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Abstract  

 

This paper presents a framework for fault-tolerant distributed mutual exclusion and 

replica control algorithms utilizing overlapping grid quorums, which are sets constructed 

with the aid of grid structures. There are two components of the framework: the first one 

concerns generic representation of grid quorums, and the second one, generic verification 

of the overlapping properties of grid quorums. This framework not only allows us to view 

and verify a variety of grid quorum based algorithms clearly and consistently, but also 

provides us with opportunities to exploit grid quorums for mutual exclusion and replica 

control. With the effectiveness of the framework, we have devised five novel methods of 

grid quorum construction for distributed mutual exclusion and replica control in this paper. 
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1. Introduction  

Overlapping quorums are widely used for synchronizing nodes over a distributed 

system. For example, algorithms in [2, 8-13] apply overlapping quorums to achieve mutual 

exclusion. The concept of these algorithms is simple: a node should collect permissions 

(votes) from all nodes of a quorum to enter the critical section. If we can assure that any 

pair of quorums have a non-empty intersection (i.e., the overlapping property holds) and 

that a node grants its permission to only one node at a time, mutual exclusion is then 

2 



guaranteed. Such algorithms are fault-tolerant in the sense that a quorum may still be 

formed even when some nodes are unavailable due to node and/or communication link 

failures. Many replica control algorithms [1, 3-7] also apply a similar concept to ensure 

consistency of replicated data. The difference between the mutual exclusion and the replica 

control algorithms is that (1) the latter has two types of quorums⎯read and write quorums, 

each for the execution of read and write operations, and (2) the overlapping property 

should hold for any pair of write quorums and any pair of a read quorum and a write 

quorum. 

Many of the above-mentioned algorithms [1, 3-4, 7-10, 12-13] take advantage of grid 

quorums, which are sets constructed with the aid of grid structures. This motivates us to 

generalize these grid quorum based algorithms. Thus, the goal of this paper is to develop a 

framework for fault-tolerant distributed mutual exclusion and replica control algorithms 

using grid quorums. There are two components of the framework: the first one concerns 

generic representation of grid quorums; and the second one, generic verification for the 

overlapping properties of grid quorums. This framework not only allows us to view and 

verify a variety of grid quorum based algorithms clearly and consistently, but also provides 

us with opportunities to exploit grid quorums for mutual exclusion and replica control. 

With the effectiveness of the framework, we will propose five novel methods of grid 

quorum construction for distributed mutual exclusion and replica control in this paper. 

The rest of this paper is organized as follows. In Section 2, we propose generic 

notations for representing grid quorums; we also introduce some lemmas that can facilitate 

the verification of grid quorums' overlapping properties. In Section 3, we represent the 

quorums of the algorithms [1, 3-4, 7-10, 12-13] with our generic notations, and show how 

to prove the quorums' overlapping properties with the lemmas provided in Section 2. We 

then introduce five novel methods of grid quorum construction for distributed mutual 

exclusion and replica control in Section 4. The correctness proofs of these methods are 
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related to the lemmas provided in Section 2. And finally, we conclude this paper with 

Section 5. 

2. The framework 

The framework consists of two components: the first one concerns generic 

representation of grid quorums, and the second one deals with generic verification of grid 

quorums' overlapping properties. Below, we describe the first component in Section 2.1 

and the second component in Section 2.2. 

2.1 Generic notations for grid quorums 

Assume that there are N nodes in the system and they are logically organized as a grid 

structure of R rows and C columns. In Figure 1, for example, 12 nodes are organized as a 

3-row by 4-column grid structure (N=12, R=3, C=4). Below, we introduce notations to 

represent sets (quorums) that partially overlap rows and columns of the grid structure. 

 

Notation 1. The pair  (#r, ∗c) denotes a set that overlaps c columns by r nodes each. 

Notation 2. The pair (∗r, #c) denotes a set that overlaps r rows by c nodes each. 

