
Ultralightweight RFID Reader-Tag Mutual Authentication Revisited

Yu-Chung Huang

Department of Computer Science and Information

Engineering, National Central University

Jhongli City, Taiwan, R.O.C.

985402024@cc.ncu.edu.tw

Jehn-Ruey Jiang

Department of Computer Science and Information

Engineering, National Central University

Jhongli City, Taiwan, R.O.C.

jrjiang@csie.ncu.edu.tw

Abstract—The RFID (Radio Frequency Identification)

technology plays an important role of providing mobile

services in Internet of Things (IoT) environments. In an RFID

(Radio Frequency Identification) system, a tag with a unique

ID is attached to an object and a reader can recognize the

object by identifying the attached tag. With this identified tag

ID, the reader can then retrieve the related information of the

object from the backend server database and even access IoT-

aware services associated with the object. Due to the nature of

RF signals, the communication between the reader and tags is

vulnerable to attacks. Typical attacks include the man-in-the-

middle (MitM), replay, forward secrecy, denial of service

(DoS), and impersonation attacks. Due to the extremely small

memory and very limited computation power of tags, some

RFID reader-tag mutual authentication schemes, like Huang

and Jiang’s scheme, Yi et al.’s scheme and Khedr’s scheme,

have been proposed to resist these attacks by using on-tag

ultralightweight operations, such as the random number

generation (RNG), the pseudo random number generator

(PRNG), the cyclic redundancy check (CRC), the exclusive-or

(XOR), and lightweight cryptographic hash function (LHash)

operations. These schemes still have some flaws, though. This

paper proposes an improved mutual authentication scheme

using only ultralightweight operations to resist more attacks

and/or achieve lower overheads in terms of communication,

computation, storage occupancy and data updating.

Keywords-Radio Frequency Identification (RFID); Internet

of Things (IoT); hash; security; privacy; mutual authentication

I. INTRODUCTION

The RFID (Radio Frequency Identification) technology
plays an important role of providing mobile services in
Internet of Things (IoT) environments [1]. It is integrated
into many kinds of mobile devices, such as smartphones, to
endow them with the capability to access and manipulate
objects in the physical world. RFID systems have attracted
much attention and have been utilized in many applications,
such as logistic control, supply chain management, asset
tracking. An RFID system consists of tags, a reader and a
backend server [2]. A tag with a unique ID, such as the
Electronic Product Code (EPC), is usually attached to an
object, and the reader can recognize the object by initiating
the identification procedure (or interrogation procedure) to
identify the tag ID through wireless communications
between the reader and tags. With this identified tag ID, the

related information of the object can be retrieved from the
backend server database, and even IoT-aware services
associated with the object can then be obtained.

In the identification procedure, a reader issues RF signals
to command tags to respond with their IDs. Due to the nature
of wireless communications, the identification procedure is
susceptible to various latent attacks, such as the man-in-the-
middle (MitM), replay, forward secrecy, denial of service
(DoS) and impersonation attacks [3-5]. In most wireless
applications, such attacks can be easily resisted by applying
general cryptographic operations. However, RFID tags, such
as the famous EPCglobal Class 1 Generation 2 (Gen2) tags
[6], are usually very cheap and thus have extremely small
memory and very limited computation power [6]. They
cannot afford to run general cryptographic operations [7-8]
and can run only ultralightweight operations, such as the
random number generation (RNG), pseudo random number
generator (PRNG), cyclic redundancy check (CRC),
exclusive-or (XOR), and lightweight cryptographic hash
function (LHash) [9] operations.

The RNG, PRNG, CRC and XOR operations are
supported by common RFID tags, such as Gen2 tags. Among
the operations, the PRNG operation is very useful, since it
can play the role of a cryptographic one-way hash function,
on which many RFID security schemes depend. However,
the LHash operation, such as the QUARK lightweight hash
function recently proposed in [9], consumes little memory
and energy to run. It can then replace the PRNG operation
and be used to construct security schemes for RFID systems.

Several RFID reader-tag mutual authentication schemes
[10-14] have been proposed to resist attacks for RFID
systems. By registering tags and readers in the backend
server database, they allow a tag and a reader to authenticate
each other. Some [10-11] of the schemes use heavy-weight
operations on tags; they are thus unsuitable for low cost
RFID tags. The other schemes [12-14] use only
ultralightweight operations on tags; they can therefore be
applied to low cost tags. Unfortunately, these
ultralightweight schemes still suffer from security
weaknesses and have high communication and/or
computation overheads. This motivates us to design a low-
overhead ultralightweight mutual authentication scheme to
raise the security level of RFID systems.

This paper proposes an RFID reader-tag mutual
authentication scheme using only ultralightweight operations,

namely the RNG, XOR, and LHash operations. As we will
show, it nevertheless can resist all the aforementioned
attacks. The proposed scheme is also compared with other
related schemes to demonstrate its superiority in terms of the
communication cost, the computation cost, and security.

The remainder of the paper is organized as follows. Some
mutual authentication schemes are introduced in Section II.
The proposed scheme is detailed in Section III. Security
analysis and comparisons are presented in Section IV and
Section V, respectively. Finally, some concluding remarks
are drawn in Section VI.

