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Abstract 

In this paper, we introduce a novel quorum system, called 
k-write-read coterie to aid the design of the first group k-exclusion 
algorithm for the distributed system. A k-write-read coterie is an 
extension of both the write-read coterie and the k-coterie. It is a 
pair (W, R) of collections of sets (quorums), where W is a 
k-coterie and every quorum Q in W intersects every quorum P in 
R. We show how to construct k-write-read coteries with the help 
of torus structures and propose a distributed group k-exclusion 
algorithm using k-write-read coteries. The proposed algorithm has 
the merits of unbounded degree of concurrency and can 
accommodate unlimited number of resources. We prove the 
correctness of the proposed algorithm and analyze it in terms of 
message complexity and synchronization delay. The proposed 
algorithm has message complexity of 2|Q|+4 to 6n+2|Q∪P|+1 and 
synchronization delay of 3 to |Q∪P|+3, where n is the number of 
system nodes, Q∈W and P∈R. 
Keywords: mutual exclusion, group mutual exclusion, k-exclusion, 
distributed algorithms, concurrency 
1. Introduction 

In this paper, we propose a novel quorum system, called 
k-write-read coterie to aid the design of group k-exclusion 
algorithm for distributed systems. A distributed system consists of 
shared resources and autonomous nodes which are interconnected 
and can communicate with each other by passing messages. A 
node may occasionally request to enter the critical section (CS) to 
access one of the resources. According to different accessing 
criteria, there arise different synchronization problems, such as the 
mutual exclusion, the k-exclusion, the group mutual exclusion and 
the group k-exclusion problems, etc.  

The mutual exclusion problem deals with how to control nodes 
so that only one node is allowed to access a shared resource at a 
time. For the group mutual exclusion problem, a group of nodes 
requesting to access the same resource may do so concurrently. 
However, if two nodes request to access different resources, only 
one node can proceed. The k-exclusion problem is an extension of 
the mutual exclusion problem. It restricts that at most k nodes can 
access shared resources at a time. The group k-exclusion problem 
is an extension of both the k-exclusion and the group mutual 
exclusion problems. It restricts that there are at most k different 
groups of nodes accessing k different resources concurrently. We 
would like to point out here that we adopt the definition of the 
group k-exclusion proposed in [14] rather than the one proposed in 
[6]. 

A quorum system is a collection of sets, called quorums, 
satisfying the intersection property. There are various types of 
quorum systems with different intersection properties, such as the 
coterie [2], the k-coterie [1, 3], the write-read coterie [4] and the 
m-group quorum system [8], etc. They are useful for designing 
distributed algorithms to solve mutual exclusion related problems. 
Algorithms using quorum systems are resilient to node failures 
and/or network partitioning and usually have low message cost. 
Thus, this paper will concentrate on quorum-based algorithms. 

To the best of our knowledge, there exists no quorum-based 
group k-exclusion algorithm for distributed systems. The existent 
group k-exclusion algorithms [14, 15] are designed for the shared 
memory model. However, there do exist quorum-based 
k-exclusion algorithms and group mutual exclusion algorithms for 
distributed systems. The quorum-based k-exclusion algorithms [5, 
9] cannot be easily adapted to be group k-exclusion ones. This is 
because the former deals with the conflict of more than k nodes 
requesting to access shared resources simultaneously while the 
latter deals with mainly the conflict of requests from different 
groups of nodes for accessing different types of resources (with the 
limitation that at most k groups of nodes are allowed to proceed). 
Thus, it is better to search for quorum-based solutions to the group 
k-exclusion problem by exploring existent quorum-based group 
mutual exclusion algorithms. 

There are four quorum-based distributed group mutual 
exclusion algorithms proposed in the literature [8, 13]. In [8], 
Joung proposes three quorum-based algorithms using m-group 
quorum systems for solving the group mutual exclusion problem, 
where an m-group quorum system is a list (C1,…,Cm) of m 
collections of sets (quorums). The basic idea of the first algorithm 
is simple: Each resource Ri is associated with a collection Ci of 
quorums, 1≤i≤m. A node u requesting Ri should send request 
messages to collect permissions (grants) from all members of an 
arbitrary quorum Q in Ci. The group mutual exclusion is 
guaranteed because a node is allowed to grant its permission to 
only one node at a time, and any quorum in Ci intersects any 
quorum in Cj, i≠j. To avoid deadlock, each message is attached 
with a totally-ordered priority of Lamport’s time stamp [10]. On 
receiving a request sent by node u for resource Ri, a node v defers 
to grant the request if v has granted a request sent by some node w 
for resource Rj, and w’s request has higher priority than u’s. On the 
other hand, if the granted request of w has lower priority, node v 
should send PREEMPT message to node w to get back its 
permission. On receiving the PREEMPT message from v, node w 
should immediately send back the granted permission to v if it is 
not in CS. As shown in [8], the message complexity of the first 
algorithm is 3|Q| to 6|Q|, where Q is the arbitrarily selected 
quorum.  

