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Abstract--In this paper, we propose a distributed prioritized 
h-out of-k mutual exclusion algorithm for a mobile ad hoc 
network (MANE7) with real-time or prioritized applications. 
The h-out of-k mutual exclusion problem is a generalization 
of the k-mutual exclusion problem and the mutual exclusion 
problem. The proposed algorithm is sensitive to link 
forming and link breaking and thus is suitable for a 
MANET. If we do not consider the link breaking and 
forming, the proposed algorithm can also be applied to 
distributed systems consisting of stationary nodes that 
communicate with each other by exchanging messages over 
wired links. For non-real-time applications, we may 
associate the priority with the number of requested 
resources to achieve the muximum degree of concurrency. 
Keywords: mobile ad hoc networks, distributed systems, 
mutual exclusion, concurrency, real- time systems 

I. Introduction 
In this paper, we propose a distributed prioritrzed h-our 

ofk mutual exclusion algorithm for a mobile ad hoc 
network (MANET) with real-time or prioritized applications. 
A MANET consists of mobile nodes that can communicate 
with each other by sending messages either over a direct 
wireless link, or over a sequence of wireless links including 
one or more intermediate nodes. Wueless link “failures” 
occur when nodes move so that they are no longer within 
transmission range of each other. Likewise, wireless link 
“formation” occurs when nodes move so that they are again 
within transmission range of each other. If we do not 
consider the link breaking and forming, the proposed 
algorithm can also be applied to distributed systems 
consisting of stationary nodes that communicate with each 
other by exchanging messages over wired links. For 
non-real-time applications, we may associate the priority 
with the number of requested resources to achieve the 
muximum degree of concurrency. 

Consider a MANET with k identical shared resources. The 
h-out of-k mutual exclusion algorithm for a MANET is 
used to control nodes so that each node can access h 
resources out of totally k shared resources, 1 5 h 5 k, with 
the constraint that no more than k resources can be accessed 
concurrently [17]. It is a generalization of the k-mutual 
exclusion algorithm [l] and the mutual exclusion algorithm 
[31. If we choose h to be 1, then the h-out of-k mutual 

exclusion algorithm is a k-mutual exclusion one. If we 
choose both h and k to be 1, then the Ir-out of-k mutual 
exclusion algorithm becomes a mutual. exclusion algorithm. 

In the h-out of-k mutual exclusion problem, nodes access 
the shared resource in the “first come first serve (FCFS)” 
manner; however, in the prioritized h-out of-k mutual 
exclusion problem, nodes access the shared resource in the 
“highest priority first s e n e  (HPFS)” manner. The HPFS 
criterion arises in real time systems where the tasks have to 
meet deadlines; it also arises in prioritized systems where 
key tasks must proceed quickly for good performance. In 
real-time systems, the node with the task of the earliest 
deadline is assumed to have the highest priority; while i n  
the prioritized systems, the node with the most significant 
task is assumed to have the highest priority. In 
non-real-time systems, we may associated the priority with 
the number of requested resources to achieve the maximum 
degree of concurrency. 
There are several distributed prioritized mutual exclusion 

algorithms [ 11[2][5][6][7][8][ 15][ 16][ 191 proposed in the 
literature. There are also several algorithms [12][13][14] 
proposed to solve the h-out of-k mutual exclusion problem 
for distributed systems. One possible way to provide mutual 
exclusion.related primitives for MANETS is to execute the 
existent distributed algorithms on top of routing protocols, 
as depicted in Fig. 1. The other way to provide the mutual 
exclusion related primitives is to consider the essence of the 
primitives and dose not rely on any routing protocols (refer 
to Fig. 2). Some mutual exclusion algorithms for MANETs 
[ 1 01 [ 1 1 I U01 [2 1 I take this approach. 
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Figure 1. Roviding mutual exclusion primitives based an routing 

proi~c0Is for MANETS. 
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Figure 2. Providing mutual exclusion plimitives not bawl  on routing 
protmls for MANETs. 