II. RELATED WORK

Many schemes [12-14] have been proposed to mitigate
the security threats mentioned in Section I with the
assumption that RFID tags have limited memory and
computation power. These schemes thus use only
ultralightweight operations, such as PRNG, CRC, and XOR
that are suitable for low cost tags. Below, we describe in
detail three of these schemes, namely, Huang and Jiang’s
scheme [12], Yi et al.’s scheme [13], Khedr’s scheme [14],
which are most related to our proposed scheme. Below in
this paper, we use tagi and readerj to denote the tag and the

reader involved in the scheme. We also use YX ? to denote a

comparison (verification) function that verifies whether X
equals (or matches) Y, where X and Y are values or
expressions.

A. Huang and Jiang’s Scheme

We first describe the registration steps of Huang and
Jiang’s scheme [12]. Initially, the server sends (EPCi, Ni, Ki,
PIDi) to tagi and stores (EPCi, Ni

old
, Ki

old
, PIDi

old
,

 Ni

new
, Ki

new
,

PIDi
new

) in the database to register tagi, where EPCi is the
EPC number, Ni is the communication key, Ki is the
authentication key, and PIDi is the pseudonym (pseudo
identity) of tagi. Note that the server stores two versions of
Ni, Ki and PIDi, that is, the current version Ni

new
, Ki

new
 and

PIDi
new

, and the old version Ni
old

, Ki
old

 and PIDi
old

. At the
beginning, Ni

old
 = Ni

new
, Ki

old
 = Ki

new
, and PIDi

old
 = PIDi

new
.

The server also sends RIDj to readerj and stores RIDj in the
database to register readerj, where RIDj is the pseudonym of
readerj.

Below we describe the authentication and key update
steps of Huang and Jiang’s scheme.
Step 1: Before readerj queries tagi about its tag ID, it

generates a random number r1 and sets)(1rRIDHV jR  ,

where H is a hash function. Then readerj sends a request
message (r1) to tagi.
Step 2: Upon receiving (r1), tagi generates a random number
r2 and uses Ni, Ki and EPCi to calculate M1 = Ni♁r2 and M2

= P(EPCi||r1||r2) ♁ Ki, where P stands for the PRNG

operation. After that, it responds to readerj with (M1, M2,
PIDi).
Step 3: After receiving the response message from tagi,
readerj appends r1 and VR to this message to form an

authentication request (1M , 2M , iPID , 1r , VR) to send to the

backend server.

Step 4: Upon receiving the authentication request (M1, M2,
PIDi, r1, VR) from readerj, the server authenticates readerj by

verifying VR ? H(RIDj♁R1). If the verification is successful,

the server uses PIDi to find (Ni
old

, Ni
new

, Ki
old

, Ki
new

, EPCi) in
the backend database. Note that PIDi may be PIDi

old
 or

PIDi
new

; this can be decided by checking which of

PIDi

?
PIDi

old
 and PIDi

?
PIDi

new
 is successful. The server

then verifies old
ii KrrEPCPM )| || |(? 212 and

new
ii KrrEPCPM )| || |(? 212

 by calculating r2 = M1♁Ni
old

and r2 = M1♁Ni
new

. If either of the above verifications is

successful, the server sets x= old (if
old
iK passes the

verification) or x= new (if
new
iK passes the verification), and

calculates
x
i

x
ii KNrEPCPM )| || |(23 and

ji RIDDInfo  for forwarding the message (M3, Info) to

readerj. Moreover, if x=new, then the server performs the

following updates: PIDi
old

 =PIDi
new

, PIDi
new

 =)(2rPIDP i  ,

Ni
old

 = Ni
new

, Ni
new

 =)(2rNP i  , Ki
old

 = Ki
new

 and Ki
new

=)(2rKP i  .

Step 5: After receiving the message (M3, Info), readerj
calculates Di= info♁RIDj and forwards M3 to tagi.

Step 6: Upon receiving M3 from readerj, tagi

verifies iii KNrEPCPM )| || |(? 23 . If the above

verification succeeds, tagi performs the following updates:

PIDi =)(2rPIDP i  , Ni=)(2rNP i  , and Ki =)(2rKP i  .

As shown in [12], Huang and Jiang’s scheme can resist
several attacks. However, the server needs to store and
update many data for tags. For example, for tagi, the server
needs to store EPCi, Ni

old
, Ki

old
, PIDi

old
, Ni

new
, Ki

new
, PIDi

new

and update Ni
new

, Ki
new

, PIDi
new

 for every successful
identification session of tagi.

B. Yi et al.’s Scheme

Yi et al.’ scheme [13] uses only the PRNG and the CRC
operations. Below we first describe the registration steps.
Initially, the backend server randomly selects an initial

authentication key
0
iK and an initial access key

0
iP for tagi,

which has a unique EPC number iEPC . The two keys are

stored on tagi and will be updated after each successful
authentication session.

The server database maintains a six-field record

(
i

EPC ,
old

i
K ,

old

i
P ,

new

i
K ,

new

i
P , DATAi) for tagi. In the record,

old
iK (new

iK) is the old (new) authentication key for tagi and

it is set to
0
iK initially; meanwhile,

old
iP (

new
iP) denotes the

old (new) access key and is set to
0

iP initially; the last one,

DATAi, denotes the full information about the tagged object.
The authentication and key update steps are explained as

follows.
Step 1: To query tagi, readerj sends tagi a random number

1N as a challenge.

