
Avatar Path Clustering in Network Virtual Environments

Jehn-Ruey Jiang, Ching-Chuan Huang, and Chung-Hsien Tsai
Department of Computer Science and Information Engineering

National Central University,

Jhongli City, Taiwan, R.O.C.

jrjiang@csie.ncu.edu.tw, qulau0412@gmail.com, chtsai@csie.ncu.edu.tw

Abstract—With the increase of network bandwidth and the

advance of 3D graphics technology, networked virtual

environments (NVEs) have become popular recently. Early

SIMNET and currently booming massively multiplayer online

games (MMOGs), such as Second Life (SE) and World of

Warcraft (WoW), are examples of NVEs. Because NVE users’

interests or habits may be similar, avatars, or the

representative of NVE users, may have similar behavior

patterns, which leads to similar motion paths in the NVE. This

paper proposes two NVE avatar path clustering algorithms,

namely, Average Distance of Corresponding Points-Density

Clustering (ADCP-DC) and Longest Common Subsequence-

Density Clustering (LCSS-DC). Given avatar paths, both

algorithms will produce a collection of path clusters and their

representative paths (RPs), which can be used to analyze

avatar behaviors for improving NVE design. We take SE user

trace data as input of the algorithms to demonstrate their

applicability. We also show how to adjust algorithm

parameters to obtain high-quality path clustering in terms of

silhouette coefficient and cluster coverage.

Keywords-networked virtual environments, massively

multiplyer online games, path clustering, density clustering

I. INTRODUCTION

Networked virtual environments (NVEs) are virtual
worlds full of numerous virtual objects created by computer
graphics to simulate various real world scenes for multiple
geographically distributed users to assume virtual
representatives (or avatars) to concurrently interact with
each other via network connections. Early SIMNET [1] and
currently booming massively multiplayer online games
(MMOGs), such as Second Life (SE) [2] and World of
Warcraft (WoW) [3], are examples of NVEs. Some NVEs
like SE are constructed for the purpose of social intercourse.
Within such NVEs, users may exhibit diverse behaviors of
navigating the virtual world and interacting with other
avatars. Because of similar personalities, interests, or habits,
users may possess similar behavior patterns, which in turn
lead to similar motion paths within the virtual world. For
example, SE allows users to create fantastic objects and sell
them in particular areas. Users with similar interests usually
move towards similar areas for shopping similar products
and thus may have similar avatar paths.

In this paper, two path clustering schemes, namely
Average Distance of Corresponding Points-Density
Clustering (ADCP-DC) and Longest Common Subsequence-
Density Clustering (LCSS-DC), are proposed to group
similar avatar paths and find representative paths (RPs) for

them. RPs have many applications; for example, an NVE
developer can use them to analyze avatar behavior and to
find out popular paths for improving the virtual world design,
etc. The two algorithms first divide an avatar path into
several path segments between two hotspots, where a hotspot
is defined to be an area that has attracted a large portion of
avatars to long stay. The algorithms employ respectively the
concept of the average distance of corresponding points
(ADCP) [4] and the concept of the longest common
subsequence (LCSS) [5] to compute the similarity of path
segments, and then use the density-based clustering scheme
to cluster similar path segments. To demonstrate the
applicability of the algorithms, the avatar location trace data
in SE reported in [6] are used as inputs of the two algorithms
to output RPs of avatar paths. Furthermore, the outputs are
measured in terms of the silhouette coefficient (or simply
silhouette) [7-8] and the cluster coverage (or simply
coverage) to show the output quality. Suggestions about how
to achieve better quality of path clustering by adjusting
parameters are also given.

The rest of this paper is organized as follows. Section 2
provides an overview of relevant background knowledge,
and Section 3 describes the proposed path clustering
algorithms. Section 4 shows the experimental results and
Section 5 summaries this paper and outlines some future
work.

II. RELATED WORK

In this section, we introduce some related research

results about motion path similarity, data clustering and path

clustering in spite that they are not intended for NVEs.

Some path similarity measurement methods are examined,

followed by three classes of data clustering algorithms and

relevant studies on path clustering.

