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Abstract—With the increase of network bandwidth and the 

advance of 3D graphics technology, networked virtual 

environments (NVEs) have become popular recently. Early 

SIMNET and currently booming massively multiplayer online 

games (MMOGs), such as Second Life (SE) and World of 

Warcraft (WoW), are examples of NVEs. Because NVE users’ 

interests or habits may be similar, avatars, or the 

representative of NVE users, may have similar behavior 

patterns, which leads to similar motion paths in the NVE. This 

paper proposes two NVE avatar path clustering algorithms, 

namely, Average Distance of Corresponding Points-Density 

Clustering (ADCP-DC) and Longest Common Subsequence-

Density Clustering (LCSS-DC). Given avatar paths, both 

algorithms will produce a collection of path clusters and their 

representative paths (RPs), which can be used to analyze 

avatar behaviors for improving NVE design. We take SE user 

trace data as input of the algorithms to demonstrate their 

applicability. We also show how to adjust algorithm 

parameters to obtain high-quality path clustering in terms of 

silhouette coefficient and cluster coverage. 
 

Keywords-networked virtual environments, massively 

multiplyer online games, path clustering, density clustering 

I.  INTRODUCTION 

Networked virtual environments (NVEs) are virtual 
worlds full of numerous virtual objects created by computer 
graphics to simulate various real world scenes for multiple 
geographically distributed users to assume virtual 
representatives (or avatars) to concurrently interact with 
each other via network connections. Early SIMNET [1] and 
currently booming massively multiplayer online games 
(MMOGs), such as Second Life (SE) [2] and World of 
Warcraft (WoW) [3], are examples of NVEs. Some NVEs 
like SE are constructed for the purpose of social intercourse. 
Within such NVEs, users may exhibit diverse behaviors of 
navigating the virtual world and interacting with other 
avatars. Because of similar personalities, interests, or habits, 
users may possess similar behavior patterns, which in turn 
lead to similar motion paths within the virtual world. For 
example, SE allows users to create fantastic objects and sell 
them in particular areas. Users with similar interests usually 
move towards similar areas for shopping similar products 
and thus may have similar avatar paths. 

In this paper, two path clustering schemes, namely 
Average Distance of Corresponding Points-Density 
Clustering (ADCP-DC) and Longest Common Subsequence-
Density Clustering (LCSS-DC), are proposed to group 
similar avatar paths and find representative paths (RPs) for 

them.  RPs have many applications; for example, an NVE 
developer can use them to analyze avatar behavior and to 
find out popular paths for improving the virtual world design, 
etc. The two algorithms first divide an avatar path into 
several path segments between two hotspots, where a hotspot 
is defined to be an area that has attracted a large portion of 
avatars to long stay. The algorithms employ respectively the 
concept of the average distance of corresponding points 
(ADCP) [4] and the concept of the longest common 
subsequence (LCSS) [5] to compute the similarity of path 
segments, and then use the density-based clustering scheme 
to cluster similar path segments. To demonstrate the 
applicability of the algorithms, the avatar location trace data 
in SE reported in [6] are used as inputs of the two algorithms 
to output RPs of avatar paths. Furthermore, the outputs are 
measured in terms of the silhouette coefficient (or simply 
silhouette) [7-8] and the cluster coverage (or simply 
coverage) to show the output quality. Suggestions about how 
to achieve better quality of path clustering by adjusting 
parameters are also given. 

The rest of this paper is organized as follows. Section 2 
provides an overview of relevant background knowledge, 
and Section 3 describes the proposed path clustering 
algorithms. Section 4 shows the experimental results and 
Section 5 summaries this paper and outlines some future 
work. 

II. RELATED WORK 

In this section, we introduce some related research 

results about motion path similarity, data clustering and path 

clustering in spite that they are not intended for NVEs. 

Some path similarity measurement methods are examined, 

followed by three classes of data clustering algorithms and 

relevant studies on path clustering. 

2.1  Path Similarity 

In this subsection we describe two methods of measuring 
the similarity between motion paths: Average Distance of 
Corresponding Points (ADCP) and Longest Common 
Subsequence (LCSS) methods. ADCP [4] is for measuring 
pairwise similarity of vehicle motion paths (or trajectories) in 
real traffic video of a cross road scene. It is suitable for paths 
of similar beginnings and stops; it is thus fit for the paths in 
traffic video since most paths appear and disappear around 
the video boundaries. Before path similarity is measured, 
paths are pre-processed and resampled and indexed at equal 
space intervals. Two paths with similar beginnings and stops 
are then represented as two equal-sized sequences of points. 