With the suucture of Fig. 2, Jiang proposed a token-based 
algorithm to solve the h-out of-k mutual exclusion problem 
for MANETs in [l l] .  Jiang's algorithm applies the RL 
(Reverse Link) technique to maintain a token oriented DAG 
(directed acyclic graph). A node should gain the token 
along the DAG to access the shared resource. The RL 
technique endows Jiang's algorithm with the ability of 
being sensitive to link forming and link breaking. This is 
why Jiang's algorithm can be applied to MANETs. 

However, the algorithm in [ l l ]  has the drawback of low 
concurrency. For example, consider a MANET with 5 
resources, where 2 of them are occupied. Now, suppose 
node a holds the token and nodes a ,  b, and c are requesting 
for 4, 2 and 1 resources, respectively. According to the 
algorithm in [ l l ] ,  node a still cannot enter the CS since the 
number of available resources is less then the number of 
requested resources. At the same time, node b and node c 
cannot enter the CS although the available resources can 
fulfill the requests of node b and c simultaneously. The 
degree of concurrency will be increased if we allow nodes b 
and c to enter the CS without waiting for node a .  
In this paper, we also utilize the concept of RL to 

implement prioritized h-out of-k mutual exclusion 
algorithm for MANETS. In addition to the concept of the 
RL technique, we also utilize the concept of priority queue 
and prioriry update to endow the algorithm with the ability 
of'HPFS property. Furthermore, we adopt the concept of 
aging to prevent a node from being always preempted by 
nodes with higher priorities. Thus, the proposed algorithm 
is starvation-free and can be properly applied to h4ANETs 
with real-time or prioritized applications. For non-real-time 
applications, the algorithm can achieve the maximum 
degree of concurrency if we associate the priority with the 
number of requested resources. 

The rest of this paper is organized as follows. In section 2, 
we intloduce some preliminaries. We present the proposed 
algorithm in section 3, and prove the algorithm correctness 
in section 4. At last, we give concluding remarks in section 
5 .  

II. Preliminaries 
In [21], a token-based mutual exclusion algorithm, named 

RL (Reverse Link), for a MANET is proposed. The RL 
algorithm takes the following 6 assumptions, which we also 
take in this paper. 
1. The nodes have unique node identifiers. 
2. Node failures do not occur. 
3. Communication links are bidirectional and FIFO. 

4. A link-level protocol ensures that each node is aware of 
the set of nodes with which it can currently directly 
communicate by providing indications of link formations 
and failures. 

5. Incipient link failures are detectable. 
6. Partitions of the network do not occur. 

The RL algorithm also assumes that there is a unique 
token initially and utilizes the partial reversal technique in 
[4] to maintain a token oriented DAG (directed acyclic 
graph). In the RL algorithm, when a node wishes to access 
the shared resource, it sends a request message along one of 
the communication link. Each node maintains a queue 
containing the identifiers of neighboring nodes from which 
it has received requests for the token. The RL algorithm 
totally orders nodes so that the lOWeSt-ordered node is 
always the token holder. Each node dynamically chwses its 
lowest-ordered neighbor as its outgoing link to the token 
holder. Nodes sense link changes of immediate neighbors 
and reroute requests based on the order newly created. The 
token holder grants the token according to the requests' 
positions in the queue, and thus requests are eventually 
served while the DAG is being re-oriented and blocked 
requests are being rerouted. 
Now we present the scenario for the prioritized h-out of 

k-mutual exclusion problem. Consider a MANET 
consisting of n nodes and k shared resources. Nodes are 
assumed to cycle through a non-critical section (NCS), an 
entry section (ES), and a critical section (CS). A node i can 
access the shared resource only within the critical section. 
Every time a node i wishes to access h shared resources, 
node i moves from its NCS to the ES, waiting for entering 
the CS. The prioritized h-out of-k mutual exclusion 
problem is concerned with how to design an algorithm 
satisfying the following properties: 
Mutual Exclusion: 
No more than k resouces can be accessed concurrently. 
Highest Priority First Serve: 
If there are nodes competing for entering the CS, the node 
with the highest priority will proceed first. 
Bounded Delay: 
If a node enters the ES, then it eventually enters the CS. 