2.1 Path Similarity

In this subsection we describe two methods of measuring
the similarity between motion paths: Average Distance of
Corresponding Points (ADCP) and Longest Common
Subsequence (LCSS) methods. ADCP [4] is for measuring
pairwise similarity of vehicle motion paths (or trajectories) in
real traffic video of a cross road scene. It is suitable for paths
of similar beginnings and stops; it is thus fit for the paths in
traffic video since most paths appear and disappear around
the video boundaries. Before path similarity is measured,
paths are pre-processed and resampled and indexed at equal
space intervals. Two paths with similar beginnings and stops
are then represented as two equal-sized sequences of points.

A point from the first path and a point from the second path
are regarded as corresponding points if they have the same
index. The distance of every pair of corresponding points is
measured and accumulated for calculating the average
distance of the two paths to measure their similarity. ADCP
is sensitive to noise (e.g., zigzag segments in a path), so
some pre-processes are needed to eliminate the noise by
merging data points that are too close. Furthermore, since
ADCP requires that two paths for measuring have close
beginnings and stops, paths should be aligned by padding
additional points to path heads and tails until they reach the
boundary.

The other path similarity measuring method is the
Longest Common Subsequence (LCSS) [5], which regards a
path as a sequence of points for matching. Given two
sequences S1 and S2, the LCSS method can return the longest
subsequence L of matched points of the two sequences,
where matched points are points that are close enough

(within  distance) and a subsequence of a sequence S is
derived by deleting from S any number of points that are not
necessary consecutive (e.g., sequences <A, C, E> and <B, C,
D> are both subsequences of the sequence <A, B, C, D, E>).
The path similarity is then measured by the ratio |L| / min(|S1|,
|S2|). Compared with the ADCP method, LCSS can cope
with the problems caused by noises and path un-alignment
by allowing some points not to be included in the returned
subsequence.

2.2 Data Clustering

In this subsection, we describe some research work about
data clustering which may be used to cluster motion paths.
As described in [9], data clustering partitions numerous data
objects into clusters (or groups) according to their similarity.
A cluster is a collection of data objects that are similar to one
another within the same cluster and are dissimilar to the
objects in other clusters. There are many data clustering
methods proposed in the literature. Below, we introduce
three categories of them: partitioning, hierarchical, and
density-based methods.

2.2.1 Partitioning Methods

Given a set of n data objects, a partitioning method
constructs k partitions of the data, where each partition

represents a cluster and kn. To be more precise, the method
classifies the data into k clusters satisfying the following
requirements: (1) each cluster must contain at least one
object, and (2) each object must belong to exactly one cluster.
After partitioning data objects into k initial clusters, the
method uses an iterative relocation technique attempting to
improve the partitioning by moving objects from one cluster
to another. The general criterion of a good partitioning is that
data objects in the same cluster are similar to each other,
whereas data objects of different clusters are dissimilar.

The famous k-means algorithm [11] is one of the
partitioning methods. It first randomly selects k of the data
objects, each of which initially represents a cluster mean.
Each of the remaining data objects is then assigned to the
cluster to which it is the most similar on the basis of the
distance between the data object and the cluster mean.

Afterwards, the new mean for each cluster is re-computed
and data objects are re-assigned to clusters. This process
iterates until the criterion function, typically defined as the
sum of square errors, converges. The k-medoids algorithm [8]
is analogous to the k-means algorithm; however, it uses the
medoid, the data object that is closest to the mean of the
cluster, instead of the mean as the reference of the cluster.
Furthermore, it uses the sum of absolute errors as the
criterion function. The k-medoids algorithm is thus more
robust to noise and outliers (i.e., the data objects that do not
comply with the general object behavior) than the k-means
algorithm.