A point from the first path and a point from the second path 
are regarded as corresponding points if they have the same 
index. The distance of every pair of corresponding points is 
measured and accumulated for calculating the average 
distance of the two paths to measure their similarity. ADCP 
is sensitive to noise (e.g., zigzag segments in a path), so 
some pre-processes are needed to eliminate the noise by 
merging data points that are too close. Furthermore, since 
ADCP requires that two paths for measuring have close 
beginnings and stops, paths should be aligned by padding 
additional points to path heads and tails until they reach the 
boundary.  

The other path similarity measuring method is the 
Longest Common Subsequence (LCSS) [5], which regards a 
path as a sequence of points for matching. Given two 
sequences S1 and S2, the LCSS method can return the longest 
subsequence L of matched points of the two sequences, 
where matched points are points that are close enough 

(within  distance) and a subsequence of a sequence S is 
derived by deleting from S any number of points that are not 
necessary consecutive (e.g., sequences <A, C, E> and <B, C, 
D> are both subsequences of the sequence <A, B, C, D, E>). 
The path similarity is then measured by the ratio |L| / min(|S1|, 
|S2|). Compared with the ADCP method, LCSS can cope 
with the problems caused by noises and path un-alignment 
by allowing some points not to be included in the returned 
subsequence. 

2.2 Data Clustering 

In this subsection, we describe some research work about 
data clustering which may be used to cluster motion paths. 
As described in [9], data clustering partitions numerous data 
objects into clusters (or groups) according to their similarity. 
A cluster is a collection of data objects that are similar to one 
another within the same cluster and are dissimilar to the 
objects in other clusters. There are many data clustering 
methods proposed in the literature. Below, we introduce 
three categories of them: partitioning, hierarchical, and 
density-based methods. 

2.2.1 Partitioning Methods 

Given a set of n data objects, a partitioning method 
constructs k partitions of the data, where each partition 

represents a cluster and kn. To be more precise, the method 
classifies the data into k clusters satisfying the following 
requirements: (1) each cluster must contain at least one 
object, and (2) each object must belong to exactly one cluster. 
After partitioning data objects into k initial clusters, the 
method uses an iterative relocation technique attempting to 
improve the partitioning by moving objects from one cluster 
to another. The general criterion of a good partitioning is that 
data objects in the same cluster are similar to each other, 
whereas data objects of different clusters are dissimilar.  

The famous k-means algorithm [11] is one of the 
partitioning methods. It first randomly selects k of the data 
objects, each of which initially represents a cluster mean. 
Each of the remaining data objects is then assigned to the 
cluster to which it is the most similar on the basis of the 
distance between the data object and the cluster mean. 

Afterwards, the new mean for each cluster is re-computed 
and data objects are re-assigned to clusters. This process 
iterates until the criterion function, typically defined as the 
sum of square errors, converges. The k-medoids algorithm [8] 
is analogous to the k-means algorithm; however, it uses the 
medoid, the data object that is closest to the mean of the 
cluster, instead of the mean as the reference of the cluster. 
Furthermore, it uses the sum of absolute errors as the 
criterion function. The k-medoids algorithm is thus more 
robust to noise and outliers (i.e., the data objects that do not 
comply with the general object behavior) than the k-means 
algorithm. 

2.2.2 Hierarchical Methods 

Hierarchical methods seek to build a hierarchy of clusters 
of data objects, and they are either agglomerative ("bottom-
up") or divisive ("top-down"). Agglomerative methods, such 
as BIRCH (Balanced Iterative Reducing and Clustering) 
algorithm [10], begin by taking each element as a separate 
cluster and then merge them into successively larger clusters. 
They are convenient to find and handle the outlier values. On 
the contrary, the divisive methods begin with the whole data 
objects in a cluster and proceed to split it into successively 
smaller clusters. They need more memory than its 
counterparts to process the clustering. Since a pure 
hierarchical clustering method cannot perform adjustment 
once a merging or splitting operation has been executed, its 
performance may suffers. Some studies try to embed the data 
relocation concept into hierarchical agglomerative clustering 
methods to ease the suffering. 