Steps 2 and 3: On receiving N1, tagi generates a random

number 2N and then calculates M1 =
i

KN 
2

 and M2 =

iii
KNNEPCKCRC )| || || |(

21
. The values 1M and M2 are

sent back to readerj, which in turn sends (M1, M2, N1) as an
authentication request to the backend server.
Step 4: The server retrieves every record and checks if

"2M or '2M matches 2M , where
old

ii

old

i
KNNEPCKCRCM )| || || |("

212
and

new

ii

new

i
KNNEPCKCRCM )| || || |('

212
. The check is

repeated until a match is found or the end of the database is
reached. If a match is found, it implies that tagi has been
successfully authenticated; otherwise, an authentication
failure message is sent to readerj and the authentication step
stops.

For the case that tagi is authenticated successfully, the

server calculates M3=
old

ii
PNEPCCRC

 2
)| |( or

M3=
new

ii
PNEPCCRC)| |(

2
 depending on which of

old
iK

and
new
iK leads to the match in the database. It also updates

authentication key Ki and access key Pi by setting

)(2NKPK new
ii  and)(2NPPP new

ii  .

Step 5: The server sends (M3, DATAi) to readerj, where
DATAi is the information of the object to which tagi is
attached. Readerj in turn passes M3 to tagi.

Step 6: Upon receiving M3, tagi has to verify
i

PM 
3

 ?

)| |(
2

NEPCCRC
i

. If the verification is successful, it updates

its authentication key Ki and access key Pi by

setting
new
i

old
i KK  ,)(2NKPK new

i
new
i  ,

new
i

old
i KP 

and)(2NPPP new
i

new
i  .

In Yi et al.’s scheme, tagi shares random number (N1, N2)
and some private information, such as EPCi, authentication
key Ki and access key Pi with the server, where the
information is used to build messages M1 and M2 in order to
prove its authenticity. Unfortunately, since the
communication channel between tagi and readerj is insecure,
an adversary can monitor and modify messages exchanged
between them. As shown by Safkhani et al. in [15], Yi et
al.’s scheme cannot resist the replay, DoS, forward secrecy
and impersonation attacks. Additionally, upon receiving the
authentication request (M1, M2, N1) from readerj, the server
needs to retrieve every data record in the database and verify

if "2M or '2M matches M2 for every record. This will lead to

massive computation overheads. For a database of n
registered tags, this will cause n/2 such verifications in
average.

C. Khedr’s Scheme

Khedr’s scheme (SRFID) [14] adopts the hash and the
increment operations that can be implemented on low-cost
tags. We first describe the registration steps of the scheme.
Initially, the backend server randomly selects an initial
hidden ID IDHi

0
 with an initial sequence number SQNi of an

arbitrary value for tagi. The two values are stored on tagi and
will be updated after each successful authentication session.

The server database maintains a five-field record (IDHi
old

,
IDHi

new
, IDi

old
, IDi

new
, SQNi) for tagi. In the record, IDHi

old

(IDHi
new

) is the old (new) hidden tag identification number
for tagi and it is set to IDHi

0
 initially; meanwhile, IDi denotes

the tag’s current ID and is set to IDi
0
. At the beginning,

IDHi
old

 = IDHi
new

 which is initial hidden ID of tagi.
The authentication and key update steps of the Khedr’s

scheme is described as follows.
Step 1: Before readerj queries tagi, it generates a random
number R. Then readerj sends a request message (R) to tagi.
Step 2: Upon receiving (R), tagi uses IDHi and SQNi to
calculate IDi = H(IDHi|| SQNi) and M1 = H(IDHi||R), where

H() is a lightweight hash function. After that, it responds to
readerj with (IDi, M1).
Step 3: After receiving the response message from tagi,
readerj appends R to this message as an authentication
request (IDi, M1, R) and forwards it to the backend server.
Step 4: Upon receiving the authentication request (IDi, M1, R)
from readerj, the server uses IDi as the index to obtain
information associated with tagi from the database for

verifying M1 ? H(IDHi||R). If the verification is successful,

the server sets SQNi= INC(SQNi), where INC(SQNi) is a
function returning the value of SQNi plus a pre-specified
fixed value. It then sets IDHi

old
=IDHi and IDHi

new
= H(SQNi||

IDHi). The server afterwards calculates M2=
H(IDHi

new
||SQN||R) and sends the message (IDi, R, M2) to

readerj. The server further updates the current tag ID for the
next authentication session by setting SQNi = INC(SQNi),
IDi

old
 = IDi and IDi

new
 =H(IDHi

new
||SQNi).

Step 5: After receiving the message (IDi, R, M2) from the
server, readerj just forwards it to tagi.
Step 6: Upon receiving the message (IDi, R, M2) from readerj,
tagi calculates SQNi= INC(SQNi) and IDTi= H(IDHi||SQNi)

and '2M = H(IDTi||SQNi||R) and verify M2 ? '2M . If the

verification is successful, tagi increases the sequence number
again by setting SQNi= INC(SQNi), and updates IDHi by
setting IDHi=IDTi; otherwise, the tag just resets the sequence
number by setting SQNi = DEC(SQNi), where DEC(SQNi) is
a function returning the value of SQNi minus a fixed value.

As will be shown later, the overheads of Khedr’s scheme
are not high. However, as shown by Seyed et al. in [16].
Khedr’s scheme cannot resist the replay, forward secrecy and
impersonation attacks.

