
 1

A Distributed Group k-Exclusion Algorithm using k-Write-Read Coteries

Jehn-Ruey Jiang
Department of Computer Science and Information Engineering

National Central University, Chung-Li, 320, Taiwan
E-mail: jrjiang@csie.ncu.edu.tw

Abstract

In this paper, we introduce a novel quorum system, called
k-write-read coterie to aid the design of the first group k-exclusion
algorithm for the distributed system. A k-write-read coterie is an
extension of both the write-read coterie and the k-coterie. It is a
pair (W, R) of collections of sets (quorums), where W is a
k-coterie and every quorum Q in W intersects every quorum P in
R. We show how to construct k-write-read coteries with the help
of torus structures and propose a distributed group k-exclusion
algorithm using k-write-read coteries. The proposed algorithm has
the merits of unbounded degree of concurrency and can
accommodate unlimited number of resources. We prove the
correctness of the proposed algorithm and analyze it in terms of
message complexity and synchronization delay. The proposed
algorithm has message complexity of 2|Q|+4 to 6n+2|Q∪P|+1 and
synchronization delay of 3 to |Q∪P|+3, where n is the number of
system nodes, Q∈W and P∈R.
Keywords: mutual exclusion, group mutual exclusion, k-exclusion,
distributed algorithms, concurrency
1. Introduction

In this paper, we propose a novel quorum system, called
k-write-read coterie to aid the design of group k-exclusion
algorithm for distributed systems. A distributed system consists of
shared resources and autonomous nodes which are interconnected
and can communicate with each other by passing messages. A
node may occasionally request to enter the critical section (CS) to
access one of the resources. According to different accessing
criteria, there arise different synchronization problems, such as the
mutual exclusion, the k-exclusion, the group mutual exclusion and
the group k-exclusion problems, etc.

The mutual exclusion problem deals with how to control nodes
so that only one node is allowed to access a shared resource at a
time. For the group mutual exclusion problem, a group of nodes
requesting to access the same resource may do so concurrently.
However, if two nodes request to access different resources, only
one node can proceed. The k-exclusion problem is an extension of
the mutual exclusion problem. It restricts that at most k nodes can
access shared resources at a time. The group k-exclusion problem
is an extension of both the k-exclusion and the group mutual
exclusion problems. It restricts that there are at most k different
groups of nodes accessing k different resources concurrently. We
would like to point out here that we adopt the definition of the
group k-exclusion proposed in [14] rather than the one proposed in
[6].

A quorum system is a collection of sets, called quorums,
satisfying the intersection property. There are various types of
quorum systems with different intersection properties, such as the
coterie [2], the k-coterie [1, 3], the write-read coterie [4] and the
m-group quorum system [8], etc. They are useful for designing
distributed algorithms to solve mutual exclusion related problems.
Algorithms using quorum systems are resilient to node failures
and/or network partitioning and usually have low message cost.
Thus, this paper will concentrate on quorum-based algorithms.

To the best of our knowledge, there exists no quorum-based
group k-exclusion algorithm for distributed systems. The existent
group k-exclusion algorithms [14, 15] are designed for the shared
memory model. However, there do exist quorum-based
k-exclusion algorithms and group mutual exclusion algorithms for
distributed systems. The quorum-based k-exclusion algorithms [5,
9] cannot be easily adapted to be group k-exclusion ones. This is
because the former deals with the conflict of more than k nodes
requesting to access shared resources simultaneously while the
latter deals with mainly the conflict of requests from different
groups of nodes for accessing different types of resources (with the
limitation that at most k groups of nodes are allowed to proceed).
Thus, it is better to search for quorum-based solutions to the group
k-exclusion problem by exploring existent quorum-based group
mutual exclusion algorithms.

There are four quorum-based distributed group mutual
exclusion algorithms proposed in the literature [8, 13]. In [8],
Joung proposes three quorum-based algorithms using m-group
quorum systems for solving the group mutual exclusion problem,
where an m-group quorum system is a list (C1,…,Cm) of m
collections of sets (quorums). The basic idea of the first algorithm
is simple: Each resource Ri is associated with a collection Ci of
quorums, 1≤i≤m. A node u requesting Ri should send request
messages to collect permissions (grants) from all members of an
arbitrary quorum Q in Ci. The group mutual exclusion is
guaranteed because a node is allowed to grant its permission to
only one node at a time, and any quorum in Ci intersects any
quorum in Cj, i≠j. To avoid deadlock, each message is attached
with a totally-ordered priority of Lamport’s time stamp [10]. On
receiving a request sent by node u for resource Ri, a node v defers
to grant the request if v has granted a request sent by some node w
for resource Rj, and w’s request has higher priority than u’s. On the
other hand, if the granted request of w has lower priority, node v
should send PREEMPT message to node w to get back its
permission. On receiving the PREEMPT message from v, node w
should immediately send back the granted permission to v if it is
not in CS. As shown in [8], the message complexity of the first
algorithm is 3|Q| to 6|Q|, where Q is the arbitrarily selected
quorum.