Joung’s first algorithm in [8] has the drawback that the degree 
of concurrency is limited. For example, the number of nodes that 
can access Ri concurrently is limited by the degree of Ci (i.e., the 
number of pairwise disjoint quorums in Ci). To eliminate the 
drawback, Joung proposes the second algorithm, which is similar 
to the first algorithm except that it allows a node to grant its 
permission to more than one node at a time. A node u’s request for 
resource Ri is granted if there is no request conflict, i.e., there is no 
pending/granted requests for some resource other than Ri. However, 
if conflicts occur, they should be resolved as follows: A node 
requesting resource Rj should yield to another node u requesting 
resource Ri if u’s request has priority higher than any 
pending/granted request for Rj. As shown in [8], the message 
complexity is 3|Q| to 3|Q|+3r|Q|, where Q is the arbitrarily selected 
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quorum and r is the number of permissions which can be granted 
by a node. As suggested in [8], r should be (the number of nodes 
that may request Ri)/(degree of Ci) to keep message complexity 
low. However, the limitation of r leads to bounded degree of 
concurrency. 

To achieve unbounded degree of concurrency, Joung proposes 
the third algorithm. It is similar to the second algorithm except that 
it requires a node to send requests to members of a selected 
quorum by a small-ID to large-ID order. To be more precise, a 
node u requesting resource Ri randomly selects a quorum Q in Ci 
and only sends a request to the member (say v) of Q with the 
smallest ID. When node v decides to grants its permission to u, it 
does not send permission to u directly but instead sends a request 
on behalf of u to the member of Q with the second small ID. 
Sending requests to members of Q according small-ID to large-ID 
order then goes on, and only the member with the largest ID has to 
send its permission to u. In this manner, the message complexity is 
reduced to be 2|Q|+1 and no deadlock will occur because there is 
no circular waiting. However, the synchronization delay is 
prolonged, which is the delay from the time a node requests to 
enter CS until the time it enters CS. This is because a node sends 
requests to all members of Q in the one-by-one manner. Joung’s 
third algorithm further utilizes the concept of reference node to 
achieve unbounded degree of concurrency. On receiving node u’s 
request for resource Ri, node v grants the request and sets u as the 
reference node if v has not granted its permission yet. Subsequent 
requests for Ri are also granted so long as the reference node is still 
in CS. In addition to unbounded degree of concurrency, the 
concept of the reference node is also used to minimize the context 
switch complexity. (We said that a context switch occurs when the 
current entry to CS and the next entry to CS are for different 
resources.) 

Except their individual drawbacks, Joung’s three algorithms 
have a common drawback that the number of shared resources is 
limited to be m for an m-group quorum system. To eliminate the 
drawback of limited number of shared resouces, Toyomura et al. 
propose a group mutual exclusion algorithm using coteries in [13]. 
Toyomura el al.’s algorithm is similar to Joung’s second algorithm 
except that it uses coteries instead of m-group quorum systems. To 
access a resource Ri, a node u should select an arbitrary quorum Q 
in the coterie and send requests to all members of Q. A node v in Q 
grants the request and sets Ri as the current resource if it has not 
granted its permission to any node yet. A subsequent request for 
the current resource Ri can be granted immediately if there is no 
request conflict. The conflict resolution and the deadlock 
prevention mechanisms are also similar to those of Joung’s second 
algorithm. To render unbounded degree of concurrency, Toyomura 
et al.’s algorithm does not lay a limitation on the number of 
permissions that a node can grant. However, this makes the 
message complexity to be 3|Q| to 3|Q|+3n|Q|, where n is the 
number of nodes in the system. Furthermore, it does not take the 
advantage of the reference node concept. Thus, Toyomura et al.’s 
algorithm might have a high context switch complexity. 

In this paper, we propose a distributed group k-exclusion 
algorithm using k-write-read coteries to achieve unbounded degree 
of concurrency and unlimited number of resources. A k-write-read 
coterie is an extension of both the write-read coterie and the 
k-coterie. It is a pair (W, R) of collections of sets (quorums), 
where W is a k-coterie and every quorum Q in W intersects every 
quorum P in R. As we will show, we can construct k-write-read 
coteries with the help of torus structures [11]. We will prove the 
correctness of the proposed algorithm and analyze it in terms of 

message complexity and synchronization delay. 
This rest of the paper is organized as follows. In section 2, we 

introduce the k-write-read coterie and show how to construct it 
with the help of torus structures. In section 3, we propose a 
distributed group k-exclusion algorithm using k-write-read coteries. 
The correctness proof of the proposed algorithm is  given in 
section 4. In section 5, we analyze the proposed algorithm and 
compare it with related ones. And at last, we give concluding 
remarks in section 6. 
2. k-Write-Read Coteries 

A quorum system is a collection of sets (quorums), satisfying 
the intersection property, which states that any pair of quorums 
should have a non-empty intersection. There are various types of 
quorums systems with different types of intersection properties, 
such as the coterie [2], the k-coterie [1, 3], the write-read coterie [4] 
and the m-group quorum system [8], etc. They are useful for 
designing distributed algorithms to solve different synchronization 
problems. In this section, we propose a novel quorum system, 
called k-write-read coterie, to aid the design of the group 
k-exclusion algorithm for distributed systems. Below, we first give 
the formal definition of the k-write-read coterie. 