III. PROPOSED SCHEME

This section elaborates the proposed mutual
authentication scheme, which has two phases: (1) the register
phase, (2) the mutual authentication phase and. Similar to the
schemes mentioned in Section II, the proposed scheme
assumes the communication between the reader and the tags
is insecure, but the communication between the reader and
the backend server is secure. Notations used in the proposed
scheme are described in Table I, and the detailed steps of the

proposed scheme are shown in Fig. 1. Note that INC() (resp.,

DEC()) used in the scheme is a function taking the sequence
number SQNi as the input to return the value of SQNi plus
(resp., minus) a pre-specified fixed value.

TABLE I. NOTATIONS

Ki
The authentication key shared between tagi and the
server

 The exclusive-or operation

H() A lightweight hash function like QUARK [9]

ir A random number generated by the server or tagi

YX
?

 A function verifying whether X matches Y

| | The concatenation operation

EPCi The 96-bit EPC (Electronic Product Code) of tagi

SQNi

Sequence number

INC()

A function returning the sequence number plus a
fixed value

DEC()

A function returning the sequence number minus a
fixed value

A. Registration Phase

Initially, the server sends (hi, EPCi, Ki, SQNi) to tagi and
stores (hi, EPCi, Ki

old
, Ki

new
, SQNi) in the database to register

tagi, where SQNi is the sequence number of an arbitrary
initial value, Ki is the authentication key, EPCi is the EPC
number, and hi is the search index of tagi calculated
according to Eq. (1). The calculation in Eq. (1) is based on a
lightweight one-way hash function H like QUARK [9]
taking EPCi and SQNi as input parameters. With hi as the
index, the server can use the binary search to locate the
information of tagi in the database for the purpose of
authenticating tagi in the authentication phase, as will be
described later. Note that the server stores two versions, the
current (or new) version Ki

new
, and the old version Ki

old
, of Ki,

where Ki
old

 = Ki
new

 at the beginning.

hi =H(EPCi||SQNi) (1)

B. Mutual Authentication Phase

Fig 1. The mutual authentication phase steps of the proposed scheme

The detailed steps of the mutual authentication phase are
depicted in Fig. 1 and described as follows.

Step 1: Before readerj begins to query tagi, it generates a
random number r1 and then sends a message (r1) as a
challenge to tagi.
Step 2: Upon receiving (r1), tagi generates a random number
r2 and uses EPCi, SQNi and Ki to calculate M1 and M2
according to Eqs. (2)-(3) and then sends (hi, M1, M2) to
readerj.

M1= H(EPCi ||SQNi)♁r2 (2)

M2= H(EPCi || r1|| r2||Ki) (3)

Step 3: After receiving (hi, M1, M2), readerj appends r1 to this
message as an authentication request and forwards (hi, M1,
M2, r1) to the backend server.
Step 4: Upon receiving the authentication request (hi, M1, M2,
r1) from readerj, the server uses the binary search with hi as
the index key to find out (Ki

old
,

Ki

new
, EPCi, SQNi) in the

database to calculate r2′ based on EPCi and SQNi according
to Eq. (4).

r2′= M1♁H(EPCi ||SQNi) (4)

The server then executes the following verification according
to Eq. (5).

M2 ? H(EPCi || r1

|| r2′ || Ki

new
)

 (5)

If the verification in Eq. (5) is successful, then tagi is
authenticated. The server afterwards updates the information
of tagi and calculates M3 according to Eqs. (6)-(9). After that,
the server forwards the message (M3) to readerj.

SQNi
new

= INC(SQNi) (6)

Ki
old

 =Ki
new

, Ki
new

= H(Ki
new

 ||r2′) (7)

hi

= H(EPCi || SQNi

new
) (8)

M3 = H(EPCi || r2′|| SQNi || Ki
new

) (9)

But if the verification in Eq. (5) fails, tagi is not
authenticated. It is probably that tagi is illegal or tagi just
does not update its information properly. The server then
performs the second authentication by executing the actions
marked with asteroids depicted in Fig. 1. Note that the
second authentication depends on the pervious sequence
number and pervious authentication key to authenticate tagi.
The server actions are explained below. The server first
obtains the pervious sequence number and recalculates r2′
according to Eqs. (10)-(11).

SQNi
old

 = DEC (SQNi) (10)

r2′= M1♁H(EPCi || SQNi
old

) (11)

The server then performs the re-verification shown in Eq.
(12).

M2

? H(EPCi || r1

|| r2′ || Ki

old
)

 (12)

If the authentication fails, then tagi is not authenticated and
the authentication phase stops abnormally. Otherwise, tagi is
authenticated, and the server then calculates M3 according to
Eq. (13).

M3 = H(EPCi || r2′ || SQNi
old

 || Ki
old

) (13)

After that, the server forwards the message (M3) to readerj.
Moreover, the server updates the information of tagi
according to Eq. (14).

Ki
new

= H(Ki
old

 || r2′) (14)

Step 5: After receiving the transmission message (M3) from
the server, readerj forwards (M3) to tagi.
Step 6: Upon receiving message (M3) from readerj, tagi
performs the verification shown in Eq. (15).

M3 ? H(EPCi || r2|| INC(SQNi)|| Ki) (15)

If the verification is successful, tagi updates its information
according to Eqs. (16)-(18). But if the verification fails,
readerj is not authenticated and tagi aborts its authentication
phase.

SQNi

= INC(SQNi) (16)

Ki = H(Ki || r2) (17)

hi

= H(EPCi || SQNi) (18)

IV. SECURITY ANALYSES

In this section, the security of the proposed scheme is
analyzed. Note that T, R, and S respectively represent tagi,
readerj and the server in the following context.