2.2.2 Hierarchical Methods

Hierarchical methods seek to build a hierarchy of clusters
of data objects, and they are either agglomerative ("bottom-
up") or divisive ("top-down"). Agglomerative methods, such
as BIRCH (Balanced Iterative Reducing and Clustering)
algorithm [10], begin by taking each element as a separate
cluster and then merge them into successively larger clusters.
They are convenient to find and handle the outlier values. On
the contrary, the divisive methods begin with the whole data
objects in a cluster and proceed to split it into successively
smaller clusters. They need more memory than its
counterparts to process the clustering. Since a pure
hierarchical clustering method cannot perform adjustment
once a merging or splitting operation has been executed, its
performance may suffers. Some studies try to embed the data
relocation concept into hierarchical agglomerative clustering
methods to ease the suffering.

2.2.3 Density-based Methods

Density-based methods typically regard clusters as dense
regions of data objects in the data space that are separated by
regions of low density. In these methods, a cluster is
regarded as a region satisfying a certain criterion (e.g., the
density of data objects exceeds a threshold). DBSCAN
(Density-Based Spatial Clustering of Applications with
Noise) [12] and OPTICS (Ordering Points to Identify the
Clustering Structure) [13] are two typical methods of this
kind. DBSCAN [12] processes data objects one by one and
regards an object as a core object to be grown into a cluster
of arbitrary shape in a spatial database with noise if the
number of the object’s nearby objects within a specified
radius R exceeds a threshold T. After processing all data
objects, those not belonging to any cluster are regarded as
noises. A disadvantage of DBSCAN is that it is hard to find
proper parameters, such as R and T, for clustering. To
eliminate the drawback, OPTICS [13] computes the cluster
ordering, instead of the explicit data clustering, for
automatically and interactively extracting clustering
information like cluster centers, etc.

2.3 Path Clustering

Some papers address the problem of path clustering for
paths in different applications, such as hurricane (or typhoon)
tracks [14], animal movements [14] and vehicular
trajectories [15]. The paper [14] proposes a method called
TRACLUS using the partition-and-group concept for

clustering paths. The method first divides paths into smaller
segments with the minimum description length (MDL)
principle and then clusters similar segments into a cluster, in
which the similarity of paths is measured by the weighted
distance of the perpendicular, the parallel and the angle
distances. Each cluster has a representative path calculated
by averaging characteristic parameters of paths in the cluster.

 The paper [15] proposes an online path clustering
method to build path clusters for a video surveillance system
as path data are acquired by the system. Paths are clustered
online and clusters are organized in a tree-like structure
augmented with probability information. The paper defines
the distance of a path to a cluster to be the mean of the
normalized distances of very point on the path to the nearest
point of a path in the cluster found inside a temporal window.
When a path is detected, a new cluster is constructed by
creating a tree consisting of a single node if the path is not
sufficiently near (or with short enough distance) to any
known clusters. Otherwise, the path is added into the nearest
cluster by updating the corresponding tree structure of the
cluster. As the path advances, the distance from it to the
associated cluster is monitored to see if the path is moving
away from the cluster. If the distance keeps growing over an
amount of time, the cluster is divided into two subclusters by
a cluster tree splitting procedure.

III. PROPOSED ALGORITHMS

3.1 Pre-processing

In NVEs, two avatars can see each other if they are
within each other’s AOI (area of interest), which is usually
assumed to be a circle of radius r centered at the avatar.
Furthermore, two avatars have overlap in their AOIs or have
some common views if they are within 2r distance.
Therefore, the portions of two paths are regarded as similar if
they are of distances less than the AOI diameter (i.e., 2r). In
the proposed algorithms, the avatars are assumed to have the
same AOI radius r and the whole NVE virtual world is
divided into several numbered cells, which are squares of the
side length 2r. It is likely that two avatars within the same
cell can see each other or have overlap in their AOIs. Note
that cells are said to be adjacent if they share common edges
or points in the boundary. Therefore, a cell may have up to 8
adjacent cells.

Before being clustered, avatar paths need some
preprocessing since they usually have different length and
different start and end points. In practice, paths are divided
into path segments of which endpoints are hotspots, where a
hotspot is a cell whose accumulated period of avatars staying
is larger than those of all its adjacent cells. Note that a loop,
which is a path with the same beginning and stopping points,
is not regarded as a path segment. For example, in Figure 1,
the solid avatar path is divided into 5 path segments and the
dotted path is a loop and should not be regarded as a path
segment. After dividing paths into path segments, the
proposed algorithms can cluster them. Below, a path
segment is simply called a path and the set of all path
segments is simply called the path set.