Joung’s first algorithm in [8] has the drawback that the degree
of concurrency is limited. For example, the number of nodes that
can access Ri concurrently is limited by the degree of Ci (i.e., the
number of pairwise disjoint quorums in Ci). To eliminate the
drawback, Joung proposes the second algorithm, which is similar
to the first algorithm except that it allows a node to grant its
permission to more than one node at a time. A node u’s request for
resource Ri is granted if there is no request conflict, i.e., there is no
pending/granted requests for some resource other than Ri. However,
if conflicts occur, they should be resolved as follows: A node
requesting resource Rj should yield to another node u requesting
resource Ri if u’s request has priority higher than any
pending/granted request for Rj. As shown in [8], the message
complexity is 3|Q| to 3|Q|+3r|Q|, where Q is the arbitrarily selected

 2

quorum and r is the number of permissions which can be granted
by a node. As suggested in [8], r should be (the number of nodes
that may request Ri)/(degree of Ci) to keep message complexity
low. However, the limitation of r leads to bounded degree of
concurrency.

To achieve unbounded degree of concurrency, Joung proposes
the third algorithm. It is similar to the second algorithm except that
it requires a node to send requests to members of a selected
quorum by a small-ID to large-ID order. To be more precise, a
node u requesting resource Ri randomly selects a quorum Q in Ci
and only sends a request to the member (say v) of Q with the
smallest ID. When node v decides to grants its permission to u, it
does not send permission to u directly but instead sends a request
on behalf of u to the member of Q with the second small ID.
Sending requests to members of Q according small-ID to large-ID
order then goes on, and only the member with the largest ID has to
send its permission to u. In this manner, the message complexity is
reduced to be 2|Q|+1 and no deadlock will occur because there is
no circular waiting. However, the synchronization delay is
prolonged, which is the delay from the time a node requests to
enter CS until the time it enters CS. This is because a node sends
requests to all members of Q in the one-by-one manner. Joung’s
third algorithm further utilizes the concept of reference node to
achieve unbounded degree of concurrency. On receiving node u’s
request for resource Ri, node v grants the request and sets u as the
reference node if v has not granted its permission yet. Subsequent
requests for Ri are also granted so long as the reference node is still
in CS. In addition to unbounded degree of concurrency, the
concept of the reference node is also used to minimize the context
switch complexity. (We said that a context switch occurs when the
current entry to CS and the next entry to CS are for different
resources.)

Except their individual drawbacks, Joung’s three algorithms
have a common drawback that the number of shared resources is
limited to be m for an m-group quorum system. To eliminate the
drawback of limited number of shared resouces, Toyomura et al.
propose a group mutual exclusion algorithm using coteries in [13].
Toyomura el al.’s algorithm is similar to Joung’s second algorithm
except that it uses coteries instead of m-group quorum systems. To
access a resource Ri, a node u should select an arbitrary quorum Q
in the coterie and send requests to all members of Q. A node v in Q
grants the request and sets Ri as the current resource if it has not
granted its permission to any node yet. A subsequent request for
the current resource Ri can be granted immediately if there is no
request conflict. The conflict resolution and the deadlock
prevention mechanisms are also similar to those of Joung’s second
algorithm. To render unbounded degree of concurrency, Toyomura
et al.’s algorithm does not lay a limitation on the number of
permissions that a node can grant. However, this makes the
message complexity to be 3|Q| to 3|Q|+3n|Q|, where n is the
number of nodes in the system. Furthermore, it does not take the
advantage of the reference node concept. Thus, Toyomura et al.’s
algorithm might have a high context switch complexity.

In this paper, we propose a distributed group k-exclusion
algorithm using k-write-read coteries to achieve unbounded degree
of concurrency and unlimited number of resources. A k-write-read
coterie is an extension of both the write-read coterie and the
k-coterie. It is a pair (W, R) of collections of sets (quorums),
where W is a k-coterie and every quorum Q in W intersects every
quorum P in R. As we will show, we can construct k-write-read
coteries with the help of torus structures [11]. We will prove the
correctness of the proposed algorithm and analyze it in terms of

message complexity and synchronization delay.
This rest of the paper is organized as follows. In section 2, we

introduce the k-write-read coterie and show how to construct it
with the help of torus structures. In section 3, we propose a
distributed group k-exclusion algorithm using k-write-read coteries.
The correctness proof of the proposed algorithm is given in
section 4. In section 5, we analyze the proposed algorithm and
compare it with related ones. And at last, we give concluding
remarks in section 6.
2. k-Write-Read Coteries

A quorum system is a collection of sets (quorums), satisfying
the intersection property, which states that any pair of quorums
should have a non-empty intersection. There are various types of
quorums systems with different types of intersection properties,
such as the coterie [2], the k-coterie [1, 3], the write-read coterie [4]
and the m-group quorum system [8], etc. They are useful for
designing distributed algorithms to solve different synchronization
problems. In this section, we propose a novel quorum system,
called k-write-read coterie, to aid the design of the group
k-exclusion algorithm for distributed systems. Below, we first give
the formal definition of the k-write-read coterie.