A. MitM Attack Analysis

When readerj interrogates tagi, an adversary initiates the
MitM attack to intercept the message sent between readerj
and tagi. Afterwards, the adversary pretends to be a legal
reader (resp., tagi) to forward tampered messages to tagi
(resp., readerj) to pass the authentication and deliver some
forged information so that the server and tagi lose key
synchronization and cannot authenticate each other properly
in the next run.

Because the server and tagi first perform the
authentication and then update their authentication key (Ki)
according some information securely embedded in the

authentication information (M1, M2, M3), it is impossible for
an adversary to inject or modify information to pass the
authentication and then affect the update of keys. The
proposed scheme can thus resist the MitM attack.

B. Replay Attack Analysis

If an adversary obtains the information (hi, M1, M2)
transmitted between tagi and readerj, and then initiates the
replay attack to spoof the server by transmitting previously
obtained information to pass the authentication. However,
the adversary cannot pass the authentication. This is because
that r2, hi, SQNi, Ki are updated after each authentication to

be '2r , 'ih , SQNi′,
new
iK in the next round, and thus the

legitimate M1, M2 in the next round (denoted by

'1M and '2M respectively) should be M1′= H(EPCi||SQNi)♁

r2′ and M2′=H(EPCi||r1′||r2′||Ki
new

). Therefore, the adversary

cannot replay the obtained information (hi, M1, M2) to pass

the authentication.

C. Forward Secrecy Attack Analysis

In the forward secrecy attack, an adversary compromises
keys shared by tagi and readerj and then tries to calculate
previous keys to reveal information transmitted earlier
between tagi and readerj.

Suppose that the adversary has compromised SQNi and
Ki shared by tagi and server. Since SQNi and Ki are
calculated by evoking the increment function and the hash
function, no previous versions of SQNi and Ki can be
obtained even when they are compromised at some instance.
The proposed scheme can thus resist the forward secrecy
attack.

D. DoS Attack Analysis

In the DoS attack, an adversary can intercept the message
(M3) sent from readerj to tagi, where M3 = H(EPCi ||r2′||
SQNi||Ki

new
). Such an adversary prevents tagi from updating

the shared keys and makes the shared keys stored on the
server different from those stored on tagi. Therefore, the
server (and hence readerj) and tagi cannot communicate
properly henceforth.

To resist the DoS attack, the new and the old keys (Ki
old

,
Ki

new
) are all stored on the server. In the case that tagi fail to

update the keys, the server can still allow tagi to pass the
authentication and resynchronizes the keys with tagi for later
communication. Therefore, the proposed scheme can resist
the DoS attack.

E. Impersonation Attack Analysis

To initiate an impersonation attack, an adversary can
pretend to be a legitimate readerj (i.e., server) or tagi to pass

the authentication verification of M3 ? H(EPCi||r2′|| SQNi||Ki)

and M2′ ? H(EPCi||r1||r2||Ki
new

) after eavesdropping on

communication messages between readerj and tagi. Below
we explain why the proposed scheme can resist the
impersonation attack.

The adversary can easily get the information (hi, M1, M2,

M3) from the following messages transmitted between tagi
and readerj. However, the adversary cannot get the private
information (EPCi, SQNi, Ki) stored in the server or the
information (r2, SQNi, Ki) stored in tagi, because the above-
mentioned information is not transmitted between tagi and
readerj, and between readerj and the server. Moreover, r2,

SQNi, Ki are updated after each authentication. Therefore, the
adversary cannot calculate the correct communication
parameters M3=H(EPCi||r2′||SQNi||Ki

new
) and M2 = H(EPCi

||r1||r2||Ki) from the intercepted messages to pass the

authentication of M3 ? H(EPCi||r2′||SQNi||Ki) and

M2′ ? H(EPCi ||r1||r2||Ki
new

).

V. COMPARISONS

This section shows the comparisons of the proposed
scheme with related schemes, namely Huang and Jiang’s
[12], Yi et al.’s [13], Khedr’s [14], in terms of
communication, computation, storage, and data updating
overheads. This section also shows security comparisons.

As shown in Table II, the communication overhead (i.e.,
the number of bits transmitted) between tagi and readerj are
first examined. In Table II, LHELO, LK, and LID stand for,
respectively, the length (128 bits) of the hello message, the
key and the tag identity. Furthermore, LRNG and LH stand for,
respectively, the length (128 bits) of the key and LHash
output. Furthermore, LCK, LHK and LPK stand for, respectively,
the length (128 bits) of the XOR operation result of a key
and a CRC output, the XOR operation result of a key and a
LHash function output, and the XOR operation result of a
key and a PRNG output. By Table II, the communication
costs of Huang and Jiang’s, Yi et al.’s, and Khedr’s schemes
are respectively 1LHELO+ 2LRNG+ 1LID+ 2LPK (=768 bits),
1LRNG+ 1LK + 2LCK (= 512 bits) and 2LRNG+ 2LID + 2LHK

(=768 bits). We can observe that the proposed scheme has a
lower communication cost, which is 2LRNG + 3LH (= 640 bits),
than Huang and Jiang’s and Khedr’s.