2.2.3 Density-based Methods 

Density-based methods typically regard clusters as dense 
regions of data objects in the data space that are separated by 
regions of low density. In these methods, a cluster is 
regarded as a region satisfying a certain criterion (e.g., the 
density of data objects exceeds a threshold). DBSCAN 
(Density-Based Spatial Clustering of Applications with 
Noise) [12] and OPTICS (Ordering Points to Identify the 
Clustering Structure) [13] are two typical methods of this 
kind. DBSCAN [12] processes data objects one by one and 
regards an object as a core object to be grown into a cluster 
of arbitrary shape in a spatial database with noise if the 
number of the object’s nearby objects within a specified 
radius R exceeds a threshold T. After processing all data 
objects, those not belonging to any cluster are regarded as 
noises. A disadvantage of DBSCAN is that it is hard to find 
proper parameters, such as R and T, for clustering. To 
eliminate the drawback, OPTICS [13] computes the cluster 
ordering, instead of the explicit data clustering, for 
automatically and interactively extracting clustering 
information like cluster centers, etc. 

2.3 Path Clustering 

Some papers address the problem of path clustering for 
paths in different applications, such as hurricane (or typhoon) 
tracks [14], animal movements [14] and vehicular 
trajectories [15]. The paper [14] proposes a method called 
TRACLUS using the partition-and-group concept for 



clustering paths. The method first divides paths into smaller 
segments with the minimum description length (MDL) 
principle and then clusters similar segments into a cluster, in 
which the similarity of paths is measured by the weighted 
distance of the perpendicular, the parallel and the angle 
distances. Each cluster has a representative path calculated 
by averaging characteristic parameters of paths in the cluster. 

 The paper [15] proposes an online path clustering 
method to build path clusters for a video surveillance system 
as path data are acquired by the system. Paths are clustered 
online and clusters are organized in a tree-like structure 
augmented with probability information. The paper defines 
the distance of a path to a cluster to be the mean of the 
normalized distances of very point on the path to the nearest 
point of a path in the cluster found inside a temporal window. 
When a path is detected, a new cluster is constructed by 
creating a tree consisting of a single node if the path is not 
sufficiently near (or with short enough distance) to any 
known clusters. Otherwise, the path is added into the nearest 
cluster by updating the corresponding tree structure of the 
cluster. As the path advances, the distance from it to the 
associated cluster is monitored to see if the path is moving 
away from the cluster. If the distance keeps growing over an 
amount of time, the cluster is divided into two subclusters by 
a cluster tree splitting procedure. 

III. PROPOSED ALGORITHMS 

3.1 Pre-processing 

In NVEs, two avatars can see each other if they are 
within each other’s AOI (area of interest), which is usually 
assumed to be a circle of radius r centered at the avatar. 
Furthermore, two avatars have overlap in their AOIs or have 
some common views if they are within 2r distance. 
Therefore, the portions of two paths are regarded as similar if 
they are of distances less than the AOI diameter (i.e., 2r). In 
the proposed algorithms, the avatars are assumed to have the 
same AOI radius r and the whole NVE virtual world is 
divided into several numbered cells, which are squares of the 
side length 2r. It is likely that two avatars within the same 
cell can see each other or have overlap in their AOIs. Note 
that cells are said to be adjacent if they share common edges 
or points in the boundary. Therefore, a cell may have up to 8 
adjacent cells. 

Before being clustered, avatar paths need some 
preprocessing since they usually have different length and 
different start and end points. In practice, paths are divided 
into path segments of which endpoints are hotspots, where a 
hotspot is a cell whose accumulated period of avatars staying 
is larger than those of all its adjacent cells. Note that a loop, 
which is a path with the same beginning and stopping points, 
is not regarded as a path segment. For example, in Figure 1, 
the solid avatar path is divided into 5 path segments and the 
dotted path is a loop and should not be regarded as a path 
segment. After dividing paths into path segments, the 
proposed algorithms can cluster them. Below, a path 
segment is simply called a path and the set of all path 
segments is simply called the path set. 