Figure 1. Illustration of dividing paths into path segments by hotspots

3.2 ADCP-DC Algorithm

ADCP-DC algorithm shown in Figure 2 is based on the
average distance of corresponding points on two paths to
measure the similarity of the paths. Since avatars may move
at random directions and random speeds, and path data are
usually sampled per time ticks (e.g., per 10 seconds in [6]),
even similar paths may have different number of sample
points, leading to the difficulty of point data comparison. To
overcome the difficulty, ADCP-DC specifies the number of
corresponding points for paths. For a certain path P of
sample points v0, v1,…, vn, the path length of P is defined to

be

 , where di is the distance from vi1 to vi. Similarly,

the length of sample point vj is defined to be

 (note

that the length of v0 is defined to be 0). By dividing the path
length and the number of corresponding points, the distance
d between two consecutive corresponding points on the path
is derived. By the distance d, the length of the corresponding

point of index k is defined to be kd (note that the first
corresponding point is indexed by 0).

Let the length of a corresponding point v be Lv. The
coordinate (or location) of v can be calculated by
interpolation of the coordinates of the two consecutive
sample points u and w which enclose v, where u and v are

respectively of length Lu and Lw, and Lu  Lv  Lw. Let the
coordinates of u and w be (xu, yu) and (xw, yw), respectively.
The coordinate (xv , yv) of v can be calculated by Eqs. (1)
and (2). Note that v=v0 (resp., v=vn) if v is the first (resp.,
last) corresponding point.

()v u
v u w u

w u

L L
x x x x

L L


   


 (1)

()v u
v u w u

w u

L L
y y y y

L L


   


 (2)

The average distance of corresponding points (ADCP) of
two paths can be calculated by first deriving the distance of
each pair of corresponding points and then averaging all
derived distances. ADCP is used to measure the similarity of
two paths for clustering paths. In light of the concept of
DBSCAN, a density-based clustering method is employed to
cluster paths by specifying the similar path radius R and the
minimum number M of paths in a cluster. In ADCP-DC
algorithm, R is set to be the AOI radius for the following
reasons: (1) any pair of paths in the same cluster will have
ADCP value less than 2R; (2) two avatars with AOI overlap

are of distance less than 2R will have some similar view and
can be regarded as similar paths.

In ADCP-DC algorithm, two paths are regarded as
similar paths if their ADCP value is less than R, which is set
to be the AOI radius. If the total number of the similar paths
of a path exceeds M, the path is regarded as a core path and
is associated with a similar path set (SPS). The core path, say
p1, with the most similar paths is first elected as the first
representative path, and SPS1 is regarded as the first cluster,
where SPS1 is the set containing p1 and all its similar paths.
All members of SPS1 are then excluded from the SPS of
every remaining core path. Afterwards, the remaining core
path with the most similar paths is selected as the second
representative path, and its associated SPS is the second
cluster. The procedure proceeds until no core path exits.
Algorithm: ADCP-DC

Input: path set PS, similar path radius R (set to be AOI radius),

minimum number M of paths in a cluster

Output: path cluster collection PCC and representative paths

Var:

CPS=; //CPS: core path set

RPS=; //RPS: representative path set

SPSi={Pi}, for 1in; //SPSi: similar path set of path Pi

FOR each unordered pair of distinct paths Pi and Pj in PS

 Compute ADCPij of Pi and Pj

IF ADCPij < R THEN

SPSi=SPSi{Pj};

SPSj=SPSj{Pi};

FOR each path Pi

 IF |SPSi|  M THEN CPS=CPS{Pi};

WHILE CPS

Select from CPS path Pi with the largest SPSi

CPS=CPS  {Pi};

IF |SPSi|  M THEN

//SPSi is a path cluster and Pi is a representative path

PCC=PCC  {SPSi};