TABLE II. COMMUNICATION COST COMPARISONS

Schemes Communication costs

Huang and Jiang’s

[12]

1LHELO + 2LRNG + 1LID +

2LPK

(=768 bits)

Yi et al.’s [13] 1LRNG+ 1LK + 2LCK

(= 512 bits)

Khedr’s [14] 2LRNG+ 2LID + 2LHK

(=768 bits)

Proposed

Scheme

2LRNG + 3LH

(= 640 bits)
*Note that LHELO, LH, LRNG, LCK, LHK, LPK, LK and LID are the bit lengths of

the hello message, LHash function output, random number generator output,

XOR result of a key with a CRC output, XOR result of a key with a LHash
output, XOR result of a key with a PRNG output, key and identity,

respectively.

Table III shows the comparisons of the proposed scheme

with related ones in terms of the tag and the server

computation costs during the authentication phase. In Table
III, n stands for the number of tags; TXOR, TPRNG, TCRC, TH,
TINC, TDEC and TCOMP stand for the computation cost (or time
complexity) for the XOR, PRNG, CRC, increment,
decrement and comparison (COMP) operations, respectively.
Note that the XOR and the COMP operations have very low
computation costs; the computation costs of other operations
are higher and higher in the ascending order: TINC, TDEC,
TPRNG, TCRC and TH. Note that the CRC and LHash have
almost the same communication costs [14]. As to TVERI, it
stands for the computation cost of the verification procedure,
which varies with schemes and consists of many operations.
However, it should be noted that TVERI is much larger than
TCOMP. We also assume the server database utilizes the heap
tree data structure to achieve (log n) search time complexity
to locate out of n records a proper record associated with a
given pseudonym in Huang and Jiang’s scheme, Khedr’s
scheme and our proposed scheme.

TABLE III. COMPUTATION COST COMPARISONS

Schemes
Computation costs

Tagi Server

Huang and
Jiang’s [12]

6TXOR+

5TPRNG+

1TCOMP

1TH+1TCOMP + (log

n)TCOMP+ 8TXOR+

4TPRNG+ 1TVERI

(TVERI = 2TXOR+ 2TPRNG+

2TCOMP)

Yi et al.’s [13]
5TXOR+

2TPRNG+ +

2TCRC+1TCOMP

3TXOR+ 1TCRC+ 2TPRNG+

(n/2)TVERI (TVERI= 2TXOR+

2TCRC+ 2TCOMP)

Khedr’s [14] 4TH+ 2TINC+

1TCOMP

(log n)TCOMP+ 3TH+

2TINC+ 1TVERI (2TH+

2TCOMP)

Proposed

Scheme

1TXOR+ 5TH+

1TINC+

1TCOMP

(log n)TCOMP+ 7TH+

1TINC+ 1TDEC+ 2TXOR +

1TVERI (2TH+ 2TCOMP)
*Note that n stands for number of tags: TXOR, TPRNG, TCRC, TH, TINC, TDEC,
TVEFI and TCOMP are the computation costs of the XOR, PRNG, CRC, LHash

function, increment function, decrement function, verification and
comparison operations/procedures, respectively.

In Huang and Jiang’s scheme [12], when tagi receives the
message (r1, M3), it takes 3TXOR+ 2TPRNG computation cost to
calculate M1, M2 and M3, and it takes 1TCOMP computation
cost to compare the calculated M3 with the received M3. If
the calculated M3 equals to the received M3, tagi spends a
cost of 3TXOR+ 3TPRNG to calculate Ni, Ki and PIDi. The total
computation cost of tagi is thus 6TXOR+ 5TPRNG+ 1TCOMP.
When the server receives (M1, M2, PIDi, r1, VR), it takes

1TXOR+1TH computation cost to calculate VR=H(RIDj⊕r1),

and it takes 1TCOMP computation cost to compare the
calculated VR with the received VR. If the calculated VR
equals to the received VR, the server spends a cost of (log
n)TCOMP to find a record of PIDi in the backend database, and
spends a cost of 2TXOR to calculate r2 and spends a cost
TVERI= 2TXOR+ 2TPRNG+ 2TCOMP to verify if M2 matches M2. If
the verification succeeds, the server spends a cost of 4TPRNG+
5TXOR to calculate M3, Ni, Ki, Info and PIDi. The total
computation cost of the server is thus 1TH+1TCOMP + (log

n)TCOMP+ 8TXOR+ 4TPRNG+ 1TVERI (TVERI = 2TXOR+ 2TPRNG+
2TCOMP).

In Yi et al.’s scheme [13], when tagi receives the
message (N1, M3), it takes 3TXOR+ 2TCRC computation cost to
calculate M1, M2 and M3, and it takes 1TCOMP computation
cost to compare the calculated M3 with the received M3. If
the calculated M3 equals to the received M3, tagi spends a
cost of 2TXOR+ 2TPRNG to calculate Ki and Pi. The total
computation cost of tagi is thus 5TXOR+ 2TPRNG+ +
2TCRC+1TCOMP. When the server receives (M1, N1, M2), it
retrieves every database record and spends a cost TVERI=
2TXOR+ 2TCRC+ 2TCOMP to verify if M2

”
or M2

’
matches

CRC(Ki||EPCi||N1||N2)⊕Ki. The average time to finish the

verification is thus (n/2)(2TXOR+ 2TCRC+ 2TCOMP), where n is
the number of registered tags whose information is stored in
the database. If the verification succeeds, the server spends a
cost of 3TXOR+ 1TCRC+ 2TPRNG to calculate M3, Ki and Pi. The
total computation cost of the server is thus 3TXOR+ 1TCRC+
2TPRNG+ (n/2)TVERI (TVERI= 2TXOR+ 2TCRC+ 2TCOMP).