the following additional property. 
Maximum Degree of Concurrency: 
Under the constraint of no more than k resources can he 
accessed simultaneously, there should always be a 
maximum number of nodes in the CS concurrently. 
The Proposed Solution 
In this section, we propose a distributed token-based 

algorithm to solve the prioritized h-out of k-mutual 
exclusion problem for a MANET. The algorithm is assumed 
to execute in a system consisting of n nodes and k shared 
resources. Nodes are labeled as 0, 1, ..., n-I. We assume 
there is a unique token held by node 0 initially. The 
variables used in the algorithm for node i are listed below. 
Note that the subscript "i" is included when needed. 
0 state: Indicates whether node i is in the ES, CS, or NCS 

For non-real-time applications, we would like to have 
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state. Initially, smte = NCS. 
0 N: The set of all nodes (neighbors) in direct wireless 
contact with node i. Initially, N contains all neighbors of 
node i .  
0 height: A triplet (h,, h2, i) representing the height of node 
i. Links are considered to be directed from higher-height 
nodes toward lower-height nodes, based on lexicographic 
ordering. For example, if the height of node 1, height,, is (2,  
3, I )  and the height of node 2 ,  height2, is (2, 2, 2), then 
height, z height? and the link would he directed from node 
1 to node 2. Initially, heighto = (0, 0, 0), and heightj,@ 0, is 
initialized so that the directed links form a DAG where 
each node has a directed path to node 0. 
0 htkctor: An array of triplets representing node i s  view 
of height of node j ,  j e N  . Initially, htVector[il = height of 
n d e j .  From node i’s viewpoint, the link between i and j is 
incoming to node i if htVector[i] >height,, and outgoing 
from node i if htkctortj]  < heighti. 
0 next: Indicates the location of the token from node is 
viewpoint. When node i holds the token, next = i ,  otherwise 
next is the node on an outgoing link. Initially, next = 0 if i = 
0, and next is an outgoing neighbor otherwise. 
0 tokenHolder: a boolean variable indicating whether or 
not node i holds the token. If node i holds the token, 
tokenHolder is set to true. It is set to false, otherwise. 
0 Q: a queue which contains requests of neighbors. 
Initially, Q = 0. Operations on Q include enqueue, dequeue; 
and delete. The enqueue operation inserts an item at the rear 
of Q, and the dequeue operation returns and removes the 
item at the front of Q, and the delete operation removes a 
specified item from Q, regardless of its location. 
0 receivedlinkb]: a boolean array indicating whether 
LINK message has been received from node j ,  to which a 
token message was recently sent. Any height information 
received at node i from a node j for which receivedLJN,Q] 
is false will not be recorded in htVector. Initially, 
receivedLINK;~] = true for all j e N i .  
0 formingb]: a boolean array set to true when link to node 
j has been detected as just forming and reset to false when 
first L W K  message arrives from node j .  Initially, 
formingib]=false for all jt Ni. 
0 formHeight[jl: an array of triplets storing value of i’s 
height when new link to j f i s t  detected. Initially, 
formh‘eightjb]=heighti for all j e  N;. 

The following are the messages used in the algorithm. 
Note that each message is attached with the height value, 
denoted by ht, of the node sending the message. Also note 
that we use “the front node of Q to indicate “the node 
whose request message is at the front of queue Q.” 
0 TOKEN@): a unique message for nodes to enter the CS. 
The data field t, OQSk, of the message indicates the number 
of available resources. 

REQUEST(i, p):  When i wishes to enter the CS to access 
h resources with priorityp, it sends out REQUEST(i, p )  to 
the neighbor indicated by next. 
0 RELEASE(r): When i leaves the CS to release r copies 

of resources, it first calls aging procedure to increase the 
priority of every request message in Q. And if node i is the 
token holder, it just increases t of TOKEN@) by r and  sends 
TOKEN@) to the front node (if exists) of Q. If i is not the 
token holder, it just sends RELEASE(r) to the neighbor 
indicated by next. 
0 UF’DATE(i, U ) :  When i receives a new request with 
priority U, which is higher than those of messages in Q, it 
sends out UPDATE(i, U) to the neighbor indicated by next 
to update its request priority to be U to reflect the priority 
change. 
0 LINK a message used for nodes to exchange their 
height values with neighbors. 
The proposid algorithm is event-driven. An event at node 