A k-write-read coterie (k-wr coterie) is a pair (W, R), where
W and R are collections of subsets (quorums) of U. A k-wr coterie
should satisfy the following properties:
Write k-Intersection Property: There are at most k pairwise
disjoint quorums in W.
Write Non-intersection Property: For any h (< k) pairwise disjoint
quorums Q1,...,Qh in W, there exists a quorum Qh+1 in W such that
Q1,...,Qh+1 are pairwise disjoint.
Write-Read Intersection Property: Every quorum Q in W
intersects every quorum P in R.
Write Quorum Minimality Property: Any quorum in W is not a
super set of another quorum in W.
Read Quorum Minimality Property: Any quorum in R is not a
super set of another quorum in R.

By the definition, the reader can check that W is a k-coterie.
For example, let W={{1, 2, 3}, {1, 2, 4}, {5, 6, 7}, {5, 6, 8}, {1, 7,
8}, {2, 7, 8}, {3, 4, 5}, {3, 4, 6} } and R={{1, 3, 5, 7}, {1, 3, 5, 8},
{1, 3, 6, 7}, {1, 3, 6, 8}, {1, 4, 5, 7}, {1, 4, 5, 8}, {1, 4, 6, 7}, {1, 4,
6, 8}, {2, 3, 5, 7}, {2, 3, 5, 8}, {2, 3, 6, 7}, {2, 3, 6, 8}, {2, 4, 5, 7},
{2, 4, 5, 8}, {2, 4, 6, 7}, {2, 4, 6, 8}}. We can check that (W, R) is
a 2-wr coterie because every quorum is minimal, W is a 2-coterie,
and any quorum Q in W intersects any quorum P in R.

Below, we show how to construct k-wr coteries with the help
of torus structures. A torus structure is an array of nodes of r rows
and c columns [11]. The rows are arranged in a wraparound
manner; i.e., a row i is followed by row i+1 for 1≤i<r and row r is
followed by row 1. In [11], Land and Mao utilize the torus
structure to construct k-torus quorums to constitute k-coteries. A
k-torus quorum is defined to be a set containing all the nodes of
some row j, plus one node from each of the ⎣r/(k+1)⎦ rows
following row j. In [11], the collection of k-torus quorums is
shown to be a k-coterie. (Actually, the non-intersection property is
not proved in [11]. The non-intersection property, however, can
easily be proved if we restrict ⎣r/(k+1)⎦ < ⎣r/k⎦ according to the
comments in [16].) The minimal quorum size of a k-torus quorum
is approximately 2()1/(+kn), which is obtained by choosing
c=)1/(+kn and r=)1(+kn , where n the number of nodes in
the system.

We can easily construct k-wr coteries on the basis of k-torus
quorums. If we let W be the collection of k-torus quorums, and let
R be the collection of row covers, each of which is a set

 3

containing a node from every row, then the pair (W, R) is a k-wr
coterie. The write quorum of the k-wr coterie (W, R) has the
minimal size 2()1/(+kn), and the read quorum of the k-wr
coterie (W, R) has the size of r, where r is the number of rows of
the torus structure.
3. The Proposed Algorithm

Consider a distributed system consisting of n nodes and
several shared resources. Nodes are assumed to cycle through a
non-critical section (NCS), an entry section (ES), a wait section
(WS), a critical section (CS), and an exit section (XS). A node u can
access the shared resource only within the critical section. Every
time when node u wishes to access a shared resource, node u
moves from NCS to ES, waiting for entering CS. Node u may or
may not enter WS; it depends on whether or not u has observed
any existent reference node that is or will be in CS. When node u
has completed the access of the shared resource, it moves from CS
to XS and from XS to NCS finally. Please refer to Figure 1 to see
the cycle of a node.
⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯
loop forever
 NCS (non-critical section)
 ES (entry section)
 WS (wait section)
 CS (critical section)
 XS (exit section)
endloop
⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯
 Figure 1. The cycle of a node.

Nodes are said to be of the same group if they request to
access the same resource. The group k-exclusion problem is
concerned with how to control distributed nodes to satisfy the
following properties:
k-Exclusion: At most k groups of nodes are allowed to enter CS
concurrently.
k-Progressing: If there are less than k groups of nodes in CS at a
time, then one more group of nodes are allowed to enter CS
concurrently.
Concurrent Entering: Nodes of a group are allowed to enter CS
concurrently if at least one node of the group is in CS.
Bounded Delay: If a node enters ES, then it eventually enters CS.

We can check that when k is taken as 1, the group k-exclusion
problem becomes the group mutual exclusion problem (however,
there is no k-progressing property for the case of k=1).
Furthermore, if we modify the concurrent entering property to be
that only one node of a group is allowed to enter CS at a time, then
we got the k-exclusion problem, which in turn becomes the mutual
exclusion problem when k is taken as 1.