A k-write-read coterie (k-wr coterie) is a pair (W, R), where 
W and R are collections of subsets (quorums) of U. A k-wr coterie 
should satisfy the following properties: 
Write k-Intersection Property: There are at most k pairwise 
disjoint quorums in W. 
Write Non-intersection Property: For any h (< k) pairwise disjoint 
quorums Q1,...,Qh in W, there exists a quorum Qh+1 in W such that 
Q1,...,Qh+1 are pairwise disjoint. 
Write-Read Intersection Property: Every quorum Q in W 
intersects every quorum P in R. 
Write Quorum Minimality Property: Any quorum in W is not a 
super set of another quorum in W. 
Read Quorum Minimality Property: Any quorum in R is not a 
super set of another quorum in R. 

By the definition, the reader can check that W is a k-coterie. 
For example, let W={{1, 2, 3}, {1, 2, 4}, {5, 6, 7}, {5, 6, 8}, {1, 7, 
8}, {2, 7, 8}, {3, 4, 5}, {3, 4, 6} } and R={{1, 3, 5, 7}, {1, 3, 5, 8}, 
{1, 3, 6, 7}, {1, 3, 6, 8}, {1, 4, 5, 7}, {1, 4, 5, 8}, {1, 4, 6, 7}, {1, 4, 
6, 8}, {2, 3, 5, 7}, {2, 3, 5, 8}, {2, 3, 6, 7}, {2, 3, 6, 8}, {2, 4, 5, 7}, 
{2, 4, 5, 8}, {2, 4, 6, 7}, {2, 4, 6, 8}}. We can check that (W, R) is 
a 2-wr coterie because every quorum is minimal, W is a 2-coterie, 
and any quorum Q in W intersects any quorum P in R. 

Below, we show how to construct k-wr coteries with the help 
of torus structures. A torus structure is an array of nodes of r rows 
and c columns [11]. The rows are arranged in a wraparound 
manner; i.e., a row i is followed by row i+1 for 1≤i<r and row r is 
followed by row 1. In [11], Land and Mao utilize the torus 
structure to construct k-torus quorums to constitute k-coteries. A 
k-torus quorum is defined to be a set containing all the nodes of 
some row j, plus one node from each of the ⎣r/(k+1)⎦ rows 
following row j. In [11], the collection of k-torus quorums is 
shown to be a k-coterie. (Actually, the non-intersection property is 
not proved in [11]. The non-intersection property, however, can 
easily be proved if we restrict ⎣r/(k+1)⎦ < ⎣r/k⎦ according to the 
comments in [16].) The minimal quorum size of a k-torus quorum 
is approximately 2( )1/( +kn ), which is obtained by choosing 
c= )1/( +kn  and r= )1( +kn , where n the number of nodes in 
the system. 

We can easily construct k-wr coteries on the basis of k-torus 
quorums. If we let W be the collection of k-torus quorums, and let 
R be the collection of row covers, each of which is a set 
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containing a node from every row, then the pair (W, R) is a k-wr 
coterie. The write quorum of the k-wr coterie (W, R) has the 
minimal size 2( )1/( +kn ), and the read quorum of the k-wr 
coterie (W, R) has the size of r, where r is the number of rows of 
the torus structure. 
3. The Proposed Algorithm 

Consider a distributed system consisting of n nodes and 
several shared resources. Nodes are assumed to cycle through a 
non-critical section (NCS), an entry section (ES), a wait section 
(WS), a critical section (CS), and an exit section (XS). A node u can 
access the shared resource only within the critical section. Every 
time when node u wishes to access a shared resource, node u 
moves from NCS to ES, waiting for entering CS. Node u may or 
may not enter WS; it depends on whether or not u has observed 
any existent reference node that is or will be in CS. When node u 
has completed the access of the shared resource, it moves from CS 
to XS and from XS to NCS finally. Please refer to Figure 1 to see 
the cycle of a node. 
⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯ 
loop forever 
  NCS (non-critical section) 
  ES (entry section) 
  WS (wait section) 
  CS (critical section) 
  XS (exit section) 
endloop 
⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯ 
        Figure 1. The cycle of a node. 
 