In Khedr’s scheme [13], when tagi receives the message
(R, IDi, M2), it takes 4TH+ 1TINC computation cost to
calculate IDi, M1, SQN and M2, and it takes 1TCOMP
computation cost to compare the calculated M2 with the
received M2. If the calculated M2 equals to the received M2,
tagi spends a cost of 1TINC to calculate SQNi. The total
computation cost of tagi is thus 4TH + 2TINC + 1TCOMP. When
the server receives (IDi, M1, R), it spends a cost of (log
n)TCOMP to find a record of IDi in the backend database, and
spends a cost TVERI= 2TH+ 2TCOMP to verify if M1 matches M1.
If the calculated M1 equals to the received M1, the server
spends a cost of 3TH+ 2TINC to calculate IDHi, M2, IDi and
SQNi. The total computation cost of the server is thus (log
n)TCOMP+ 3TH+ 2TINC+ 1TVERI (2TH+ 2TCOMP).

In the proposed scheme, when tagi receives the message
(r1, M3), it takes 1TXOR+ 3TH+ 1TINC computation cost to
calculate M1, M2 and M3, and it takes 1TCOMP computation
cost to compare the calculated M3 with the received M3. If
the calculated M3 equals to the received M3, tagi spends a
cost of 2TH to calculate Ki and hi. The total computation cost
of tagi is thus 1TXOR+ 5TH+ 1TINC+ 1TCOMP. When the server
receives (hi, M1, M2, r1), it spends a cost of (log n)TCOMP to
find a record of hi in the backend database, and spends a cost
of 1TXOR + 1TH to calculate r2 and spends a cost TVERI= 1TH+
1TCOMP to verify if M2 matches M2. If the calculated M2
equals to the received M2, the server spends a cost of 3TH+
1TINC to calculate M3, Ki and hi. But if M2≠M2, the server
spends a cost of 1TDEC + 1TXOR + 1TH to calculate r2 and
spends a cost TVERI= 1TH+ 1TCOMP to re-verify if M2 matches
M2. If the calculated M2 equals to the received M2, the server
spends a cost of 2TH to calculate M3 and Ki. The total
computation cost of the server is thus (log n)TCOMP+ 7TH+
1TINC+ 1TDEC+ 2TXOR + 1TVERI (2TH+ 2TCOMP). By Table III,
we can observe that only Khedr’s scheme has lower
computation cost than the proposed scheme.

Table IV shows the comparisons of schemes in terms of
security. In summary, Yi et al.’s scheme cannot resist the
replay, DoS and impersonation attacks and Khedr’s scheme
cannot resist the MitM, replay and impersonation attacks.
However, only Huang and Jiang’s scheme and the proposed

scheme can resist the MitM, replay, forward secrecy, DoS
and impersonation attacks.

As shown in Tables II, III, and IV, Huang and Jiang’s
scheme and the propose scheme can resist the same number
of attacks, while the proposed scheme has lower
communication and computation overheads. Below we
further compare the two schemes in terms of storage and
data update overheads. Both schemes store 4-tuple
information, i.e., (EPCi, Ni, Ki, PIDi) and (hi, EPCi, Ki, SQNi),
on tagi. In Huang and Jiang’s scheme, the server database
stores a 7-tuple (EPCi, Ni

old
, Ki

old
, PIDi

old
,

 Ni

new
, Ki

new
, PIDi

new
)

for tagi, while the proposed scheme stores a 5-tuple (hi, EPCi,
Ki

old
, Ki

new
, SQNi). For every successfully identification

session, Huang and Jiang’s scheme updates Ni
new

, Ki
new

, and
PIDi

new
 with the PRNG operation, while the proposed

scheme updates Ki, and SQNi with the LHash operation. The
proposed scheme obviously has lower storage and update
overheads.

TABLE IV. SECURITY COMPARISONS

 Schemes

Attacks
Huang and
Jiang’s [12]

Yi et
al.’s [13]

Khedr’s
[14]

Proposed
scheme

Resisting

MitM attack
Yes Yes Yes Yes

Resisting

replay attack
Yes No No Yes

Resisting

forward secrecy

attack

Yes No No Yes

Resisting

 DoS attack
Yes No Yes Yes

Resisting

impersonation attack
Yes No No Yes

VI. CONCLUSION

This paper proposes an ultralightweight RFID reader-tag
mutual authentication scheme to reduce communication and
computation overheads and to resist various attacks, such as
the MitM, replay, forward secrecy, DoS, and impersonation
attacks. The proposed scheme uses only ultralightweight

operations, like the RNG, XOR and LHash. Compared with

related schemes, namely Huang and Jiang’s scheme [12], Yi
et al.’s scheme [13] and Khedr’s scheme [14], the proposed
method can resist more attacks and/or has lower
communication, computation, storage, and update overheads.

In the future, we plan to design more efficient and
more secure RFID reader-tag mutual authentication schemes
using only ultralightweight operations. One direction of the
design is to use the Rabin algorithm to encrypt (resp.,
decrypt) messages by executing one multiplication
operation on a tag and to decrypt (resp., encrypt) messages
by executing one square root operation on a reader. Since a
reader has much more resources, such as memory, energy
and computation power, than a tag, the asymmetric
computation requirements demanded by the Rabin
algorithm encryption and decryption are suitable for
designing feasible and secure RFID reader-tag mutual
authentication schemes.