FOR each path Pj in CPS

 SPSj = SPSj – SPSi;

RETURN PCC and associated representative paths

Figure 2. ADCP-DC Algorithm

3.3 LCSS-DC

In LCSS-DC algorithm shown in Figure 3, the entire
virtual world is first divided into numbered square cells
whose length is of the AOI diameter. According to the cell
numbers that the sample points of a path resides in, the path
is represented by a sequence of cell numbers. Note that
consecutive identical cell numbers in the sequence will be
merged to be one number. For example, in Figure 3(a), path
A is represented as <60, 61, 62, 63, 55, 47, 39, 31, 32>, and
path B, <60, 61, 62, 54, 62, 63, 64>.

The similarity of two paths is measured by the longest
common subsequence (LCSS) of the cell number sequences

of the paths. Each cell number in the sequence is associated
with the location of the sample data residing within the cell;
a merged cell number is associated with the centroid of the
locations of the sample data residing within the cell. Two
cell numbers are regarded common if they are identical or
their associated cells are adjacent in the virtual world and
their associated locations are with the distance less than the
AOI radius. For example, paths A and B in Figure 3(a) have
the LCSS of <60, 61, 62, 63>.

After calculating the LCSS of two paths, clustering is
then performed. LCSS-DC uses a pair of similar path
thresholds THa and THb, instead of the similar path radius R
used in ADCP-DC, as parameters of clustering. Path Pi takes
path Pj as its similar path if Eqs. (3) and (4) are satisfied.

 ij

a

i

LCSS
TH

Seq
 (3)

 ij

b

ji

LCSS
TH

SSeq
 (4)

In Eqs. (3) and (4), Seqi and Seqj are the cell number

sequences of Pi and Pj, respectively, LCSSij is the longest

common subsequence of Seqi and Seqj, and SSeqji is the

shorted subsequence of path Pj containing the whole LCSSij.

Algorithm: LCSS-DC

Input: path set PS, similar path thresholds THa and THb,

minimum number M of paths in a cluster

Output: path cluster collection PCC and representative paths

Var:

CPS=; //CPS: core path set

SPSi={Pi}, for 1in; //SPSi: similar path set of path Pi

FOR each ordered pair of distinct paths Pi and Pj in PS

 Compute LCSSij of Pi and Pj

IF (|LCSSij|/|Seqi|)  THa) and (|LCSSij|/|SSeqji|)  THb)

SPSi =SPSi {Pj};

FOR each path Pi

 IF |SPSi|  M THEN CPS=CPS{Pi};

WHILE CPS

Select from CPS path Pi with the largest SPSi

CPS=CPS {Pi};

IF |SPSi| M THEN

//SPSi is a path cluster and Pi is a representative path

PCC=PCC{SPSi};

FOR each path Pj in CPS

 SPSj = SPSj – SPSi;

RETURN PCC and associated representative paths

Figure 3. LCSS-DC Algorithm

Unlike ADCP-DC, LCSS-DC checks the similarity for
each ordered pair of paths. Like ADCP-DC, LCSS-DC also
adopts the density-based clustering mechanism for
clustering paths. When a path has many enough similar
paths, it is regarded as a core path and becomes a candidate

of representative paths. Note that the similarity relationship
between two paths is asymmetric. To take paths in Figure
3(a) as examples, path B may take path A as a similar path,
but not vise versa. The asymmetry is to avoid the case that
dissimilar paths appear in the same cluster. For example, if
path A in Figure 3(b) takes both paths B and C as its similar
paths, then path A is likely to be the representative path of
the cluster covering paths A, B and C. It is obvious that such
a cluster contains two very dissimilar paths, B and C.