 

 

Figure 1.  Illustration of dividing paths into path segments by hotspots 

3.2 ADCP-DC Algorithm 

ADCP-DC algorithm shown in Figure 2 is based on the 
average distance of corresponding points on two paths to 
measure the similarity of the paths. Since avatars may move 
at random directions and random speeds, and path data are 
usually sampled per time ticks (e.g., per 10 seconds in [6]), 
even similar paths may have different number of sample 
points, leading to the difficulty of point data comparison. To 
overcome the difficulty, ADCP-DC specifies the number of 
corresponding points for paths. For a certain path P of 
sample points v0, v1,…, vn, the path length of P is defined to 

be    
 
   , where di is the distance from vi1 to vi. Similarly, 

the length of sample point vj is defined to be    
 
    (note 

that the length of v0 is defined to be 0). By dividing the path 
length and the number of corresponding points, the distance 
d between two consecutive corresponding points on the path 
is derived. By the distance d, the length of the corresponding 

point of index k is defined to be kd (note that the first 
corresponding point is indexed by 0). 

Let the length of a corresponding point v be Lv. The 
coordinate (or location) of v can be calculated by 
interpolation of the coordinates of the two consecutive 
sample points u and w which enclose v, where u and v are 

respectively of length Lu and Lw, and Lu  Lv  Lw. Let the 
coordinates of u and w be (xu, yu) and (xw, yw), respectively. 
The coordinate (xv , yv) of v can be calculated by Eqs. (1) 
and (2). Note that v=v0 (resp., v=vn) if v is the first (resp., 
last) corresponding point. 
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The average distance of corresponding points (ADCP) of 
two paths can be calculated by first deriving the distance of 
each pair of corresponding points and then averaging all 
derived distances. ADCP is used to measure the similarity of 
two paths for clustering paths. In light of the concept of 
DBSCAN, a density-based clustering method is employed to 
cluster paths by specifying the similar path radius R and the 
minimum number M of paths in a cluster. In ADCP-DC 
algorithm, R is set to be the AOI radius for the following 
reasons: (1) any pair of paths in the same cluster will have 
ADCP value less than 2R; (2) two avatars with AOI overlap 



are of distance less than 2R will have some similar view and 
can be regarded as similar paths. 

In ADCP-DC algorithm, two paths are regarded as 
similar paths if their ADCP value is less than R, which is set 
to be the AOI radius. If the total number of the similar paths 
of a path exceeds M, the path is regarded as a core path and 
is associated with a similar path set (SPS). The core path, say 
p1, with the most similar paths is first elected as the first 
representative path, and SPS1 is regarded as the first cluster, 
where SPS1 is the set containing p1 and all its similar paths. 
All members of SPS1 are then excluded from the SPS of 
every remaining core path. Afterwards, the remaining core 
path with the most similar paths is selected as the second 
representative path, and its associated SPS is the second 
cluster. The procedure proceeds until no core path exits.  
Algorithm: ADCP-DC 

Input: path set PS, similar path radius R (set to be AOI radius), 

minimum number M of paths in a cluster 

Output: path cluster collection PCC and representative paths 

Var: 

CPS=;  //CPS: core path set 

RPS=;  //RPS: representative path set 

SPSi={Pi}, for 1in;  //SPSi: similar path set of path Pi 

FOR each unordered pair of distinct paths Pi and Pj in PS 

   Compute ADCPij of Pi and Pj 

IF ADCPij < R THEN 

SPSi=SPSi{Pj};  

SPSj=SPSj{Pi};  

FOR each path Pi 

    IF |SPSi|  M THEN CPS=CPS{Pi};   

WHILE CPS  

Select from CPS path Pi with the largest SPSi 

CPS=CPS  {Pi}; 

IF |SPSi|  M THEN 

//SPSi is a path cluster and Pi is a representative path 

PCC=PCC  {SPSi}; 

FOR each path Pj in CPS 

           SPSj = SPSj – SPSi; 

RETURN PCC and associated representative paths 

Figure 2.   ADCP-DC Algorithm 

3.3 LCSS-DC 

In LCSS-DC algorithm shown in Figure 3, the entire 
virtual world is first divided into numbered square cells 
whose length is of the AOI diameter. According to the cell 
numbers that the sample points of a path resides in, the path 
is represented by a sequence of cell numbers. Note that 
consecutive identical cell numbers in the sequence will be 
merged to be one number. For example, in Figure 3(a), path 
A is represented as <60, 61, 62, 63, 55, 47, 39, 31, 32>, and 
path B, <60, 61, 62, 54, 62, 63, 64>.  