Below, we introduce the proposed algorithm, which uses
k-wr coteries for solving the group k-exclusion problem. The basic
idea of the proposed algorithm is as follows: A node should send
request messages to collect enough grants of a write quorum to
enter CS to access a shared resource. To increase the concurrency,
a node is allowed to enter CS immediately if a reference node in
CS grants it to do so. A node is said to be a reference node if it has
got grants from all members of some write quorum. A node is a
follower if it enters CS with a grant from a reference node. Once a
node becomes a follower, it sends release message to all the nodes
that it has sent request messages. A reference node r registers its
ID for every node of a read quorum so that other nodes of the same
group can check r’s existence when collecting grants from
members of a write quorum (recall that a read quorum intersects

any write quorum). There may be several reference nodes; one of
the reference nodes is chosen as the leader. The leader is
responsible of initiating and closing the entry of CS for a group of
nodes. To close the entry of CS, the leader should clear its
registration of being the leader. And after all followers have left
CS, the leader should send release messages to all the nodes that it
has sent request messages to leave CS; other nodes just send
release message to its reference node to leave CS. There are at
most k leaders at a time since there are at most k pairwise disjoint
write quorums. Thus, no more than k groups of nodes can be in CS
concurrently.

To avoid deadlock, the request message send by node u is
attached with a totally-ordered priority (t, u), which is a time
stamp observing Lamport’s causality rules [10]. The priority (t, u)
is said to be higher than priority (t′, u′) if t<t′ or if t=t′ and u<u′.
Each subsequent message related to the request message is also
attached with the same priority parameter (t, u) for the sake of
distinguishability. Furthermore, we assume that each node has a
unique ID and that each message is not lost and is delivered in
FIFO order.

Our algorithm uses the following messages and variables:
� REQUEST(t, u, x): the request message sent by node u for

entering CS to access resource x with priority (t, u).
� GRANT(t, u, x): the message to reply to REQUEST(t, u, x)

message.
� R-GRANT(t, u, x): the message sent by a reference node to

allow node u to enter CS.
� COMPETE(t, u, x): the message for u to compete as the leader

for accessing resource x.
� SUCCESS(t, u, x): the message to notify that node u succeeds

to be the leader for accessing resource x.
� FAIL(t, u, x): the message to notify that node u fails to be the

leader for accessing resource x.
� NOTICE(t, u, x): the message to notify that node u will be a

follower of some node.
� FOLLOW(t, u, x): the message to send to u to notify that u will

be a follower of some node.
� RELEASE(t, u, x): the message for u to release the grant

related to message REQUEST(t, u, x).
� R-RELEASE(t, u, x) : the message for u to release the grant

sent from the reference node.
� CLEAR(t, u, x): the message to clear the registration of u

being the leader for accessing resource x related to
REQUEST(t, u, x).

� PREEMPT(t, u, x): the message for a node to get back its
permission related to REQUEST(t, u, x).

� YIELD(t, u, x): the message for u to send back the
permission related to REQUEST(t, u, x).

� (W, R): a k-wr coterie.
� QUEUE: a local variable, which is a priority queue used by a

node to store REQUEST messages received.
� GRANTOR: a local variable, which is a set used by a node to

store the IDs of the nodes that have replied GRANT messages
to the node.

� GRANTEE: a local variable, which is a set used by a node to
store the REQUEST messages to which the node has replied
GRANT message. Since a node just replies GRANT message
to one REQUEST message at a time, GRANTEE is thus either
a singleton or an empty set.

� REFERENCE: a local variabale, which is a set used by a node
to store the ID of the nodes that have replied R-GRANT
message, i.e., a set to store the reference node.

 4

� FOLLWER: a local variable, which is a set used by a node to
store the IDs of its followers.

� REGISTRAR: a local variable, which is a set used by a node to
store the IDs of the nodes that have registered u to be the
leader.

� LEADER.x: a local variable, which is used to register the
leader ID for accessing resource x. A node may register leaders
for different resources. Thus, there may be several LEADER
variables, each is attached with a resource ID for the sake of
distinguishability.

Below, we describe in detail the operations of the proposed
algorithm.
� When node u requests to access resource x:
 Node u first enters ES (the entry section). It then selects an
arbitrary write quorum Q from W, concurrently sends REQUEST(t,
u, x) message to each member in Q, and waits for the reply. Node
u puts the IDs of the nodes that have replied GRANT(t, u. x)
messages into GRANTOR. If GRANTOR equals to Q (i.e., all
members in Q reply GRANT(t, u, x) messages), then u enters WS
(the wait section). If not so, node u enters the pending period to
wait for receiving enough GRANT messages to enter WS. In the
pending period, u puts into GRANTOR the ID of every node
sending GRANT(t, u, x), and checks if GRANTOR contains a
write quorum in W. If so, then u can enter WS. Before entering
WS, node u adjusts GRANTOR to be a quorum in W. To
maximize the concurrency, node u sends RELEASE(t, u, x)
message to each node v before entering WS, where v is the node
which is not in GRANTOR and to which u has sent REQUEST(t,
u, x).