Nodes are said to be of the same group if they request to 
access the same resource. The group k-exclusion problem is 
concerned with how to control distributed nodes to satisfy the 
following properties: 
k-Exclusion: At most k groups of nodes are allowed to enter CS 
concurrently. 
k-Progressing: If there are less than k groups of nodes in CS at a 
time, then one more group of nodes are allowed to enter CS 
concurrently. 
Concurrent Entering: Nodes of a group are allowed to enter CS 
concurrently if at least one node of the group is in CS. 
Bounded Delay: If a node enters ES, then it eventually enters CS. 

We can check that when k is taken as 1, the group k-exclusion 
problem becomes the group mutual exclusion problem (however, 
there is no k-progressing property for the case of k=1). 
Furthermore, if we modify the concurrent entering property to be 
that only one node of a group is allowed to enter CS at a time, then 
we got the k-exclusion problem, which in turn becomes the mutual 
exclusion problem when k is taken as 1. 

Below, we introduce the proposed algorithm, which uses 
k-wr coteries for solving the group k-exclusion problem. The basic 
idea of the proposed algorithm is as follows: A node should send 
request messages to collect enough grants of a write quorum to 
enter CS to access a shared resource. To increase the concurrency, 
a node is allowed to enter CS immediately if a reference node in 
CS grants it to do so. A node is said to be a reference node if it has 
got grants from all members of some write quorum. A node is a 
follower if it enters CS with a grant from a reference node. Once a 
node becomes a follower, it sends release message to all the nodes 
that it has sent request messages. A reference node r registers its 
ID for every node of a read quorum so that other nodes of the same 
group can check r’s existence when collecting grants from 
members of a write quorum (recall that a read quorum intersects 

any write quorum). There may be several reference nodes; one of 
the reference nodes is chosen as the leader. The leader is 
responsible of initiating and closing the entry of CS for a group of 
nodes. To close the entry of CS, the leader should clear its 
registration of being the leader. And after all followers have left 
CS, the leader should send release messages to all the nodes that it 
has sent request messages to leave CS; other nodes just send 
release message to its reference node to leave CS. There are at 
most k leaders at a time since there are at most k pairwise disjoint 
write quorums. Thus, no more than k groups of nodes can be in CS 
concurrently. 

To avoid deadlock, the request message send by node u is 
attached with a totally-ordered priority (t, u), which is a time 
stamp observing Lamport’s causality rules [10]. The priority (t, u) 
is said to be higher than priority (t′, u′) if t<t′ or if t=t′ and u<u′. 
Each subsequent message related to the request message is also 
attached with the same priority parameter (t, u) for the sake of 
distinguishability. Furthermore, we assume that each node has a 
unique ID and that each message is not lost and is delivered in 
FIFO order. 

Our algorithm uses the following messages and variables: 
� REQUEST(t, u, x): the request message sent by node u for 

entering CS to access resource x with priority (t, u). 
� GRANT(t, u, x): the message to reply to REQUEST(t, u, x) 

message. 
� R-GRANT(t, u, x): the message sent by a reference node to 

allow node u to enter CS. 
� COMPETE(t, u, x): the message for u to compete as the leader 

for accessing resource x. 
� SUCCESS(t, u, x): the message to notify that node u succeeds 

to be the leader for accessing resource x. 
� FAIL(t, u, x): the message to notify that node u fails to be the 

leader for accessing resource x. 
� NOTICE(t, u, x): the message to notify that node u will be a 

follower of some node. 
� FOLLOW(t, u, x): the message to send to u to notify that u will 

be a follower of some node. 
� RELEASE(t, u, x): the message for u to release the grant 

related to message REQUEST(t, u, x). 
� R-RELEASE(t, u, x) : the message for u to release the grant 

sent from the reference node. 
� CLEAR(t, u, x): the message to clear the registration of u 

being the leader for accessing resource x related to 
REQUEST(t, u, x). 

� PREEMPT(t, u, x): the message for a node to get back its 
permission related to REQUEST(t, u, x). 

� YIELD(t, u, x):  the message for u to send back the 
permission related to REQUEST(t, u, x). 

� (W, R): a k-wr coterie. 
� QUEUE: a local variable, which is a priority queue used by a 

node to store REQUEST messages received. 
� GRANTOR: a local variable, which is a set used by a node to 

store the IDs of the nodes that have replied GRANT messages 
to the node. 

� GRANTEE: a local variable, which is a set used by a node to 
store the REQUEST messages to which the node has replied 
GRANT message. Since a node just replies GRANT message 
to one REQUEST message at a time, GRANTEE is thus either 
a singleton or an empty set.  

� REFERENCE: a local variabale, which is a set used by a node 
to store the ID of the nodes that have replied R-GRANT 
message, i.e., a set to store the reference node. 
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� FOLLWER: a local variable, which is a set used by a node to 
store the IDs of its followers. 