(a) (b)

Figure 4. Examples of paths represented as cell sequences

IV. PERFORMANCE EVALUATION

4.1 Setting and Metrics

To demonstrate the applicability and performance of the
algorithms, the avatar location trace data collected in SE
hours [6], as shown in Figure 5, are used as inputs of the two
proposed algorithms. The avatar locations are sampled per
10 seconds for four regions, each of which is a 256x256
(unit

2
 or m

2
) area of the virtual world with the avatar AOI

radius of 16 (unit or m). Each data entry has the following
fields: date, time, avatar ID, and avatar location. This paper
adopts the trace data for Freebies region in SE for
performance evaluation, and adopts the parameter setting
shown in Tables I and II. However, several parameters are
variables. Below, we will show how to tune those parameters
to achieve better clustering quality.

Figure 5. The trace data of avatar paths in different regions of SE

TABLE I. THE PARAMETER SETTING OF ADCP-DC

Algorithm ADCP-DC

similar path radius R 16 (AOI radius)

number of corresponding points variable

minimum number M of paths in a cluster variable

TABLE II. THE PARAMETER SETTING OF LCSS-DC

Algorithm LCSS-DC

cell diameter 32 (AOI diameter)

similar path threshold THa variable

similar path threshold THb variable

minimum number M of paths in a cluster variable

A good clustering should have the contrast property that
intra-cluster similarity is high and inter-cluster similarity is
low. We can apply Eq. (5) of silhouette [7] to measure the
quality of the clustering.

1 ()
max(,)

i i

i

i i

b a
S

a b


  (5)

In Eq. (5), Si is the silhouette value of a path Pi, ai is the
average dissimilarity of Pi and all other paths in the cluster of
Pi , and bi is computed as follows. For each cluster in which
Pi is not a member, compute the average dissimilarity
between Pi and all paths in the cluster. Then find the cluster
generating the largest average dissimilarity, which is bi. We
can observe that the value of silhouette is between 1 and -1.
If the silhouette of Pi is greater, then Pi is more similar to the
paths in the cluster of Pi, and is more dissimilar to the paths
in other clusters. By Eq. (6), we can calculate silhouette
values of all paths and average them to obtain the overall
silhouette value. As shown in [8], silhouette can be used to
measure the accuracy of a clustering and the overall
silhouette value over 0.7 can be regarded as the achievement
of high accuracy.

In addition to silhouette, another metric called coverage
is used for assessing the cluster results. This metric concerns
the ratio of paths that belong to clusters. The coverage value
can be computed according to Eq. (6).

coverage =
the number of paths in clusters

the total number of paths
 (6)

4.2 ADCP-DC Performance

Figure 6. The silhouette of ADCP-DC algorithm

Figure 7. The coverage of ADCP-DC algorithm

0

0.35

0.7

10 20 30 40 50 60

50

150

250

M

Number of corresponding points

Silhouette

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

10 20 30 40 50 60

50

150

250

Number of corresponding points

Coverage

M

As shown in Figures 6 and 7, when the number of
corresponding points increases, the silhouette of ADCP-DC
algorithm slightly increases and the coverage slightly
decreases. In addition, when the minimum number M of
paths in a cluster increases, the silhouette increases but the
coverage decreases. This is because when M grows, it
requires more paths to form clusters and some paths thus
cannot be included in any clusters, leading to the higher
silhouette and lower coverage. Based on the experiment
results, when the minimum number of paths in a cluster is
150, the silhouette is greater than 0.7, the suggested value
mentioned in [8], and the coverage is about 0.41.

4.3 LCSS-DC Performance

Experiment results reveals that when the minimum
number M of paths in a cluster is less than 200, the silhouette
of LCSS-DC algorithm is below the suggested value 0.7.
Therefore, only the results for M=200 and M=300 are shown
in the paper. By Figures 8 and 9, it can be observed that
when similar path thresholds THa and THb grow, the
silhouette increases but the coverage decreases. As shown in
Figure 8, when the minimum number M of paths in a cluster
is set to be 200, and THa is set to be over 0.74, and THb is set
to be over 0.50, the silhouette is over the suggested value 0.7
and the coverage is about 0.54 or less. As shown in Figure 9,
when M is set to be 300, and THa is set to be over 0.68, and
THb is set to be over 0.65, the silhouette is over 0.7 and the
coverage is about 0.41 or less.