If u still cannot enter WS after a specified period of time of
pending, then u randomly reselects a quorum Q′, Q′≠Q. Node u
then sends REQUEST(t, u, x) message to each node v and enters
the pending period as mentioned above, where node v is the node
that is in Q′ but not in GRANTOR.
 However, if a node u in ES receives a R-GRANT(t, u, x)
message from some node r, then u sends RELEASE(t, u, x) to
every node which u has sent REQUEST(t, u, x), sets GRANTOR
to be empty, sets REFERENCE={r} and enters CS immediately.
Node r is said to be the reference node of node u. Afterward, if
node u receives any GRANT(t, u, x) message, node u just ignores
the message. However, if node u receives R-GRANT(t, u, x)
message from some node w, w≠r, then it sends R-RELEASE(t, u, x)
to w immediately.
 After a node u enters WS, it selects an arbitrary read quorum
P from R and sends COMPETE(t, u, x, Q∪P) message to nodes in
Q∪P to compete as the leader of the group of nodes requesting
resource x. The sending of COMPETE message is with the
small-ID to large-ID order. To be more precise, node u first sends
COMPETE(t, u, x, Q∪P, Z) to node f, where Z is a set that is
empty initially and f=first(Q∪P), the node of the smallest ID in
Q∪P. On receiving COMPETE(t, u, x, Q∪P), a node v forwards
the message to next(v, Q∪P) and sets LEADER.x (LEADER for
resource x) to be {u} if LEADER.x is empty. For the case of
LEADER.x being empty, node v also sends NOTICE message to
every node w, and sends FOLLOW messages to node u for every
node w, where w is in QUEUE that requests for resource x and w is
not in Z. The NOTICE and the FOLLOW messages are to notify
that node w is a follower of node u. After sending the NOTICE
and the FOLLOW messages, node v adds every node w into the set
Z. Note that if v is the node with the largest ID in Q∪P, v does not
forward COMPETE(t, u, x, Q∪P, Z) but instead sends
SUCCESS(t, u, x) to notify that u is the leader to open the entry of

CS for accessing resource x. On the other hand, if LEADER.x is
set to be w when node v receives COMPETE(t, u, x, Q∪P, Z),
node v decides that w is preferable to u to be the leader. For this
case, node v sends to u message FAIL(t, u, x) to notify u that it
fails to be the leader and it will be a follower of node w. Node v
then sends FOLLOW(t, u, x) message to w on behalf of node u. On
receiving FOLLOW(t, u, x) message, w sends R-GRANT(t, u, x)
to node u once it can enter CS or if it has been in CS.
� When u wishes to release resource x:
 Node u first leaves CS and enters XS. If node u is the leader,
then node u sends CLEAR(t, u, x) message to every node in
REGISTRAR and set REGISTRAR to be empty. Afterwards, node
u checks if FOLLOWER is empty, which means that node u has
received R-RELEASE messages from all members in
FOLLOWER. If so, node u sends RELEASE message to every
node in GRANTOR, sets GRANTOR to be empty and enters NCS.
If node u is not the leader, then it just checks if FOLLOWER is
empty. If so, it sends R-RELEASE message to the node in
REFERENCE, set REFERENCE to be empty and enters NCS.
� When v receives REQUEST(t, u, x) message from u:
 If LEADER.x is set to be w, then v sends message NOTICE(t,
u, x) to u to notify that u will be a follower of some node. Node v
also sends message FOLLOW(t, u, x) to node w on behalf of u to
notify that u is a follower waiting for w’s grant to enter CS.
 If LEADER.x is not set and GRANTEE is empty, then v
replies GRANT(t, u, x) and adds REQUEST(t, u, x) into
GRANTEE. If GRANTEE is not empty, then v inserts
REQUEST(t, u, x) into QUEUE. Let the sole element of
GRANTEE is REQUEST(t′, u′, x′). If REQUEST(t, u, x) is not at
the front of QUEUE, or REQUEST(t, u, x) has lower priority than
REQUEST(t′, u′, x′), then v adds REQUEST(t, u, x) into QUEUE.
On the contrary, if REQUEST(t, u, x) is at the front of QUEUE
and REQUEST(t, u, x) has higher priority than REQUEST(t′, u′,
x′), then v sends PREEMPT(t′, u′, x′) to u′ to get back the
permission granted and waits for u′ to reply. If u′ is still in the
entry section, u′ will reply YIELD(t′, u′, x′) message when
receiving PREEMPT(t′, u′, x′) from v. If u′ has already been in the
critical section, then u′ sends R-GRANT(t′, u′, x′) to u′ and put u′
in GRANTEE. Note that if v has already sent PREEMPT(t′, u′, x′)
message to u′ due to some REQUEST message received earlier
than REQUEST(t, u, x), then u does not have to send any
PREEMPT(t′, u′, x′) message to v.
When node v receives YIELD(t′, u′, x′) message from u′, then v
exchanges the storing locations of REQUEST(t′, u′, x′) and
REQUEST(t, u, x), i.e., moves REQUEST(t, u, x) to GRANTEE,
and moves REQUEST(t′, u′, x′) to QUEUE. Afterwards, node v
sends GRANT(t, u, x) message to node u.
� When node u receives NOTICE(t, u, x) message from v:
 Node u sets GRANTOR to be empty and sends RELEASE(t, u,
x) to every node w, where w is a node to which u has ever sent
REQUEST(t, u, x) message but has not sent RELEASE(t, u, x)
message yet. Then, node u just keep waiting R-GRANT(t, u, x)
message to enter CS.
� When node w receives FOLLOW(t, u, x) message from v:
 On receiving FOLLOW(t, u, x), node w will add u into
FOLLOWER. Node w will sends R-GRANT(t, u, x) to u to enable
u to enter CS after w enters CS.
� When node u receives SUCCESS(t, u, x) message from v:
 Node u becomes the leader for accessing resource x and it can
enter CS immediately. It sets REGISTRAR to be Q∪P, where
Q∪P is the set chosen by node u when sending out COMPETE(t,
u, x, Q∪P) to compete as the leader.

