

1. A prune-and-search algorithm consists of several iterations. At each iteration, it prunes away a fraction f , $0 < f < 1$, of input data, and then it invokes the same algorithm recursively to solve the problem for the remaining data. After a certain number of iterations, the size of input data will be so small that the problem can be solved directly with constant time. Assume that the time complexity of a prune-and-search algorithm is $T(n)$ and the time needed to execute each iteration is $O(n^k)$ for some constant k , $k > 0$. Show that $T(n) = O(n^k)$. (20%)
2. Show that the average case lower bound of the sorting problem is $\Omega(n \log n)$. (15%)
3. Given a problem X , how can we prove it to be NP-hard? (15%)
4. Given a list of n positive integers, you are asked to partition the list into two sublists, each of size $\lfloor n/2 \rfloor$ or $\lceil n/2 \rceil$, such that the difference between the sums of the integers in the two sublists is minimized. (a) Give a decision version of this problem, and show that it is NP-complete. (15%) (b) If the summation of these n positive integers is small enough, it is possible to solve this problem efficiently. Design such an algorithm. (15%)
5. For two points $P = (p_1, p_2)$, and $Q = (q_1, q_2)$ in the plane, we say that P **dominates** Q if $p_1 > q_1$ and $p_2 > q_2$. Given a set S of n points, the **rank** of a point P in S is the number of points in S dominated by P . The problem is to find the rank of every point in S . A straightforward way to solve this problem is to conduct an exhaustive comparison of all pairs of points. Hence, this approach requires $O(n^2)$ running time. Design a faster algorithm (i.e. the running time of your algorithm must be in $o(n^2)$ order) to solve this problem. (20%)