i consists of receiving a message from another node, or an 
indication of link failure or formation from the link layer, or 
a signal from the application layer for accessing or 
releasing resources. Each event triggers a procedure which 
is assumed to be executed atomically. Below, we present 
the overview of the event-driven procedures: 
0 Requesting h copies of resources with priority p :  When 
node i requests to enter the CS with priority p to access h 
resources, it enqueues the message REQUEST(i, p )  on Q 
and sets s fafe  to ES. If node i does not currently hold the 
token and i has a single element on its queue (the single 
element must he REQUEST(;, p)) ,  i t  callsfowurdRequestO 
to send a REQUEST(i, p )  message to the neighbor 
indicated by next. If node i holds TOKEN(t), i then checks 
if t t h .  If so, i sets PI- h, removes i from Q and sets state to 
CS to access h resources, since i will be at the front of Q. 
On the contrary, if t<h, then node i persists in waiting for 
the condition t2h to be true to enter the CS. Note that after 
node i enters the CS, if Q is not empty, then i sends 
TOKEN(t) to the requesting neighbor at the front of Q (by 
cal1,ing giveTokenToFmntOfQ() procedure) to allow the 
concurrent access of resources. 
0 Receiving a priority update message: When a UPDATEG, 
U )  message sent by a neighbor j is received at node i ,  i 
changes the priority of j ’ s  request message and adjust its 
position in Q according to the new priority if j’s request 
message is in Q. If j ’ s  request is moved to the front of Q 
due to the priority update and i does not hold the TOKEN, 
then i should also send out a W D A T E ( i ,  U) message to the 
neighbor indicated by next to report the priority change on 
behalf of j .  
0 Releasing r copies of resources: When node i leaves the. 
CS to release r copies of resources, it sets stute=NCS. If 
node i does not hold the token, it calls fonvardRelease(r) to 
send out RELEASE(r) message to the neighbor indicated 
by next. On the other hand, if i holds the token TOKEN(& i 
sets f=t+r. 
0 Receiving a request message: When a REQUESTQ, p )  
message sent by a neighborj is received at node i, i ignores 
the message if ~ c e i v e d L J N ~ ]  is false. Otherwise, i 
changes hfVectorb1 according to the height value attached 
with REQUESTG, U). And i enqueues the request on Q if 

-331- 



the,link between i and j is incoming at i. If Q is non-empty, 
and state # CS, i calls giveTokenToFmntOfQ() provided i 
holds the token. Non-token holding node i calls 
fonvardRequest() if I Ql =I or if Q is non-empty and the 
link to next has reversed. If I Q l t 2  and REQUESTU, p )  is 
at the front of Q, then i sends out a UPDATE(i, p )  message 
to report that the highest priority of the messages in Q of 
node i is changed to be p .  
0 Receiving a release message: Suppose node i holds the 
token, then when a RELEASE(r) message sent by a 
neighboring node j is received at node i ,  i sets t=t+r. Note 
that if state = ES at this time point, it means that i is waiting 
for r2h (within the giueTokenToFrontOfQ() procedure) to 
enter the CS, where h is the number of resources i requests. 
After i=t+l is executed, if t2h, then node i can stop the 
waiting and can enter the CS. Otherwise, node i keeps 
waiting within the giveTokenToFrantOfQ() procedure for 
the condition t2h to be true to enter the CS. For the 
condition that node i does not hold the token, i just calls 
fonvardRelease(r) to forward the release message when it 
receives a RELEASE(r) message. 
0 Receiving the token message: When node i receives a 
TOKEN(1) message from some neighbor j ,  i sets 
tokenHolder to true. Then i lowers its height to he lower 
than that of the last token holder (i.e., node j ) ,  and informs 
all its neighbors of its new height by sending LINK 
messages, and calls giveTokenToFmntOfQ() if I Ql >O. 
0 Receiving a link information message: When a link 
information message LINK from node j is received at node 
i ,  j is added to N and j’s  height is recorded in htVectoru]. If 
j’s request message is in Q and j is an outgoing link, then j’s 
request message is removed from Q. If node i has no 
outgoing links and is not the token holder, i calls 
raiseHeightO so that an outgoing link will be formed. 
Otherwise, if Q is non-empty and the link to next has 
reversed, i calls fonvanfRequest() since it must send 
another request (reroute the request) for the token. 
0 Link failing: When node i senses the failure of a link to a 
neighboring node j ,  it removes j from N and sets 
receivedLlNfi] to m e .  And ifj’s request message is in Q, 
the request is deleted from Q. Then, if i is not the token 
holder and i has no outgoing links, i calls raiseHeight0. If 
node i is not the token holder, Q i s  non-empty, and the link 
to nexf has failed, i calls fonvardRequesf() since it must 
send another request (reroute the request) for the token. 
0 Link forming:,When node i detects a new link to node j ,  
i sends a LINK message to j .  
Below, we introduce the procedures called by the event 