 5

� When node u receives FAIL(t, u, x) message from v:
 Node u sends RELEASE(t, u, x) to every node w, where w is a
node to which u has ever sent REQUEST(t, u, x) message but has
not sent RELEASE(t, u, x) message yet. Node u also sets
GRANTOR to be empty and ignore any subsequent GRANT(t, u,
x) message. Node u also sends CLEAR(t, u, x) message for every
node in P∪Q whose ID is smaller than v to clear the registration of
u being the leader.
� When node u receives R-GRANT(t, u, x) message from w:
 Node u sets REFERENCE to be {w} and enters CS.
� When v receives RELEASE(t, u, x) message from u:
 Node v removes REQUEST(t, u, x) from GRANTEE or from
QUEUE. If QUEUE is not empty (let REQUEST(t′, u′, x′) be at
the front of QUEUE), then v removes REQUEST(t′, u′, x′) from
QUEUE, adds REQUEST(t′, u′, x′) into GRANTEE, and sends
GRANT(t′, u′, x′) to u′.
� When w receives R-RELEASE(t, u, x) message from u:
 Node w removes u from FOLLOWER. If w is the leader and
w is in XS and FOLLOWER is empty, then node w sends
RELEASE message to every node in GRANTOR, sets GRANTOR
to be empty and enters NCS. If node w is not the leader, then it just
checks if FOLLOWER is empty. If so, it sends R-RELEASE
message to the node in REFERENCE, set REFERENCE to be
empty and enters NCS.
� When v receives CLEAR(t, u, x) message from u:
 Node v just set LEADER.x to be empty.
� When u receives PREEMPT(t, u, x) message from v:

If u is not in CS and v is in GRANTOR, then u removes v
from GRANTOR, and sends YIELD(t, u, x) message to v. On the
other hand, if u is in CS or in WS, then u just does nothing.
4. Correctness

In this section, we show the correctness of the proposed
algorithm.
Lemma 1. There is no circular following relationship.
Proof:

Suppose there is a circular following relationship: u
a

→ v
b

→…
c

→ w
d

→ u, where u
a

→ v stands for that u is a follower of the
node v, which is detected when u tries to register itself as the
leader in node a but finds that v has registered as the leader at node
a already. Since the proposed algorithm demands a node to register
itself as the leader by the small-ID to large-ID order, we have
a<b<c<d. By w

d

→u, it follows that u has registered at node d,
which means u should have registered at node a. Contradicts
occurs; the lemma thus holds. □
Lemma 2. There is at most one leader for each resource.
Proof:

Suppose that both node u and node v are elected as the leader
for accessing resource x. We have that u has registered at every
node of Q∪P and v has registered at every node of Q′∪P′ for Q,
Q′∈W and P, P′∈R. Since only a unique node can register as the
leader at one node and (P∪Q)∩(P′∪Q′)≠∅, we can conclude that
contradiction occurs. The lemma thus holds. □
Lemma 3. There is exactly one leader of a group of nodes for each
resource.
Proof: This is a direct consequence of Lemma 1 and Lemma 2. □
Theorem 1. (k-Exclusion) No more than k groups of nodes can
enter CS concurrently.
Proof:

In the proposed algorithm, the leader of a group of nodes is
responsible of initiating and closing the entry of CS. Below, we

show that there are at most k leaders to prove the theorem. A node
should collect grants from all nodes of a write quorum to be the
leader of some group. Since there are at most k pairwise disjoint
write quorums in a k-wr coterie and every node only gives its grant
to only one node at a time, there are at most k leaders. □
Theorem 2. (k-Progressing) If there are less than k groups of nodes
in CS, then one more group of nodes are allowed to enter CS
concurrently.
Proof:

The proposed algorithm demands a non-leader node to send
back the grants it has taken from the members of write quorums as
soon as it knows that itself cannot be the leader. The theorem holds
due to the write quorum non-intersection property of the k-wr
coterie. □
Theorem 3. The proposed algorithm incurs no deadlock.
Proof:

Suppose deadlock occurs due to the following waiting cycle:

u
a

→v

b

→…
c

→ w
d

→ u, where u
a

→ v stands for that v preempts u,
whose priority is a. We can conclude that a∝b∝c∝d∝a, where
a∝b stands for that priority a is lower than priority b. We have
a∝a, which is a contradiction. The theorem thus holds. □
Theorem 4. The proposed algorithm incurs no starvation.
Proof:

