PR

FA1EF L1005 ERF - FHPELFFT R Y FHEA

g
y il % B 72 (Algorithms) - F ¥ - F(pagelof2)

Below is the Recursive Fibonacci Algorithm (RFA). An integer n, n>1, is inputted into the
algorithm for the algorithm to output the nth item of the Fibonacci series. Please answer the
following questions.

(a) What is the 10th item of the Fibonacci series? (10%)

(b) Analyze the time complexity of RFA. (10%)

Algorithm RFA(n)

Input: integer n, n>1

Output: the nth item of the Fibonacci series
1: if n=1 or n=2 then

2: return 1

3: else

4. a < RFA(n-2)

5: b € RFA(n-1)

6: return atb

Assume it is a known fact that problem X is NP-complete.

(a) How can we prove that problem Y is also NP-hard by taking advantage of polynomial-time
reduction and the fact? (10%)

(b) If we can prove Y is NP-hard and Y is NP, then we can prove Y is also NP-complete. How
can we prove that Y is NP? (10%)

The procedure of solving many problems can be represented by trees. Thus, the solving of these
problems becomes a tree searching problem. There are many tree searching algorithms:
breadth-first search, depth-first search, hill climbing and best-first search. Below is the pseudo
code of the breadth-first search algorithm. Please modify the pseudo-code to be the depth-first
search algorithm (6%), the hill climbing algorithm (7%) and the best-first search algorithm (7%).
You should write down the complete algorithm including the input, the output and all steps.

Algorithm: Breadth-First Search Algorithm

Input: the root node r of a tree to search for the goal node g
Qutput: the path from r to g as the solution or NIL to indicate failure to find a solution

Step 1: Construct a one-element queue consisting of the root node r

Step 2: Check if the first element in the queue is the goal node g. If so, return the path from r
to g as the solution and stop.

Step 3: Remove the first element from the queue. Add all descendants of the first element, if
any, to the end of the queue one by one.

Step 4: If the queue is empty, then return NIL and stop. Otherwise, go to Step 2.

o :#3 Please Turn Over

-~

B = ~ B EMaAeE 105?4151?3:,%‘,;&9134;1**% S
3

gl & ;X (Algorithms) 5-F ¥ - F(page2of2)

Below is the famous Dijkstra Shortest Path Algorithm (DSPA). The input of DSPA is a weighted
directed graph G=(V, E) and a specific source node S, where V is the node set and E is the edge
set and every edge in E has a positive weight. (Note that the weight of the edge (u, V) is stored in
ew[u, v]). For every node U in V-{s}, DSPA can derive the shortest path from s to u. However,
DSPA does not consider node weights. If we now consider node weight and include node
weights in the total weight of every path, we need to extend the original DSAP. Please extend
DSAP to consider the node weights. Note that we assume the weight of a node U is stored in
nw[u] and the weight of the destination node is not included in the total weight of the path. Note
that DSPA uses indentation to represent the block structure. So please use indentation properly
when writing down the extended DSPA algorithm. You should write down the complete

algorithm including the input, the output and all steps. (20%)

Algorithm: DSPA (Dijkstra Shortest Path Algorithm)

Input: G=(V, E), ew, s //G =(V, E) is a graph with edge weights stored in ew, and S is the
source
Output: SP //SP is the set of shortest paths from S to all other nodes

1. dist[s]«0; dist[u]«oo, for each u#£s, ueV

2: insert u with key dist[u] into priority queue Q, for each ueV

3: while (Q#0)

4. u«—Extract-Min(Q)

5: for each v adjacent to u

6: if dist[v] > dist[u]+ew[u,v] then

7. dist[v]«dist[u]+ew[u,v]

8: pred[v]«<—u /Iv’s predecessor in the shortest path is u

9: calculate the shortest path from s to U to add into set SP according to pred[u], for each ueV, u#£s
0: return SP

Given a knapsack with capacity C, and n objects 0i,...,0, with weights wi,...,w, and values
Vi,...,Vn, the 0/1 knapsack problem is to determine Xi (Xi = 0 or 1, 1 < i < n) such that
Loz, xewy, <C and V= E, ... x,%, 1S maximized. Below is a dynamic programming
algorithm to solve the 0/1 knapsack problem to output V. Please modify the algorithm to solve
the subset sum problem, described as follows. Given a set S of n values vi, V2, ..., Vn and a
special value C, the subset sum problem is to determine whether or not there exists a subset S' of
S such that €= T asrw;. You should write down the complete algorithm including the input,
the output and all steps. (20%)

Algorithm: 0/1 knapsack dynamic programming algorithm

Input: knapsack capacity C, n object weights w,...,w, and n object values vi,...,V,
Output: the maximum value V of all objects that can be kept in the knapsack
1: forw < 0toCdo

2 v[0,w] € 0

3: fori< 1tondo

4 for w < 0 to C do

S: if wi <w then

6: V[i, w] € max(V[i-1, w], vi + V[i-1, w-wi])

7: else

8 v[i, w] € V[i-1, w]

9: V<&vn, C]

0: returnV