Notation 3. The pair (#r,←) denotes a set that overlaps column i by all its nodes, 1≤i≤C, 
and meanwhile overlaps column 1,...,column i−1 by r nodes each. 

Notation 4. The pair (↑, #c) denotes a set that overlaps row i by all its nodes, 1≤i≤R, and 
meanwhile overlaps row 1,...,row i−1 by c nodes each. 

 
a b c

e f g h

i j k l

d

 
 

Figure 1. A 3-row by 4-column grid structure composed of 12 nodes. 
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Take the grid structure in Figure 1 for example again, {a, j, g} and {b, k, h}, etc. are 

denoted as (#1,∗3); {a, e, b, j, h, l} and {b, f, g, k, d, h}, etc. are denoted as (#2,∗3); {a, c, d, 

i, j, k} and {e, f, h, j, k, l}, etc. are denoted as (∗2,#3); {a, b, c, d}, {e, f, g, h} and {i, j, k, l} 

are denoted as (∗1,#4); {a, e, i}, {b, f, j}, {c, g, k} and {d, h, l} are denoted as (#3,∗1); {a, 

e, i}, {a, b, f, j} and {e, j, c, g, k}, etc. are denoted as (#1,←); {a, i, b, f, j} and {a, e, f, j, c, 

g, k}, etc. are denoted as (#2,←); {a, b, c, d} and {b, e, f, g, h}, etc. are denoted as (↑,#1); 

{a, b, e, f, g, h}, and {b, c, e, h, i, j, k, l}, etc. are denoted as (↑,#2). 

2.2. Generic proofs for overlapping properties of grid quorums 

In this subsection, we show five lemmas concerning overlapping properties of grid 

quorums. These lemmas are useful in proving the correctness of grid quorum based mutual 

exclusion and replica control algorithms in terms of overlapping properties. 

 

Lemma 1. Let Q1 and Q2 be sets denoted respectively by (#r1,∗c1) and (#r2,∗c2), where 

1≤r1, r2≤R and 1≤c1, c2≤C. Q1 overlaps Q2 if r1+r2>R and c1+c2>C.  

Proof: 

Since c1+c2 > C, there must be at least one column that yields r1 nodes to Q1 and r2 

nodes to Q2. Since r1+r2 > R, there is at least one node belonging to both Q1 and Q2. This 

concludes that Q1 overlaps Q2.   � 

 

Lemma 2. Let Q1 and Q2 be sets denoted respectively by (∗r1,#c1) and (∗r2,#c2), where 

1≤r1, r2≤R and 1≤c1, c2≤C. Q1 overlaps Q2 if r1+r2>R and c1+c2>C.  

Proof: 

Since r1+r2 > R, there must be at least one row that yields c1 nodes to Q1 and c2 nodes 

to Q2. Since c1+c2 > C, there is at least one node belonging to both Q1 and Q2, This 

concludes that Q1 overlaps Q2.   � 
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Lemma 3. Let Q1 and Q2 be sets denoted respectively by (#R,∗c) and (∗r,#C), where 1≤r≤R 

and 1≤c≤C. Then, Q1 overlaps Q2. 

Proof: 

Because Q1 contains c full columns of nodes, Q1 must take c nodes from each row. 

And since Q2 contains r full rows of nodes, there are c×r (≥ 1) nodes belonging to both Q1 

and Q2. This concludes that Q1 overlaps Q2.   � 

 

Lemma 4. Let Q1 and Q2 be sets denoted respectively by (#r1,←) and (#r2,←), where  

1≤r1, r2≤R. Then, Q1 overlaps Q2. 

Proof: 

Without loss of generality, we may assume that Q1 and Q2 contain all nodes of columns 

i and j, i<j, respectively. Q1 must overlap Q2 because Q1 should contain all the nodes of 

column i while Q2 should contain r2 nodes of column i. �      

 

Lemma 5. Let Q1 and Q2 be sets denoted respectively by (↑,#c1) and (↑,#c2), where  

1≤c1, c2≤C. Then, Q1 overlaps Q2. 