handling procedures mentioned above. 
0 Procedure giveTokenToFmntOfQ(): Node i dequeues the 
fist element on Q and sets nexf equal to the first element. If 
next = i ,  then i checks if tzh, where t is the field of 
TOKEN(t) message recording the number of unoccupied 
resources and h denotes the number of resources node i 
requests. If ,so, i sets et-h and then j enters the CS. 
Otherwise, i waits for the condition tSh to be true. After i 

enters the CS, if Q is not empty then i recursively calls 
giueTokenToFrantOfQ() procedure to pass TOKEN 
message to the node at the front of Q to allow concurrent 
access of the resources. Now, consider the case of next # i. 
In this case, i lowers hfVector[next] to (height.h,, height.h, 
-1, next), so that any incoming REQUEST message will be 
sent to next. Node i also sets tokenHolder to false, and then 
sends a TOKEN@) message to next. If Q is non-empty after 
sending the token message to next, a request message 
REQUEST(i, p )  (p is the priority of the request message at 
the front of Q) is sent to nexf immediately following the 
token message so that the token will eventually be returned 
to i. 
0 Procedure raiseHeighf(): Called at non-token holding 
node i when i loses its last outgoing link. Node i raises its 
height using the partial reversal method of [GBSl] and 
informs all its neighbors of its height change with LINK 
messages. Every node v is deleted from Q if v is at a 
outgoing link. If Q is not empty at this point, 
foiwardRequesy) is called since i must send another request 
(reroute request) for the token. 
0 Procedure forwardRequesf0: Selects node i’s 
lowest-height neighbor to be next. Sends a request message 
REQUEST to next. 
0 ProcedurefonvardReleoseir): A non-token holding node 
i selects its lowest-height neighbor to he next and sends a 
release message RELEASE(r) to next. Note that the 
fonvardRelease(r) procedure is never called by a 
token-holding node. 

m. Comctness 
Theorem 1. The algorithm ensures the mutual exclusion 
property. 
Proof: The algorithm assumes a unique token with the field 
t for recording the number of unoccupied resources out of k 
shared resources, where t=k initially. When a node wishes 
to enter the CS, it must fust own the token and then checks 
if f is larger than the number of requested resources. If so, 
the node decreases the number of requested resources from 
f and enters the CS. Thus, no more than k resources can be 
accessed concurrently. The theorem holds. 
Theorem 2. The algorithm ensures the highest priority first 
serve (HPFS) property. 
Proof: When a node receives a request, it checks whether or 
not the request’s priority exceeds the priority of the request 
at the front of its local queue. If so, the priority of the 
received message exceeds all the priorities of the requests 
in the local queue, An UPDATE message is sent to next to 
report the higher priority newly found. The UPDATE 
message propagates along the path indicated by next until 
the token holder is reached or until the priority of the 
received request does not exceed the priority of the request 
at the front of the local queue, Nodes receiving UPDATE 
messages will adjust requests’ positions in local queues 
according to the updated priorities. Thus, the token Will first 
be passed to the node with the highest priority. According to 
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the proposed algorithm, the node with the highest priority 
will hold the token until it acquires enough resources and 
enters the CS. The theorem holds. 