REFERENCES

[1] S. Li, L. D. Xu, S. Zhao, “The Internet of Things: a Survey,”
Information Systems Frontiers, Vol 17, Issue 2, pp. 243-259, 2015.

[2] C. Aggarwal, J. Han, “A Survey of RFID Data Processing,”
Managing and Mining Sensor Data, Springer, pp. 349-382, 2013.

[3] G. N. Khan, G. Zhu, “Secure RFID Authentication Protocol with Key
Updating Technique,” in Proc. of the 22nd International Conference
on Computer Communications and Networks (ICCCN), pp. 1-5,
August 2013.

[4] Z. Y. Wu, S. C. Lin, T. L. Chen, C. Wang, “A Secure RFID
Authentication Scheme for Medicine Applications,” in Proc. of the
Seventh International Conference on Innovative Mobile and Internet
Services in Ubiquitous Computing (IMIS), pp. 175-181, July 2013.

[5] J. S. Cho, S. C. Kim, “Hash-based RFID tag Mutual Authentication
Scheme with Retrieval Efficiency,” in Proc. of IEEE the 9th
International Symposium on Parallel and Distributed Processing with
Applications (ISPA), pp. 324-328, May 2011.

[6] S. Sajal, Y. Atanasov, B. D. Braaten , “A low cost flexible passive
UHF RFID tag for sensing moisture based on antenna polarization, ”
in Proc. of 2014 IEEE Electro/Information Technology (EIT), pp.
542-545, June 2014.

[7] C. C. Chang , W. Y. Chen, T. F. Cheng, “A Secure RFID Mutual
Authentication Protocol Conforming to EPC Class 1 Generation 2
Standard,” in Proc. of 2014 Tenth International Intelligent
Information Hiding and Multimedia Signal Processing (IIH-MSP), pp.
642-645, August 2014.

[8] M. Safkhani, N. Bagheri, A. Mahani, “On the security of RFID anti-
counting security protocol (ACSP),” Journal of Computational and
Applied Mathematics, pp. 512-521, 2014.

[9] J. P. Aumasson, L. Henzen, W. Meier, M. Naya-Plasencia, “Quark: a
lightweight hash,” Journal of Cryptology, vol. 26, p. 313-339, 2013.

[10] Y. Liao, C. Hsiao, “A secure ECC-based RFID authentication scheme
integrated with ID-verifier transfer protocol,” Ad Hoc Networks, Vol.
18, pp. 133-146, July 2013.

[11] Z. Li, R. Zhang, Y. Yang, Z. Li, “A Provable Secure Mutual RFID
Authentication Protocol Based on Error-Correct Code,” in Proc. of
2014 Cyber-Enabled Distributed Computing and Knowledge
Discovery (CyberC), pp. 73-78, October 2014.

[12] Y. C. Huang and J. R. Jiang, “An Ultralightweight Mutual
Authentication Protocol for EPC C1G2 RFID Tags,” in Proc. of 2012
International Symposium on Parallel Architectures, Algorithms and
Programming (PAAP'12), pp. 133-140, December 2012.

[13] X. Yi, L. Wang, D. Mao, Y. Zhan, “An Gen2 Based Security
Authentication Protocol for RFID,” in Proc. of 2012 International
Conference on Applied Physics and Industrial Engineering, Vol. 24,
pp. 1385-1391, 2012.

[14] W. I. Khedr, “SRFID: A Hash-Based Security Scheme for Low Cost
RFID Systems,” Egyptian Informatics Journal, Vol. 14, No. 1, pp. 89-
98, 2013.

[15] M. Safkhani, N. Bagheri, P. Peris-Lopez, A. Mitrokotsa, J. C.
Hernandez-Castro, “Weaknesses in another Gen2-Based RFID
Authentication Protocol.” in Proc of 2012 IEEE International
Conference on RFID-Technologies and Applications (RFID-TA), pp.
80-84, November 2012.

[16] M. A. Seyed, B. Karim, A. Behzad, R. A. Mohammad, “Traceability
Analysis of Recent RFID Authentication Protocols,” Wireless
Personal Communications, March 2015.

http://www.informatik.uni-trier.de/~ley/pers/hd/z/Zhu:Guangyu.html
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Zhen-Yu%20Wu.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Sung-Chiang%20Lin.QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Chen,%20T.-L..QT.&newsearch=true
http://ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Wang,%20C..QT.&newsearch=true
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=6603668&ranges%3D2013_2013_p_Publication_Year%26queryText%3Da+secure+RFID
http://ieeexplore.ieee.org/xpl/articleDetails.jsp?tp=&arnumber=6603668&ranges%3D2013_2013_p_Publication_Year%26queryText%3Da+secure+RFID
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6603432
http://ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6603432
http://www.ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6863137
http://www.ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Chin-Chen%20Chang.QT.&newsearch=true
http://www.ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Wei-Yi%20Chen.QT.&newsearch=true
http://www.ieeexplore.ieee.org/search/searchresult.jsp?searchWithin=p_Authors:.QT.Ting-Fang%20Cheng.QT.&newsearch=true
http://www.ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6990729
http://www.ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6990729
http://www.ieeexplore.ieee.org/xpl/mostRecentIssue.jsp?punumber=6990729
http://link.springer.com/journal/145