The similarity of two paths is measured by the longest 
common subsequence (LCSS) of the cell number sequences 

of the paths. Each cell number in the sequence is associated 
with the location of the sample data residing within the cell; 
a merged cell number is associated with the centroid of the 
locations of the sample data residing within the cell. Two 
cell numbers are regarded common if they are identical or 
their associated cells are adjacent in the virtual world and 
their associated locations are with the distance less than the 
AOI radius. For example, paths A and B in Figure 3(a) have 
the LCSS of <60, 61, 62, 63>. 

After calculating the LCSS of two paths, clustering is 
then performed. LCSS-DC uses a pair of similar path 
thresholds THa and THb, instead of the similar path radius R 
used in ADCP-DC, as parameters of clustering. Path Pi takes 
path Pj as its similar path if Eqs. (3) and (4) are satisfied. 

           ij

a

i

LCSS
TH

Seq
                                        (3) 

 ij

b

ji

LCSS
TH

SSeq
                                       (4) 

In Eqs. (3) and (4), Seqi and Seqj are the cell number 

sequences of Pi and Pj, respectively, LCSSij is the longest 

common subsequence of Seqi and Seqj, and SSeqji is the 

shorted subsequence of path Pj containing the whole LCSSij. 

Algorithm: LCSS-DC 

Input: path set PS, similar path thresholds THa and THb,  

minimum number M of paths in a cluster 

Output: path cluster collection PCC and representative paths 

Var: 

CPS=;  //CPS: core path set 

SPSi={Pi}, for 1in;  //SPSi: similar path set of path Pi 

FOR each ordered pair of distinct paths Pi and Pj in PS 

    Compute LCSSij of Pi and Pj 

IF (|LCSSij|/|Seqi|)  THa) and (|LCSSij|/|SSeqji|)  THb) 

SPSi =SPSi {Pj};  

FOR each path Pi 

    IF |SPSi|  M THEN CPS=CPS{Pi};   

WHILE CPS  

Select from CPS path Pi with the largest SPSi 

CPS=CPS {Pi}; 

IF |SPSi| M THEN 

//SPSi is a path cluster and Pi is a representative path 

PCC=PCC{SPSi};  

FOR each path Pj in CPS 

      SPSj = SPSj – SPSi; 

RETURN PCC and associated representative paths 

Figure 3.   LCSS-DC Algorithm 

Unlike ADCP-DC, LCSS-DC checks the similarity for 
each ordered pair of paths. Like ADCP-DC, LCSS-DC also 
adopts the density-based clustering mechanism for 
clustering paths. When a path has many enough similar 
paths, it is regarded as a core path and becomes a candidate 



of representative paths. Note that the similarity relationship 
between two paths is asymmetric. To take paths in Figure 
3(a) as examples, path B may take path A as a similar path, 
but not vise versa. The asymmetry is to avoid the case that 
dissimilar paths appear in the same cluster. For example, if 
path A in Figure 3(b) takes both paths B and C as its similar 
paths, then path A is likely to be the representative path of 
the cluster covering paths A, B and C. It is obvious that such 
a cluster contains two very dissimilar paths, B and C. 

 

(a)  (b)  

Figure 4.  Examples of paths represented as cell sequences 

IV. PERFORMANCE EVALUATION 

4.1 Setting and Metrics 

To demonstrate the applicability and performance of the 
algorithms, the avatar location trace data collected in SE 
hours [6], as shown in Figure 5, are used as inputs of the two 
proposed algorithms. The avatar locations are sampled per 
10 seconds for four regions, each of which is a 256x256 
(unit

2
 or m

2
) area of the virtual world with the avatar AOI 

radius of 16 (unit or m). Each data entry has the following 
fields: date, time, avatar ID, and avatar location. This paper 
adopts the trace data for Freebies region in SE for 
performance evaluation, and adopts the parameter setting 
shown in Tables I and II. However, several parameters are 
variables. Below, we will show how to tune those parameters 
to achieve better clustering quality. 