Proof: 

Without loss of generality, we may assume that Q1 and Q2 contain all nodes of rows i 

and j, i<j, respectively. Q1 must overlap Q2 because Q1 should contain all the nodes of row 

i while Q2 should contain c2 nodes of row i. �    

3. Representing quorums of grid quorum based algorithms 

Below, we represent the quorums of the grid quorum based algorithms [1, 3-4, 7-10, 

12-13] with the notations proposed in Section 2.1, and relate their correctness proofs 

concerning overlapping properties to the lemmas provided in Section 2.2. The quorums are 
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listed in chronological order. Note that we assume there are N system nodes and they are 

organized as a grid structure with R rows and C columns. 

3.1. Maekawa's mutual exclusion algorithm [8] 

• Quorums: (∗1, #C) ∪ (#R,∗1). 

In this algorithm, a quorum is required to contain both a full row of nodes and a full 

column of nodes. If a square grid is assumed (i.e., R=C= N ), then the algorithm is fully 

distributed, i.e., all quorums are of the same O( N ) size, and each node appears in the 

same number of quorums. The overlapping property of quorums can be inferred from 

Lemma 3. 

3.2. Agrawal and El Abbadi's first replica control algorithm [1] 

• Write quorums: (∗1, #C) ∪ (#R,∗1). 

• Read quorums: either (∗1, #C) or (#R,∗1). 

This algorithm extends Maekawa's algorithm [8] for controlling replicated data. In this 

algorithm, a write quorum is defined as that of Maekawa's algorithm, and a read quorum 

should contain either a full row of nodes or a full column of nodes. The write-write and the 

read-write overlapping properties of the quorums can be shown on the basis of Lemma 3. 

3.3. Neilsen's replica control algorithm [9] 

• Write quorums: (∗1, #C) ∪ (#R,∗1). 

• Read quorums: either (#1,∗C) or (∗R,#1). 

This algorithm further improves Agrawal and El Abbadi's algorithm [1] by using 

higher-availability read quorums, where the availability means the probability that a 

quorum can be formed in an error-prone environment. Note that (#1,∗C) covers (∗1, #C) 

and (∗R,#1) covers (#R,∗1), i.e., there are more sets that can be represented as (#1,∗C) than 

as (∗1, #C) and more sets that can be represented as (∗R,#1) than as (#R,∗1). This accounts 

for the higher read availability of Neilsen's algorithm. The write-write overlapping 
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property can be inferred from Lemma 3, and the read-write overlapping property can be 

inferred from Lemmas 1 and 2. 

3.4. Cheung, Ammar and Ahamad's replica control algorithm [4] 

• Write quorums: (#1,∗C) ∪ (#R, ∗1). 

• Read quorums: (#1,∗C). 

In this algorithm, a read quorum should contain one node for each column, which is 

called a column cover in [4], whereas a column cover plus a full column of nodes can 

constitute a write quorum. The write-write and read-write overlapping properties can be 

inferred from Lemma 1. 

3.5. Kumar, Rabinovich and Sinha's replica control algorithm [7] 

• Write quorums: (#1,∗C) ∪ (#R, ∗1). 

• Read quorums: either (#1,∗C) or (#R, ∗1). 

This algorithm improves Cheung et al's algorithm [4] by allowing a read quorum to 

contain either a column cover or a full column of nodes (the same improvement also 

appeared in [9]). The write-write and read-write overlapping properties can be inferred 

from Lemma 1. 

3.6. Agrawal and El Abbadi's second replica control algorithm [3] 

• Write quorums: (#R, ∗⎡(C+1)/2⎤) 

• Read quorum: (#1, ∗⎡(C+1)/2⎤) 

In this algorithm, a write quorum is required to contain all nodes from a majority of 

columns (i.e., ⎡(C+1)/2⎤ columns), while a read quorum is required to contain only one 

node from a majority of columns. The write-write and read-write overlapping properties 

can be inferred from Lemma 1. 

