public class Activity
public boolean onKeyDown (int keyCode, KeyEvent event)
Since: API Level 1
Called when a key was pressed down and not handled by any of the views inside of the activity. So, for example, key presses while the cursor is inside a TextView will not trigger the event (unless it is a navigation to another object) because TextView handles its own key presses.
If the focused view didn't want this event, this method is called.
The default implementation takes care of KEYCODE_BACK by calling onBackPressed(), though the behavior varies based on the application compatibility mode: for ECLAIR or later applications, it will set up the dispatch to call onKeyUp(int, KeyEvent) where the action will be performed; for earlier applications, it will perform the action immediately in on-down, as those versions of the platform behaved.
Other additional default key handling may be performed if configured with setDefaultKeyMode(int).
Parameters
	keyCode
	The value in event.getKeyCode().

	event
	Description of the key event.

Returns
· Return true to prevent this event from being propagated further, or false to indicate that you have not handled this event and it should continue to be propagated.
See Also
· onKeyUp(int, KeyEvent)
· KeyEvent

public class MediaPlayer
extends Object
Class Overview
MediaPlayer class can be used to control playback of audio/video files and streams. An example on how to use the methods in this class can be found in VideoView. Please see Audio and Video for additional help using MediaPlayer.
public static MediaPlayer create (Context context, int resid)
Since: API Level 1
Convenience method to create a MediaPlayer for a given resource id. On success, prepare() will already have been called and must not be called again.
When done with the MediaPlayer, you should call release(), to free the resources. If not released, too many MediaPlayer instances will result in an exception.
Parameters
	context
	the Context to use

	resid
	the raw resource id (R.raw.<something>) for the resource to use as the datasource

Returns
· a MediaPlayer object, or null if creation failed

public void release ()
Since: API Level 1
Releases resources associated with this MediaPlayer object. It is considered good practice to call this method when you're done using the MediaPlayer. For instance, whenever the Activity of an application is paused, this method should be invoked to release the MediaPlayer object. In addition to unnecessary resources (such as memory and instances of codecs) being hold, failure to call this method immediately if a MediaPlayer object is no longer needed may also lead to continuous battery consumption for mobile devices, and playback failure if no multiple instances of the same codec is supported on a device.

public void start ()
Since: API Level 1
Starts or resumes playback. If playback had previously been paused, playback will continue from where it was paused. If playback had been stopped, or never started before, playback will start at the beginning.
Throws
	IllegalStateException
	if it is called in an invalid state

[bookmark: stop()]public void stop ()
Since: API Level 1
Stops playback after playback has been stopped or paused.
Throws
	IllegalStateException
	if the internal player engine has not been initialized.

	

	

	
	

public class
VideoView
extends SurfaceView
implements MediaController.MediaPlayerControl
java.lang.Object
 ↳ 	android.view.View
 	 ↳ 	android.view.SurfaceView
 	 	 ↳ 	android.widget.VideoView
Class Overview

Displays a video file. The VideoView class can load images from various sources (such as resources or content providers), takes care of computing its measurement from the video so that it can be used in any layout manager, and provides various display options such as scaling and tinting.

public void setVideoPath (String path)
public void start ()

public class PreferenceManager
public static SharedPreferences getDefaultSharedPreferences (Context context)
Since: API Level 1
Gets a SharedPreferences instance that points to the default file that is used by the preference framework in the given context.
Parameters
	context
	The context of the preferences whose values are wanted.

Returns
· A SharedPreferences instance that can be used to retrieve and listen to values of the preferences.

public interface SharedPreferencesInterface
public abstract boolean getBoolean (String key, boolean defValue)
Since: API Level 1
Retrieve a boolean value from the preferences.
Parameters
	key
	The name of the preference to retrieve.

	defValue
	Value to return if this preference does not exist.

Returns
· Returns the preference value if it exists, or defValue. Throws ClassCastException if there is a preference with this name that is not a boolean.
Throws
	ClassCastException
	

public SharedPreferences getPreferences (int mode)
Since: API Level 1
Retrieve a SharedPreferences object for accessing preferences that are private to this activity. This simply calls the underlying getSharedPreferences(String, int) method by passing in this activity's class name as the preferences name.
Parameters
	mode
	Operating mode. Use MODE_PRIVATE for the default operation, MODE_WORLD_READABLE and MODE_WORLD_WRITEABLE to control permissions.

Returns
· Returns the single SharedPreferences instance that can be used to retrieve and modify the preference values.

public abstract SharedPreferences.Editor edit ()
Since: API Level 1
Create a new Editor for these preferences, through which you can make modifications to the data in the preferences and atomically commit those changes back to the SharedPreferences object.
Note that you must call commit() to have any changes you perform in the Editor actually show up in the SharedPreferences.
Returns
· Returns a new instance of the SharedPreferences.Editor interface, allowing you to modify the values in this SharedPreferences object.

public abstract SharedPreferences.Editor putString (String key, String value)
Since: API Level 1
Set a String value in the preferences editor, to be written back once commit() or apply() are called.
Parameters
	key
	The name of the preference to modify.

	value
	The new value for the preference.

Returns
· Returns a reference to the same Editor object, so you can chain put calls together.

public abstract boolean commit ()
Since: API Level 1
Commit your preferences changes back from this Editor to the SharedPreferences object it is editing. This atomically performs the requested modifications, replacing whatever is currently in the SharedPreferences.
Note that when two editors are modifying preferences at the same time, the last one to call commit wins.
If you don't care about the return value and you're using this from your application's main thread, consider using apply() instead.
Returns
· Returns true if the new values were successfully written to persistent storage.

public abstract String getString (String key, String defValue)
Since: API Level 1
Retrieve a String value from the preferences.
Parameters
	key
	The name of the preference to retrieve.

	defValue
	Value to return if this preference does not exist.

Returns
· Returns the preference value if it exists, or defValue. Throws ClassCastException if there is a preference with this name that is not a String.
Throws
	ClassCastException
	