� REGISTRAR: a local variable, which is a set used by a node to 
store the IDs of the nodes that have registered u to be the 
leader. 

� LEADER.x: a local variable, which is used to register the 
leader ID for accessing resource x. A node may register leaders 
for different resources. Thus, there may be several LEADER 
variables, each is attached with a resource ID for the sake of 
distinguishability. 

Below, we describe in detail the operations of the proposed 
algorithm. 
� When node u requests to access resource x: 
    Node u first enters ES (the entry section). It then selects an 
arbitrary write quorum Q from W, concurrently sends REQUEST(t, 
u, x) message to each member in Q, and waits for the reply. Node 
u puts the IDs of the nodes that have replied GRANT(t, u. x) 
messages into GRANTOR. If GRANTOR equals to Q (i.e., all 
members in Q reply GRANT(t, u, x) messages), then u enters WS 
(the wait section). If not so, node u enters the pending period to 
wait for receiving enough GRANT messages to enter WS. In the 
pending period, u puts into GRANTOR the ID of every node 
sending GRANT(t, u, x), and checks if GRANTOR contains a 
write quorum in W. If so, then u can enter WS. Before entering 
WS, node u adjusts GRANTOR to be a quorum in W. To 
maximize the concurrency, node u sends RELEASE(t, u, x) 
message to each node v before entering WS, where v is the node 
which is not in GRANTOR and to which u has sent REQUEST(t, 
u, x). 

If u still cannot enter WS after a specified period of time of 
pending, then u randomly reselects a quorum Q′, Q′≠Q. Node u 
then sends REQUEST(t, u, x) message to each node v and enters 
the pending period as mentioned above, where node v is the node 
that is in Q′ but not in GRANTOR. 
    However, if a node u in ES receives a R-GRANT(t, u, x) 
message from some node r, then u sends RELEASE(t, u, x) to 
every node which u has sent REQUEST(t, u, x), sets GRANTOR 
to be empty, sets REFERENCE={r} and enters CS immediately. 
Node r is said to be the reference node of node u. Afterward, if 
node u receives any GRANT(t, u, x) message, node u just ignores 
the message. However, if node u receives R-GRANT(t, u, x) 
message from some node w, w≠r, then it sends R-RELEASE(t, u, x) 
to w immediately.  
    After a node u enters WS, it selects an arbitrary read quorum 
P from R and sends COMPETE(t, u, x, Q∪P) message to nodes in 
Q∪P to compete as the leader of the group of nodes requesting 
resource x. The sending of COMPETE message is with the 
small-ID to large-ID order. To be more precise, node u first sends 
COMPETE(t, u, x, Q∪P, Z) to node f, where Z is a set that is 
empty initially and f=first(Q∪P), the node of the smallest ID in 
Q∪P. On receiving COMPETE(t, u, x, Q∪P), a node v forwards 
the message to next(v, Q∪P) and sets LEADER.x (LEADER for 
resource x) to be {u} if LEADER.x is empty. For the case of 
LEADER.x being empty, node v also sends NOTICE message to 
every node w, and sends FOLLOW messages to node u for every 
node w, where w is in QUEUE that requests for resource x and w is 
not in Z. The NOTICE and the FOLLOW messages are to notify 
that node w is a follower of node u. After sending the NOTICE 
and the FOLLOW messages, node v adds every node w into the set 
Z. Note that if v is the node with the largest ID in Q∪P, v does not 
forward COMPETE(t, u, x, Q∪P, Z) but instead sends 
SUCCESS(t, u, x) to notify that u is the leader to open the entry of 