3.7. Agrawal and El Abbadi's third replica control algorithm [3] 

• Write quorum: (#⎡(R+1)/2⎤, ∗⎡(C+1)/2⎤) 

• Read quorum: (#⎡(R+1)/2⎤,∗⎡(C+1)/2⎤) 
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In this algorithm, both the read and the write quorums are required to contain a 

majority of nodes (i.e., ⎡(R+1)/2⎤ nodes) from a majority of columns (i.e., ⎡(C+1)/2⎤ 

columns). The write-write and read-write overlapping properties can be inferred from 

Lemma 1. 

3.8. Wu's first mutual exclusion algorithm [12] 

• Quorums: either (#1, ∗(C−k+1)) ∪ (#R, ∗k), for some k, 1≤k≤C 
     or   (∗l, #C) ∪ (∗(R−l+1),#1), for some l, 1≤l≤R. 

In this algorithm, there are two types of quorums: a type-1 quorum contains k columns 

of nodes and one node from (C−k+1) columns, where 1≤k≤C, and a type-2 quorum 

contains l rows of nodes and one node form R−l+1 rows, where 1≤l≤R. The overlapping 

properties for any pair of two type-1 quorums, any pair of two type-2 quorums and any 

pair of a type-1 quorum and a type-2 quorum can be inferred from Lemmas 1, 2 and 3, 

respectively. It is worth mentioning that Wu's algorithm outperforms Maekawa's algorithm 

and Cheung et al's algorithm; i.e., if a quorum can be formed in Maekawa's or Cheung et 

al's algorithms then a quorum can be formed in Wu's algorithm, but not vice versa. 

3.9. Wu's second mutual exclusion algorithm [13] 

• Quorums: either (#1, ∗(C−k+1)) ∪ (#R,∗k) for some k, 1≤k≤C  
     or   (#l,∗C) ∪ ( #(R−l+1),∗1), for some l, 1≤l≤R. 

In this algorithm, there are two types of quorums. A type-1 quorum contains k columns 

of nodes and one node from (C−k+1) columns, where 1≤k≤C. And a type-2 quorum 

contains an l-node column cover and a column of (C−l+1) nodes, where 1≤l≤C and an  

l-node column cover stands for a set that contains l nodes for each column. The 

overlapping properties (including a type-1 quorum overlapping a type-1 quorum, a type-2 

quorum overlapping a type-2 quorum, and a type-1 quorum overlapping a type-2 quorum) 

can all be inferred from Lemma 1. 

3.10. Shou and Wang's mutual exclusion algorithm [10] 

• Quorums: (#1, ←). 
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In this algorithm, a quorum should contain all nodes of some column i and one node 

from each of column 1,...,column i−1, where 1≤i≤C. The overlapping property of quorums 

can be inferred from Lemma 4. Note that in the best case, all nodes in column 1 alone can 

constitute a quorum. That is to say, the smallest quorum size is of constant R when R<<C. 

This is a desirable property because the message overhead of a quorum based algorithm is 

directly proportional to the quorum size. 

4. New methods for quorum construction 

In this section, with the effectiveness of the framework, we devise five novel methods 

of quorum construction for distributed mutual exclusion and replica control. As we will 

show, the correctness of these methods in terms of overlapping properties can easily be 

inferred from lemmas provided in Section 2.2. 

4.1. The first method of quorum construction for mutual exclusion 

• Quorums: either (#1,← ) or ( ↑, #1) 

In this method, a quorum is required to contain either (1) all nodes of some column i 

and one node from each of column 1,...,column i−1, where 1≤i≤C or (2) all nodes of some 

row j and one node from each of row 1,...,row j−1, where 1≤j≤R. Note that in the best case, 

only the nodes in column 1 or row 1 are sufficient to form a quorum. Thus, the smallest 

quorum size is the smaller one between R and C. The overlapping property of this method 

can be inferred from Lemmas 3, 4, and 5 along with the fact that (#1,←) contains a full 

column of nodes (i.e., (#R,∗1)) and (↑,#1) contains a full row of nodes (i.e., (∗1,#C)). 

