
國立中央大學資訊工程學系 105 學年度第二學期博士班資格考試題紙

科目： 演 算 法 (Algorithms) 第一頁 共二頁(page 1 of 2)

1. Below is the Recursive Fibonacci Algorithm (RFA). An integer n, n1, is inputted into the

algorithm for the algorithm to output the nth item of the Fibonacci series. Please answer the

following questions.

(a) What is the 10th item of the Fibonacci series? (10%)

(b) Analyze the time complexity of RFA. (10%)

Algorithm RFA(n)

Input: integer n, n1

Output: the nth item of the Fibonacci series

1: if n=1 or n=2 then

2: return 1

3: else

4: a  RFA(n-2)

5: b  RFA(n-1)

6: return a+b

2. Assume it is a known fact that problem X is NP-complete.

(a) How can we prove that problem Y is also NP-hard by taking advantage of polynomial-time

reduction and the fact? (10%)

(b) If we can prove Y is NP-hard and Y is NP, then we can prove Y is also NP-complete. How

can we prove that Y is NP? (10%)

3. The procedure of solving many problems can be represented by trees. Thus, the solving of these

problems becomes a tree searching problem. There are many tree searching algorithms:

breadth-first search, depth-first search, hill climbing and best-first search. Below is the pseudo

code of the breadth-first search algorithm. Please modify the pseudo-code to be the depth-first

search algorithm (6%), the hill climbing algorithm (7%) and the best-first search algorithm (7%).

You should write down the complete algorithm including the input, the output and all steps.

 背面還有 Please Turn Over

Algorithm: Breadth-First Search Algorithm
Input: the root node r of a tree to search for the goal node g
Output: the path from r to g as the solution or NIL to indicate failure to find a solution
Step 1: Construct a one-element queue consisting of the root node r
Step 2: Check if the first element in the queue is the goal node g. If so, return the path from r
to g as the solution and stop.
Step 3: Remove the first element from the queue. Add all descendants of the first element, if
any, to the end of the queue one by one.
Step 4: If the queue is empty, then return NIL and stop. Otherwise, go to Step 2.

國立中央大學資訊工程學系 105 學年度第二學期博士班資格考試題紙

科目： 演 算 法 (Algorithms) 第二頁 共二頁(page 2 of 2)

4. Below is the famous Dijkstra Shortest Path Algorithm (DSPA). The input of DSPA is a weighted

directed graph G=(V, E) and a specific source node s, where V is the node set and E is the edge

set and every edge in E has a positive weight. (Note that the weight of the edge (u, v) is stored in

ew[u, v]). For every node u in V-{s}, DSPA can derive the shortest path from s to u. However,

DSPA does not consider node weights. If we now consider node weight and include node

weights in the total weight of every path, we need to extend the original DSAP. Please extend

DSAP to consider the node weights. Note that we assume the weight of a node u is stored in

nw[u] and the weight of the destination node is not included in the total weight of the path. Note

that DSPA uses indentation to represent the block structure. So please use indentation properly

when writing down the extended DSPA algorithm. You should write down the complete

algorithm including the input, the output and all steps. (20%)

Algorithm: DSPA (Dijkstra Shortest Path Algorithm)
Input: G=(V, E), ew, s //G =(V, E) is a graph with edge weights stored in ew, and s is the
source
Output: SP //SP is the set of shortest paths from s to all other nodes
1: dist[s]←0; dist[u]←∞, for each u≠s, uV
2: insert u with key dist[u] into priority queue Q, for each uV
3: while (Q)
4: u←Extract-Min(Q)
5: for each v adjacent to u
6: if dist[v] > dist[u]+ew[u,v] then
7: dist[v]←dist[u]+ew[u,v]
8: pred[v]←u //v’s predecessor in the shortest path is u
9: calculate the shortest path from s to u to add into set SP according to pred[u], for each uV, u≠s

10: return SP

5. Given a knapsack with capacity C, and n objects o1,…,on with weights w1,…,wn and values

v1,…,vn, the 0/1 knapsack problem is to determine xi (xi = 0 or 1, 1  i  n) such that

  C and is maximized. Below is a dynamic programming

algorithm to solve the 0/1 knapsack problem to output V. Please modify the algorithm to solve

the subset sum problem, described as follows. Given a set S of n values v1, v2, …, vn and a

special value C, the subset sum problem is to determine whether or not there exists a subset S' of

S such that . You should write down the complete algorithm including the input,

the output and all steps. (20%)

Algorithm: 0/1 knapsack dynamic programming algorithm
Input: knapsack capacity C, n object weights w1,…,wn and n object values v1,…,vn
Output: the maximum value V of all objects that can be kept in the knapsack
1: for w  0 to C do
2: v[0, w]  0
3: for i  1 to n do
4: for w  0 to C do
5: if wi  w then
6: v[i, w]  max(v[i-1, w], vi + v[i-1, w-wi])
7: else
8: v[i, w]  v[i-1, w]
9: V  v[n, C]

10: return V