CS for accessing resource x. On the other hand, if LEADER.x is 
set to be w when node v receives COMPETE(t, u, x, Q∪P, Z), 
node v decides that w is preferable to u to be the leader. For this 
case, node v sends to u message FAIL(t, u, x) to notify u that it 
fails to be the leader and it will be a follower of node w. Node v 
then sends FOLLOW(t, u, x) message to w on behalf of node u. On 
receiving FOLLOW(t, u, x) message, w sends R-GRANT(t, u, x) 
to node u once it can enter CS or if it has been in CS. 
� When u wishes to release resource x: 
    Node u first leaves CS and enters XS. If node u is the leader, 
then node u sends CLEAR(t, u, x) message to every node in 
REGISTRAR and set REGISTRAR to be empty. Afterwards, node 
u checks if FOLLOWER is empty, which means that node u has 
received R-RELEASE messages from all members in 
FOLLOWER. If so, node u sends RELEASE message to every 
node in GRANTOR, sets GRANTOR to be empty and enters NCS. 
If node u is not the leader, then it just checks if FOLLOWER is 
empty. If so, it sends R-RELEASE message to the node in 
REFERENCE, set REFERENCE to be empty and enters NCS. 
� When v receives REQUEST(t, u, x) message from u: 
    If LEADER.x is set to be w, then v sends message NOTICE(t, 
u, x) to u to notify that u will be a follower of some node. Node v 
also sends message FOLLOW(t, u, x) to node w on behalf of u to 
notify that u is a follower waiting for w’s grant to enter CS. 
   If LEADER.x is not set and GRANTEE is empty, then v 
replies GRANT(t, u, x) and adds REQUEST(t, u, x) into 
GRANTEE. If GRANTEE is not empty, then v inserts 
REQUEST(t, u, x) into QUEUE. Let the sole element of 
GRANTEE is REQUEST(t′, u′, x′). If REQUEST(t, u, x) is not at 
the front of QUEUE, or REQUEST(t, u, x) has lower priority than 
REQUEST(t′, u′, x′), then v adds REQUEST(t, u, x) into QUEUE. 
On the contrary, if REQUEST(t, u, x) is at the front of QUEUE 
and REQUEST(t, u, x) has higher priority than REQUEST(t′, u′, 
x′), then v sends PREEMPT(t′, u′, x′) to u′ to get back the 
permission granted and waits for u′ to reply. If u′ is still in the 
entry section, u′ will reply YIELD(t′, u′, x′) message when 
receiving PREEMPT(t′, u′, x′) from v. If u′ has already been in the 
critical section, then u′ sends R-GRANT(t′, u′, x′) to u′ and put u′ 
in GRANTEE. Note that if v has already sent PREEMPT(t′, u′, x′) 
message to u′ due to some REQUEST message received earlier 
than REQUEST(t, u, x), then u does not have to send any 
PREEMPT(t′, u′, x′) message to v. 
When node v receives YIELD(t′, u′, x′) message from u′, then v 
exchanges the storing locations of REQUEST(t′, u′, x′) and 
REQUEST(t, u, x), i.e., moves REQUEST(t, u, x) to GRANTEE, 
and moves REQUEST(t′, u′, x′) to QUEUE. Afterwards, node v 
sends GRANT(t, u, x) message to node u. 
� When node u receives NOTICE(t, u, x) message from v: 
   Node u sets GRANTOR to be empty and sends RELEASE(t, u, 
x) to every node w, where w is a node to which u has ever sent 
REQUEST(t, u, x) message but has not sent RELEASE(t, u, x) 
message yet. Then, node u just keep waiting R-GRANT(t, u, x) 
message to enter CS. 
� When node w receives FOLLOW(t, u, x) message from v: 
   On receiving FOLLOW(t, u, x), node w will add u into 
FOLLOWER. Node w will sends R-GRANT(t, u, x) to u to enable 
u to enter CS after w enters CS. 
� When node u receives SUCCESS(t, u, x) message from v: 
   Node u becomes the leader for accessing resource x and it can 
enter CS immediately. It sets REGISTRAR to be Q∪P, where 
Q∪P is the set chosen by node u when sending out COMPETE(t, 
u, x, Q∪P) to compete as the leader. 
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� When node u receives FAIL(t, u, x) message from v: 
   Node u sends RELEASE(t, u, x) to every node w, where w is a 
node to which u has ever sent REQUEST(t, u, x) message but has 
not sent RELEASE(t, u, x) message yet. Node u also sets 
GRANTOR to be empty and ignore any subsequent GRANT(t, u, 
x) message. Node u also sends CLEAR(t, u, x) message for every 
node in P∪Q whose ID is smaller than v to clear the registration of 
u being the leader. 
� When node u receives R-GRANT(t, u, x) message from w: 
   Node u sets REFERENCE to be {w} and enters CS. 
� When v receives RELEASE(t, u, x) message from u: 
    Node v removes REQUEST(t, u, x) from GRANTEE or from 
QUEUE. If QUEUE is not empty (let REQUEST(t′, u′, x′) be at 
the front of QUEUE), then v removes REQUEST(t′, u′, x′) from 
QUEUE, adds REQUEST(t′, u′, x′) into GRANTEE, and sends 
GRANT(t′, u′, x′) to u′. 
� When w receives R-RELEASE(t, u, x) message from u: 
    Node w removes u from FOLLOWER. If w is the leader and 
w is in XS and FOLLOWER is empty, then node w sends 
RELEASE message to every node in GRANTOR, sets GRANTOR 
to be empty and enters NCS. If node w is not the leader, then it just 
checks if FOLLOWER is empty. If so, it sends R-RELEASE 
message to the node in REFERENCE, set REFERENCE to be 
empty and enters NCS. 
� When v receives CLEAR(t, u, x) message from u: 
    Node v just set LEADER.x to be empty. 
� When u receives PREEMPT(t, u, x) message from v: 