4.2. The second method of quorum construction for replica control 

• Write quorums: either ( #1, ← ) or  ( ↑, #1 ) 

• Read quorums: (#1,∗C) ∪ (∗R,#1) 

This method is an extension of the first method. The write quorum construction is the 

same as that of the first method, and the read quorum should contain one node from each 
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column and one node from each row. The write-write overlapping property of this method 

can be shown in a similar way taken by the first method. And the read-write overlapping 

property can be inferred from Lemmas 1 and 2 along with the fact that (#1,←) contains a 

full column of nodes (i.e., (#R,∗1)) and (↑,#1) contains a full row of nodes (i.e., (∗1,#C)). 

4.3. The third method of quorum construction for replica control 

• Write quorums: (#1, ←). 

• Read quorums: either ( #1, ←) or (#1,∗C). 

In this method, the write quorum construction is the same as that of Shou and Wang's 

algorithm [10]. And a read quorum is either the same as a write quorum or is a 

column-cover. The write-write overlapping property can be inferred from Lemma 4, and 

the read-write overlapping property can be inferred from Lemmas 1 and 4 and the fact that 

(#1,←) contains a full column of nodes (i.e., (#R,∗1)). 

4.4. The fourth method of quorum construction for replica control 

• Write quorums: either (#1, ∗(C−k+1)) ∪ (#R, ∗k), for some k, 1≤k≤C 
            or  (∗l, #C) ∪ (∗(R−l+1),#1), for some l, 1≤l≤R. 

• Read quorums: (#1,∗C) ∪ (∗R,#1)   

The write quorums of this method are the same as those of Wu's first mutual exclusion 

algorithm [12], and a read quorum should contain one column cover and one row cover 

(note that a row cover is defined to be a set that contains one node from each row). The 

write-write overlapping property can be inferred from Lemmas 1, 2 and 3 (in the same way 

taken by Wu's first mutual exclusion algorithm [12]), and the read-write overlapping 

property can be inferred from Lemmas 1 and 2. 

4.5. The fifth method of quorum construction for replica control 

• Write quorums: either (#1,∗C) ∪ (#R, ∗1) 
     or  (∗1,#C) ∪ (∗R,#1) 
• Read quorums: (#1,∗C) ∪ (∗R,#1). 
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In this method, there are two types of write quorums. A type-1 write quorum contains a 

column of nodes and a column cover, while a type-2 write quorum contains a row of nodes 

and a row cover. And a read quorum should contain both a column cover and a row cover. 

The overlapping properties for any pair of two type-1 write quorums, any pair of two 

type-2 write quorums and any pair of a type-1 write quorum and a type-2 write quorum can 

be inferred from Lemmas 1, 2 and 3, respectively. The read-write overlapping property can 

be inferred from Lemmas 1 and 2. 

5. Conclusion 

In this paper, we have proposed a framework for fault-tolerant distributed mutual 

exclusion and replica control algorithms that utilize overlapping grid quorums. The 

contribution of this paper is three-fold. First, we have provided generic notations to 

represent quorums for a variety of grid quorum based algorithms, allowing us to view grid 

quorum based algorithms clearly and consistently. Second, we have provided generic 

proofs for the overlapping properties of grid quorums. These proofs can facilitate the 

correctness proofs for grid quorum based algorithms in terms of overlapping properties. 

And third, with the effectiveness of the framework, we have proposed five novel methods 

of quorum construction for distributed mutual exclusion and replica control. 

In our future work, we will concentrate on making the framework more complete. We 

are planning to develop generic procedures to produce grid quorums and generic analysis 

tools to measure performance of grid quorums on the aspects of quorum size, quorum 

availability, and so on. 
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