Suppose a group G of nodes requesting resource x starve. Let
node u be the node of G whose request has the smallest time stamp
(the highest priority). Without loss of generality, we may assume
the following scenario of starving for node u: No nodes of G can
collect enough grants to enter WS after u sending REQUEST(t, u)
to write quorum members, say q and others, while some node v
repeatedly gets grants from q and others to enter WS and CS for
accessing resources other than x again and again. The repeated
entrances and exits of CS of node v demand the following repeated
message sending actions: v sends REQUEST to q, q sends
GRANT to v (or q sends FOLLOW to some reference node w, and
w sends R-GRANT to v), and v sends RELEASE to q. Because
when each node receives a message, it adjusts its logical clock, the
first component of the time stamp, to be one more than the
maximum logical clock ever seen, we can conclude that eventually
v’s REQUEST has a time stamp larger than (t, u). Thus, q will not
send its grant to v because v’s request has lower priority than u’s.
Contradiction occurs; the theorem thus holds. □
5. Analysis

In this section, we analyze the proposed algorithm in terms of
message complexity and synchronization dealy. Below, we first
analyze the message complexity. We first consider scenario that
there is only one node u requesting to access resource x. We
analyze the best case for such a scenario as follows. When node u
requests to access resource x, it selects an arbitrary write quorum
Q from W, concurrently sends REQUEST(t, u, x) message to each
member in Q, and waits for the reply. Node u can enter WS after it
has received a GRANT message from every member of Q. Node u
then sends a COMPETE message for each member in Q∪P, where
P is a quorum in R. The member of Q∪P with the largest ID then
sends a SUCCESS message to node u to make node u the leader to
enter CS. Afterwards, node u sends CLEAR message for each
member of Q∪P and sends RELEASE message for each member
of Q. Thus, the total message complexity for node u to enter and
leave CS is 2|Q|+2|Q∪P|+1, where Q∈W and P∈R.

Below, we analyze the worst case for the scenario where there
is only one node u requesting for accessing resource x. When node

 6

u requests to access resource x, it selects an arbitrary write quorum
Q from W, concurrently sends REQUEST(t, u, x) message to each
member in Q, and waits for the reply. If a node u cannot get
GRANT messages from all members of Q immediately and if u
does not receive any NOTICE message, node u will continue to
select further quorums to resend REQUEST messages to enter WS.
This makes the proposed algorithm fault-tolerant because u can
still gather enough permissions to enter WS (and enter CS later)
when some members of Q fail. However, resending request
messages incurs more messages. In the worst case, the message
complexity for a node to enter WS is 6n, where n is the number of
system nodes. The worst case occurs when u sends REQUEST
messages to each node v, v sends PREEMPT message to some
node w, w sends YIELD message to v, v sends GRANT message to
u, u sends RELEASE message to v, and at last v sends GRANT
message to r. Note that in the worst case just mentioned, node u
will send one message to every node (including u itself), and each
REQUEST message will incur 5 other messages, namely
PREEMPT, YIELD, GRANT, RELEASE and GRANT. Thus, the
worst case message complexity for a node to enter WS will be 6n.
When node u enters WS, it still needs to send a COMPETE
message for every node in Q∪P to be the leader of accessing
resource x. The node in Q∪P of the largest ID will send a
SUCCESS message to u to announce it to be the leader.
Afterwards, the leader u can enter CS. Finally, the leader u should
send a CLEAR message to each member of Q∪P to leave CS.
Thus, a node needs 2|Q∪P|+1 message to be the leader after it
enters the WS. Therefore, the total message complexity for a node
to enter and leave CS if there is only one node accessing resource
x will be 6n+2|Q∪P|+1, where Q∈W, and P∈R.

Below, we analyze for the scenario where there are already
some nodes in CS accessing resource x. When node u requests to
access resource x, it selects an arbitrary write quorum Q from W,
concurrently sends REQUEST(t, u, x) message to each member in
Q, and waits for the reply. If some node v in Q finds that a
reference node r is now in CS accessing resource x, it will send
NOTICE message to node u, and send FOLLOW message to node
r. On receiving the NOTICE message from v, node u will send
RELEASE message to all members of Q. On receiving the
FOLLOW message, node r will send R-GRANT message to allow
u to enter CS. At last, node u sends R-RELEASE message to r
when it leaves CS. Thus, the message complexity for the scenario
just mentioned is thus 2|Q|+4.

Below, we analyze the synchronization delay, which is the
delay from the time a node invokes a request to enter CS until the
time it enters CS. The synchronization delay is usually measured
by the number of message transmission time. For the scenario
where there is only one node requesting resource x, the
synchronization delay will be at least |Q∪P|+3. This is because a
node u should send REQUEST message to every node of a write
quorum Q in W, and waits to receive GRANT message from every
node of Q to enter WS. After node u enters WS, it should send
COMPETE message according to the small-ID to large-ID order
for every node in Q∪P to be the leader, where P is a read quorum
in R. And the node in Q∪P with the largest ID sends SUCCESS
message to node u to claim that u is the leader. Afterwards, u can
enter CS finally.