If u is not in CS and v is in GRANTOR, then u removes v 
from GRANTOR, and sends YIELD(t, u, x) message to v. On the 
other hand, if u is in CS or in WS, then u just does nothing. 
4. Correctness 

In this section, we show the correctness of the proposed 
algorithm. 
Lemma 1. There is no circular following relationship. 
Proof: 

Suppose there is a circular following relationship: u
a

→ v 
b

→…
c

→ w
d

→ u, where u
a

→ v stands for that u is a follower of the 
node v, which is detected when u tries to register itself as the 
leader in node a but finds that v has registered as the leader at node 
a already. Since the proposed algorithm demands a node to register 
itself as the leader by the small-ID to large-ID order, we have 
a<b<c<d. By w

d

→u, it follows that u has registered at node d, 
which means u should have registered at node a. Contradicts 
occurs; the lemma thus holds. □ 
Lemma 2. There is at most one leader for each resource. 
Proof: 

Suppose that both node u and node v are elected as the leader 
for accessing resource x. We have that u has registered at every 
node of Q∪P and v has registered at every node of Q′∪P′ for Q, 
Q′∈W and P, P′∈R. Since only a unique node can register as the 
leader at one node and (P∪Q)∩(P′∪Q′)≠∅, we can conclude that 
contradiction occurs. The lemma thus holds. □ 
Lemma 3. There is exactly one leader of a group of nodes for each 
resource. 
Proof: This is a direct consequence of Lemma 1 and Lemma 2. □ 
Theorem 1. (k-Exclusion) No more than k groups of nodes can 
enter CS concurrently. 
Proof: 

In the proposed algorithm, the leader of a group of nodes is 
responsible of initiating and closing the entry of CS. Below, we 

show that there are at most k leaders to prove the theorem. A node 
should collect grants from all nodes of a write quorum to be the 
leader of some group. Since there are at most k pairwise disjoint 
write quorums in a k-wr coterie and every node only gives its grant 
to only one node at a time, there are at most k leaders.      □ 
Theorem 2. (k-Progressing) If there are less than k groups of nodes 
in CS, then one more group of nodes are allowed to enter CS 
concurrently. 
Proof: 

The proposed algorithm demands a non-leader node to send 
back the grants it has taken from the members of write quorums as 
soon as it knows that itself cannot be the leader. The theorem holds 
due to the write quorum non-intersection property of the k-wr 
coterie.  □ 
Theorem 3. The proposed algorithm incurs no deadlock. 
Proof: 

Suppose deadlock occurs due to the following waiting cycle: 

u
a

→v 

b

→…
c

→ w
d

→ u, where u
a

→ v stands for that v preempts u, 
whose priority is a. We can conclude that a∝b∝c∝d∝a, where 
a∝b stands for that priority a is lower than priority b. We have 
a∝a, which is a contradiction. The theorem thus holds.   □ 
Theorem 4. The proposed algorithm incurs no starvation. 
Proof: 

Suppose a group G of nodes requesting resource x starve. Let 
node u be the node of G whose request has the smallest time stamp 
(the highest priority). Without loss of generality, we may assume 
the following scenario of starving for node u: No nodes of G can 
collect enough grants to enter WS after u sending REQUEST(t, u) 
to write quorum members, say q and others, while some node v 
repeatedly gets grants from q and others to enter WS and CS for 
accessing resources other than x again and again. The repeated 
entrances and exits of CS of node v demand the following repeated 
message sending actions: v sends REQUEST to q, q sends 
GRANT to v (or q sends FOLLOW to some reference node w, and 
w sends R-GRANT to v), and v sends RELEASE to q. Because 
when each node receives a message, it adjusts its logical clock, the 
first component of the time stamp, to be one more than the 
maximum logical clock ever seen, we can conclude that eventually 
v’s REQUEST has a time stamp larger than (t, u). Thus, q will not 
send its grant to v because v’s request has lower priority than u’s. 
Contradiction occurs; the theorem thus holds.   □ 
5. Analysis 

In this section, we analyze the proposed algorithm in terms of 
message complexity and synchronization dealy. Below, we first 
analyze the message complexity. We first consider scenario that 
there is only one node u requesting to access resource x. We 
analyze the best case for such a scenario as follows. When node u 
requests to access resource x, it selects an arbitrary write quorum 
Q from W, concurrently sends REQUEST(t, u, x) message to each 
member in Q, and waits for the reply. Node u can enter WS after it 
has received a GRANT message from every member of Q. Node u 
then sends a COMPETE message for each member in Q∪P, where 
P is a quorum in R. The member of Q∪P with the largest ID then 
sends a SUCCESS message to node u to make node u the leader to 
enter CS. Afterwards, node u sends CLEAR message for each 
member of Q∪P and sends RELEASE message for each member 
of Q. Thus, the total message complexity for node u to enter and 
leave CS is 2|Q|+2|Q∪P|+1, where Q∈W and P∈R. 

