority first serve”
property for real-time applications. For non-real-time
applications, we may associate the priority with the number
of requested resources to achieve the maximum degree of
concurrency.

References
[l] . Y. Afek, D. Dolev, E. Gahi, M. Memtt and N. Shavit,
“A hounded first-in, first-enabled solution to the 1-exclusion
problem,” in Proc. 1990 Workshop on Distributed
Algorithms, pp. 422-431.
[2]. Ye-In Chang, “A priority-based approach to mutual
exclusion for read-time distributed systems,” in Pmc. of the
1992 Inremational Computer Symposium, pp. 36-43, 1992.
[3]. Ye-In Chang, “Design of Mutual Exclusion
Algorithms for Real-Time Distributed Systems,” Journal of
Information Science and Engineering, 10(4):527-548, Dec.
1994.
[4]. E.W.Dijkstra, “Solution of a problem in concurrent
programming control,” Communications of the ACM,
8(9):569, Sept. 1965.

-333-

[5]. E.Gafni and D.Bertsekas,‘Distributed algorithms for
generating loop-free routes in networks with frequently
changing topology,” IEEE Transactions on Communications,
C-29(1): 11-18, 1981.
[6]. A. Goscinski, “A synchronization algorithm for
processes with dynamic priorities in computer networks
with node failures,” Information processing Leners,
32:129-136, 1989.
[7]. A. Goscinski, ‘Two algorithms for mutual exclusion
in rea-time distributed computer systems,’’ The Journal of
Parallel and Distributed Computing, 9(77-82), 1990.
181. A. Housni, M. Trkbel, “Improvement of the distributed
algorithms of mutual exclusion by introducing the priority,”
in Pmc. of International Conference on Information Sociery
in the 21 Century: Emerging Technologies and New
Challenges, 2000.
[9]. A. Housni, M.Trkhel, “A new distributed mutual
exclusion algorithm for two groups,” in Pmc. of 2001 ACM
Symposium on Applied Computing (SACZOO/), Track on
Parallel and Distributed Processing, 2001.
[lo]. A. Housni, M. Trkhel, “Distributed mutual exclusion
by groups based on token and permission,” in Pmc. of
ACS/IEEE International Conference on Computer Systems
and Applications, 2001.
[l I]. J.-R. Jiang, “A group mutual exclusion algorithm for
ad hoc mobile networks,” in Pmc. of the 6th International
Conference on Computer Science and Informatics, pp.
266-270, March 2002. ’

1121. J:R. Jiang, “A Distributed h-out of-k Mutual
Exclusion Algorithm for Ad Hoc Mobile Networks,” in Proc.
of the 2nd International Workshop on Parallel and
Disrribured Compuring Issues in Wireless Nerworks and
Mobile Computing, 2002.
[13]. J:R. Jiang, “Distributed h-out of-k mutual exclusion
using k-coteries,” in Pmc. of the 3rd International
Conference on Parallel and Distributed Computing,
Application and Technologies (PDCAT’OZ), pp. 218-226,

[14]. Y. Manabe, R. Baldoni, “M. Raynal, S. Aoyagi,
“k-Arbiter: a safe and general scheme for h-out of-k mutual
exclusion,” Theoretical Computer Science., 193(1-2):
97-112, 1998.
[15]. Y. Manabe, N. Tajima, “(h-k)-arbiter for h-out of-k
mutual exclusion problem,” in Pmc. of 1999 IEEE
International Conference on Distributed Computing Systems,
pp. 216-223, 1999.
1161. E Mueller, “Prioritized token-based mutual exclusion
for distributed systems,” in Pmc. of 12th IPPSBPDP
Conference, 1998.
[17]. B. M. K Qazzaz, “Anew prioritized mutual exclusion
algorithm for distributed systems,” Docroral Thesis, Dept of
Camp. SCI., Southern Illinois University, Carbondale, 1994.
[IS]. M. Raynal, “A distributed solution for the k-out of-m
resources allocation problem,” Lecture Notes in Computer
Sciences, Springer Verlag, 497:599’609, 1991.
[19]. M. Trebel, A. Housni, “Introduction of the priority in

2002.

distributed mutual exclusion algorithms,” in Pmc. of SC1’99
(3th World Multiconference on Systemics, Cybernetics and
Informatics) and ISAS’99(5th Int. Conf on Informarion
systems Analysis and Synthesis), 1999.
1201. M. Trkhel, A. Housni, ‘The prioritized and dishibuted
synchronization in the structured groups,” ICCS, 2001,
LNCS No. 2073, pp. 294-303,2001,
[21]. J. Walter, G Cao, and M. Mohanty, A k-mutual
exclusion algorithm for ad hoc wireless networks, in Pmc.
of the first annual Workshop on Principles of Mobile
Computing (POMC 2001). August, 2001.
[22]. J. Walter, J. Welch, and N. Vaidya, “A mutual
exclusion algorithm for mobile ad hoc networks,” Wireless
Networks, 7(585-600), 2001.

-334-