 

Figure 5.  The trace data of avatar paths in different regions of SE 

TABLE I.  THE PARAMETER SETTING OF ADCP-DC 

Algorithm ADCP-DC 

similar path radius R 16 (AOI radius) 

number of corresponding points variable 

minimum number M of paths in a cluster variable 

TABLE II.   THE PARAMETER SETTING OF LCSS-DC 

Algorithm LCSS-DC 

cell diameter 32 (AOI diameter) 

similar path threshold THa variable 

similar path threshold THb variable 

minimum number M of paths in a cluster variable 

 

A good clustering should have the contrast property that 
intra-cluster similarity is high and inter-cluster similarity is 
low. We can apply Eq. (5) of silhouette [7] to measure the 
quality of the clustering. 

1 ( )
max( , )

i i

i

i i

b a
S

a b


                                       (5) 

In Eq. (5), Si is the silhouette value of a path Pi, ai is the 
average dissimilarity of Pi and all other paths in the cluster of 
Pi , and bi is computed as follows.   For each cluster in which 
Pi is not a member, compute the average dissimilarity 
between Pi and all paths in the cluster. Then find the cluster 
generating the largest average dissimilarity, which is bi. We 
can observe that the value of silhouette is between 1 and -1. 
If the silhouette of Pi is greater, then Pi is more similar to the 
paths in the cluster of Pi, and is more dissimilar to the paths 
in other clusters. By Eq. (6), we can calculate silhouette 
values of all paths and average them to obtain the overall 
silhouette value. As shown in [8], silhouette can be used to 
measure the accuracy of a clustering and the overall 
silhouette value over 0.7 can be regarded as the achievement 
of high accuracy. 

In addition to silhouette, another metric called coverage 
is used for assessing the cluster results. This metric concerns 
the ratio of paths that belong to clusters. The coverage value 
can be computed according to Eq. (6). 

coverage = 
the number of paths in clusters

the total number of paths
              (6) 

4.2  ADCP-DC Performance 

 

Figure 6. The silhouette of ADCP-DC algorithm 

 

Figure 7.  The coverage of ADCP-DC algorithm 
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As shown in Figures 6 and 7, when the number of 
corresponding points increases, the silhouette of ADCP-DC 
algorithm slightly increases and the coverage slightly 
decreases. In addition, when the minimum number M of 
paths in a cluster increases, the silhouette increases but the 
coverage decreases. This is because when M grows, it 
requires more paths to form clusters and some paths thus 
cannot be included in any clusters, leading to the higher 
silhouette and lower coverage. Based on the experiment 
results, when the minimum number of paths in a cluster is 
150, the silhouette is greater than 0.7, the suggested value 
mentioned in [8], and the coverage is about 0.41. 

4.3  LCSS-DC Performance 

Experiment results reveals that when the minimum 
number M of paths in a cluster is less than 200, the silhouette 
of LCSS-DC algorithm is below the suggested value 0.7. 
Therefore, only the results for M=200 and M=300 are shown 
in the paper. By Figures 8 and 9, it can be observed that 
when similar path thresholds THa and THb grow, the 
silhouette increases but the coverage decreases. As shown in 
Figure 8, when the minimum number M of paths in a cluster 
is set to be 200, and THa is set to be over 0.74, and THb is set 
to be over 0.50, the silhouette is over the suggested value 0.7 
and the coverage is about 0.54 or less. As shown in Figure 9, 
when M is set to be 300, and THa is set to be over 0.68, and 
THb is set to be over 0.65, the silhouette is over 0.7 and the 
coverage is about 0.41 or less. 

 

  

Figure 8. The silhouette and coverage of LCSS-DC algorithm when the 

minimum number M of paths in a cluster is 200 

  

Figure 9. The silhouette and coverage of LCSS-DC algorithm when the 

minimum number M of paths in a cluster is 300 

V. CONCLUSION 

This paper proposed two algorithms, namely Average 
Distance of Corresponding Points-Density Clustering 
(ADCP-DC) and Longest Common Subsequence-Density 
Clustering (LCSS-DC), to cluster avatar motion paths in 
NVEs. Avatar paths are first divided into segments by 
hotspots and then processed by the proposed algorithms to 
derive a collection of path clusters and associated 
representative paths, which can be used to observe avatar 
behavior or to improve the NVE design. The proposed 
algorithms are applied to process the avatar path data of SE 
to demonstrate their applicability and quality in terms of 
silhouette and coverage. At present, we are planning to apply 
them to avatar path data of other NVEs like WoW. We are 
also planning to design other clustering algorithms to cluster 
avatar paths in NVEs. 
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