Below, we analyze the worst case for the scenario where there 
is only one node u requesting for accessing resource x. When node 
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u requests to access resource x, it selects an arbitrary write quorum 
Q from W, concurrently sends REQUEST(t, u, x) message to each 
member in Q, and waits for the reply. If a node u cannot get 
GRANT messages from all members of Q immediately and if u 
does not receive any NOTICE message, node u will continue to 
select further quorums to resend REQUEST messages to enter WS. 
This makes the proposed algorithm fault-tolerant because u can 
still gather enough permissions to enter WS (and enter CS later) 
when some members of Q fail. However, resending request 
messages incurs more messages. In the worst case, the message 
complexity for a node to enter WS is 6n, where n is the number of 
system nodes. The worst case occurs when u sends REQUEST 
messages to each node v, v sends PREEMPT message to some 
node w, w sends YIELD message to v, v sends GRANT message to 
u, u sends RELEASE message to v, and at last v sends GRANT 
message to r. Note that in the worst case just mentioned, node u 
will send one message to every node (including u itself), and each 
REQUEST message will incur 5 other messages, namely 
PREEMPT, YIELD, GRANT, RELEASE and GRANT. Thus, the 
worst case message complexity for a node to enter WS will be 6n. 
When node u enters WS, it still needs to send a COMPETE 
message for every node in Q∪P to be the leader of accessing 
resource x. The node in Q∪P of the largest ID will send a 
SUCCESS message to u to announce it to be the leader. 
Afterwards, the leader u can enter CS. Finally, the leader u should 
send a CLEAR message to each member of Q∪P to leave CS. 
Thus, a node needs 2|Q∪P|+1 message to be the leader after it 
enters the WS. Therefore, the total message complexity for a node 
to enter and leave CS if there is only one node accessing resource 
x will be 6n+2|Q∪P|+1, where Q∈W, and P∈R. 

Below, we analyze for the scenario where there are already 
some nodes in CS accessing resource x. When node u requests to 
access resource x, it selects an arbitrary write quorum Q from W, 
concurrently sends REQUEST(t, u, x) message to each member in 
Q, and waits for the reply. If some node v in Q finds that a 
reference node r is now in CS accessing resource x, it will send 
NOTICE message to node u, and send FOLLOW message to node 
r. On receiving the NOTICE message from v, node u will send 
RELEASE message to all members of Q. On receiving the 
FOLLOW message, node r will send R-GRANT message to allow 
u to enter CS. At last, node u sends R-RELEASE message to r 
when it leaves CS. Thus, the message complexity for the scenario 
just mentioned is thus 2|Q|+4. 

Below, we analyze the synchronization delay, which is the 
delay from the time a node invokes a request to enter CS until the 
time it enters CS. The synchronization delay is usually measured 
by the number of message transmission time. For the scenario 
where there is only one node requesting resource x, the 
synchronization delay will be at least |Q∪P|+3. This is because a 
node u should send REQUEST message to every node of a write 
quorum Q in W, and waits to receive GRANT message from every 
node of Q to enter WS. After node u enters WS, it should send 
COMPETE message according to the small-ID to large-ID order 
for every node in Q∪P to be the leader, where P is a read quorum 
in R. And the node in Q∪P with the largest ID sends SUCCESS 
message to node u to claim that u is the leader. Afterwards, u can 
enter CS finally. 

For the scenario where there are already some nodes in CS, 
the synchronization delay will be at least 3. This is because when a 
node u requests to access resource x, it selects an arbitrary write 
quorum Q from W, concurrently sends REQUEST(t, u, x) message 
to each member in Q, and waits for the reply. If some node v in Q 

finds that a reference node r is now in CS accessing resource x, it 
will send NOTICE message to node u and FOLLOW message to 
node r. On receiving the FOLLOW message, node r will send 
R-GRANT message to allow u to enter CS. Thus, the 
synchronization delay is at least 3. 
6. Conclusion 

In this paper, we have proposed a novel quorum system, called 
k-write-read coterie, to solve the group k-exclusion problem for 
distributed systems. We have also shown how to construct 
k-write-read coteries with the help of torus structures and have 
proposed a distributed group k-exclusion algorithm using 
k-write-read coteries. The proposed algorithm has the merits of 
unbounded degree of concurrency and unlimited number of 
resources. The proposed algorithm also utilizes the concept of 
reference node to reduce the context switch complexity. We have 
proved the correctness of the proposed algorithm and analyze it in 
terms of message complexity and synchronization delay. For a 
distributed system of n nodes, the proposed algorithm has message 
complexity of 2|Q|+4 to 6n+2|Q∪P|+1 and synchronization delay 
of 3 to |Q∪P|+3, where Q is a write quorum, and P, a read quorum 
of a k-write-read coterie. 
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