Figure 8. The silhouette and coverage of LCSS-DC algorithm when the

minimum number M of paths in a cluster is 200

Figure 9. The silhouette and coverage of LCSS-DC algorithm when the

minimum number M of paths in a cluster is 300

V. CONCLUSION

This paper proposed two algorithms, namely Average
Distance of Corresponding Points-Density Clustering
(ADCP-DC) and Longest Common Subsequence-Density
Clustering (LCSS-DC), to cluster avatar motion paths in
NVEs. Avatar paths are first divided into segments by
hotspots and then processed by the proposed algorithms to
derive a collection of path clusters and associated
representative paths, which can be used to observe avatar
behavior or to improve the NVE design. The proposed
algorithms are applied to process the avatar path data of SE
to demonstrate their applicability and quality in terms of
silhouette and coverage. At present, we are planning to apply
them to avatar path data of other NVEs like WoW. We are
also planning to design other clustering algorithms to cluster
avatar paths in NVEs.

REFERENCES

[1] D. C. Miller, and J. A. Thorpe, ―SIMNET: the Advent of Simulator
Networking,‖ Proc. IEEE, pp. 1114-1123, 1995

[2] Secnod Life, http://secondlife.com/.

[3] World of Warcraft, http://www.worldofwarcraft.com/.

[4] Z. Fu, W. Hu, and T. Tan, ―Similarity Based Vehicle Trajectory
Clustering and Anomaly Detection,‖ Proc. 5th ICIP, pp. 602-605,
2005.

[5] M. Vlachos, G. Kollios, and D. Gunopulos, ―Discovering Similar
Multidimensional Trajectories,‖ Proc. 18th Intl. Conf. on Data
Engineering (ICDE’02), pp. 673-685, 2002.

[6] H. Liang, I. Tay, M. F. Neo, W. T. Ooi, and M. Motani, ―Avatar
Mobility in Networked Virtual Environments: Measurements,
Analysis, and Implications,‖ Multimedia Tools and Applications, Vol.
45, pp. 163-190, 2009.

[7] R. Ng, and J. Han, ―Efficient and Effective Clustering Method for
Spatial Data Mining,‖ Proc. 20th VLDB Conference, pp. 144-155,
1994.

[8] L. Kaufman, and P. J. Rousseeuw, Finding Groups in Data: An
Introduction to Cluster Analysis, Wiley, 1990.

[9] J. Han, and M. Kamber, Data Mining: Concepts and Techniques,
Morgan Kaufmann, 2000.

[10] T. Zhang, R. Ramakrishnan, and M. Livny, ―BIRCH: An Efficient
Data Clustering Method for Very Large Databases,‖ Proc. ACM
SIGMOD Conference on Management of Data, pp. 103-114, 1996.

[11] J. MacQueen, ―Some Methods for Classification and Analysis of
Multivariate Observations,‖ Proc. 5th Berkeley Symp, pp. 281-297,
1967.

[12] M. Ester, H.P. Kriegel, and X. Xu, ―A Density-Based Algorithm for
Discovering Clusters in Large Spatial Databases with Noise,‖ Proc.
2th International Conference on Knowledge Discovery and Data
Mining (KDD 96), pp. 226-231, 1996.

[13] M. Ankerst, M. Breunig, H.P. Kriegel, and J. Sander, ―Optics:
Ordering Points to Identify the Clustering Structure,‖ Proc. ACM
SIGMOD International Conference on Management of Data, pp. 49-
60, 1990.

[14] J. Lee, J. Han, and K. Whang, ―Trajectory Clustering: A Partition-
and-Group Framework,‖ Proc. SIGMOD International Conference on
Management of Data, pp. 593-604, 2007.

[15] C. Piciarelli, and G. L. Foresti, ―On-line Trajectory Clustering for
Anomalous Events Detection,‖ Pattern Recognit. Lett., Vol. 27, No.
15, pp. 1835-1842, 2006.

Silhouette

Silhouette

Range

Coverage

Coverage

Range

Silhouette

Silhouette

Range

Coverage

Coverage

Range