Below, we prove that the proposed algorithm satisfies the 
bounded delay property by first showing that a requesting 
node owns the token eventually. Consider the logical graph 
whose arcs are indicted by next variables (from the node of 
a larger height value to the node of a smaller height value). 
Since the next variable stores the neighboring node with the 
smallest height value and all the height values are totally 
ordered, the logical graph has no cycles and thus is a DAG 
(Directed Acyclic Graph). We want to show that the DAG 
is token oriented, i.e., for every node i ,  there exists a 
directed path originating at node i and terminating at the 
token holder. We present Lemma I ,  which has been proved 
in [21]. 
Lemma 1. If link changes cease, the logical graph whose 
arcs are indicated by next variables is a token oriented DAG 
On the basis of L e m a  1, we can prove that a requesting 
node (a node in the ES) owns token eventually. 
Theorem 3. The algorithm ensures the hounded delay 
property. 
Proof When a token holder i is not in the ES, it passes the 
token to the node j at the front of the queue Q. Node i then 
removes j from Q after passing the token. Afterwards, if Q 
is not empty, i will send a request message to j so that the 
token will eventually be returned to i .  Furthermore, the 
proposed algorithm applies aging procedure to increase the 
priorities of pending requests in queue. Thus, every node’s 
request will eventually be of the highest priority and be at 
the front of the queue to have the opportunity to own the 
token. Since the algorithm make a node send request 
message to the node indicated by next, we have, by Lemma 
1, that there is a request chain toward the token holder for 
every requesting node with pending request. Hence, a 
requesting node owns the token eventually. 

According to the proposed algorithm, the node with the 
highest priority will hold the token and enter the CS when 
f z h ,  uhere t i s  the field in the token message recording the 
number of unoccupied resources out of totally k shared 
resources, and h is the number of resources the node 
requests, O m ,  IS/&. Since each node sends release 
message to the token-holding node along the path indicated 
by nexf pointer to add the number of released resources to t 
when it leaves the CS, the condition t t h  eventually holds 
and the node with the highest priority will eventually enter 
the CS. 
To sum up, every node will eventually become the node 

with the highest priority and will eventually enter the CS. 
The theorem holds. 

For non-rea-time applications, we may define the priority 
to be the ordered pair (r,  i), where r is the number of 
requested resources and i is the node id. Then, the proposed 
algorithm ensures the maximum degree of concurrency 
property. 
Theorem 4. The algorithm ensures the maximum degree of 

concurrency property. 
Proof: When a node receives a request, it checks whether or 
not the request’s priority exceeds the priority of the request 
at the front of its local queue. If so, the priority of the 
received message exceeds all the priorities of the requests 
in the local queue. An UPDATE message is sent to nexf to 
report the higher priority newly found. The UPDATE 
message propagates along the path indicated by next until 
the token holder is reached or until the priority of the 
received request does not exceed the priority of the request 
at the front of the local queue. Nodes receiving UPDATE 
messages will adjust requests’ positions in local queues 
according to the updated priorities. Thus, the token will first 
be passed to the node with the highest priority. According to 
the priority definition, the node requesting for the fewest 
resources will have the highest priority. Thus, the node 
requesting the fewest resources will enters the CS first. 
Moreover, when a node is in the CS, it will pass its token to 
the node, say j ,  whose request is at the front of priority 
queue. Node j must be the node with the priority only lower 
than i’s. We can conclude that the node requesting the 
fewest resources, the second fewest resources, the third 
fewest resources, will be in the CS one by one. Thus, the 
degree of the concurrency is maximized. 

IV. Concluding Remarks 
In this paper, we have proposed a prioritized distributed 

h-out of-k mutual exclusion algorithm for MANETs with 
rea-time or prioritized applications. The proposed 
algorithm is sensitive to link forming and link breaking and 
thus is suitable for MANETs. However, if we do not 
consider the link breaking and forming, the proposed 
algorithm can also be applied to distributed systems 
consisting of stationary nodes that communicate with each 
other by exchanging messages over wired links. The 
proposed algorithm ensures the “highest priority first serve” 
property for real-time applications. For non-real-time 
applications, we may associate the priority with the number 
of requested resources to achieve the maximum degree of 
concurrency. 
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