For the scenario where there are already some nodes in CS,
the synchronization delay will be at least 3. This is because when a
node u requests to access resource x, it selects an arbitrary write
quorum Q from W, concurrently sends REQUEST(t, u, x) message
to each member in Q, and waits for the reply. If some node v in Q

finds that a reference node r is now in CS accessing resource x, it
will send NOTICE message to node u and FOLLOW message to
node r. On receiving the FOLLOW message, node r will send
R-GRANT message to allow u to enter CS. Thus, the
synchronization delay is at least 3.
6. Conclusion

In this paper, we have proposed a novel quorum system, called
k-write-read coterie, to solve the group k-exclusion problem for
distributed systems. We have also shown how to construct
k-write-read coteries with the help of torus structures and have
proposed a distributed group k-exclusion algorithm using
k-write-read coteries. The proposed algorithm has the merits of
unbounded degree of concurrency and unlimited number of
resources. The proposed algorithm also utilizes the concept of
reference node to reduce the context switch complexity. We have
proved the correctness of the proposed algorithm and analyze it in
terms of message complexity and synchronization delay. For a
distributed system of n nodes, the proposed algorithm has message
complexity of 2|Q|+4 to 6n+2|Q∪P|+1 and synchronization delay
of 3 to |Q∪P|+3, where Q is a write quorum, and P, a read quorum
of a k-write-read coterie.

References
[1] S. Fujita, M. Yamashita and T. Ae, “Distributed k-mutual exclusion
problem and k-coteries,” in Proc. 2nd Internl. Symp. on Algorithms,
Lecture Notes in Computer Science 557, Springer, Berlin, pp. 22-31, 1991.
[2] H. Garcia-Molina and D. Barbara, “How to assign votes in a
distributed system,” JACM., vol. 32, no. 4, pp. 841-860, Oct. 1985.
[3] S.-T. Huang, J.-R. Jiang and Y.-C. Kuo, “k-Coteries for fault-tolerant
k entries to a critical section,” in Proc. of the 13th IEEE International
Conference on Distributed Computing Systems, pp.74-81, 1993.
[4] T. Ibaraki and T. Kameda, "A theory of coteries: mutual exclusion in
distributed systems," IEEE Trans. Parall. and Distrib. Syst., vol. 4, no. 7,
pp. 779-794, July 1993.
[5] J.-R. Jiang, S.-T. Huang, and Y.-C. Kuo, “Cohorts structures for
fault-tolerant k entries to a critical section,” IEEE Trans. on Comp., vol.
48, no. 2, pp. 222-228, 1997.
[6] J.-R. Jiang, “A group k-mutual exclusion algorithm for distributed
systems,” in Proc. of the International Conference on Parallel and
Distributed Computing and Systems (PDCS 2003), pp. 140-145, 2003.
[7] Y.-J. Joung, “Asynchronous group mutual exclusion (extended
abstract),” in Proc. 17th Annual ACM Symposium on Principles of
Distributed Computing (PODC), pp. 51-60, 1998.
[8] Y.-J. Joung, “Quorum-based algorithms for group mutual exclusion,”
in Proc. 15th International Symposium on Distributed Computing
(DISC'01), Springer Lecture Notes in Computer Science 2180, 2001.
[9] H. Kakugawa, S. Fujita, M. Yamashita, and T. Ae, “A distributed
k-mutual exclusion algorithm using k-coterie,” Inf. Process. Lett., vol. 49,
pp. 213-238, 1994.
[10] L. Lamport, “Time, clocks, and the ordering of events in a distributed
system,” CACM., vol. 21, no. 7, pp. 145-159, 1978.
[11] S.-D. Lang and L. J. Mao, “A comparison of two torus-based
k-coteries,” in Proc. of IEEE Int’l Conf. on Parallel and Distributed
Systems, 1998.
[12] M. Maekawa, “A N algorithm for mutual exclusion in
decentralized systems,” ACM Trans. Comput. Syst., vol. 3, no. 2, pp.
145-159, 1985.
[13] M. Toyomura, S. Kamei and H. Kakugawa, “A quorum-based
distributed algorithm for group mutual exclusion,” in Proc. of 4th Int’l
Conf. on Parallel and Distributed Computing, Applications and
Technologies (PDCAT), 2003.
[14] K. Vidyasankar, “A highly concurrent group mutual l-exclusion
algorithm,” in Proc. of 21st Symposium on Principles of Distributed
Computing (PODC), 2002.
[15] K. Vidyasankar, “A simple group mutual l-exclusion algorithm,” Inf.
Process. Lett., vol. 85, no. 2, pp. 79-85, 2003.
[16] S.-M. Yuan and H.-K. Chang, “Comments on ‘Availability of
k-Coterie’ ”, IEEE Trans. on Comp., vol. 42, no. 12, page 1457, 1994.

