

1. (15%) Given a_0, a_1, \dots, a_{n-1} , the Fast Fourier Transform (FFT) algorithm can compute A_0, A_1, \dots, A_{n-1} in $O(n \log n)$ time complexity by the divide-and-conquer strategy, where

$$\begin{aligned} A_j &= \sum_{k=0}^{n-1} a_k e^{i2\pi jk/n}, \quad 0 \leq j \leq n-1 \\ &= \sum_{k=0}^{n-1} a_k \omega^{kj}, \text{ where } \omega = e^{i2\pi/n} \end{aligned} . \text{ Show the basic concept of the FFT algorithm.}$$

2. (15%) Given a set of n planar points P_1, P_2, \dots, P_n , the Euclidean All Nearest Neighbor problem is to find the nearest neighbor of every P_i , $1 \leq i \leq n$. Show that the problem can be solved in linear time if the Voronoi diagram of the n points is given.

3. (20%) We have the following definitions and theorem related to NP-completeness.

Definition 1. Let A_1 and A_2 be two problems. A_1 reduces to A_2 (written as $A_1 \leq A_2$) if and only if A_1 can be solved in polynomial time, by using a polynomial time algorithm which solves A_2 .

Definition 2. A problem A is NP-complete if $A \in \text{NP}$ and every NP problem reduces to A .

Cook's Theorem. $\text{NP} = \text{P}$ if and only if the satisfiability (SAT) problem is a P problem.

Let $\text{SAT} \leq B$, $B \leq C$, $C \leq D$, and $D \in \text{NP}$ for a given problem D . By the above definitions and theorem, show that D is NP-complete.

(Hint: You can first derive the reduction relationship of the SAT problem and every NP problem to complete the proof.)

4. Consider the problem to determine whether a given undirected graph with n vertices contains a cycle of length k as a subgraph. (a) (5%) Show that if k is a part of the input instance, then this problem is NP-complete. (b) (15%) However, if k is a constant, there is a naïve $O(n^k)$ time algorithm that solves this problem by checking all possible k vertices of the graph. Design a more efficient algorithm for this problem.

5. Let G be an undirected graph. Each edge e in G is assigned a probability p_e , $0 \leq p_e \leq 1$. The **reliability** of a path is the product of the probabilities of edges of the path. Design an efficient algorithm to find a path with maximal possible reliability. (15%)
6. Given a positive integer m , and an array $p[1..n]$ of n ($n \leq m$) positive numbers, find a way to partition m into one or more positive integers j_1, j_2, \dots, j_k (i.e. $j_1 + j_2 + \dots + j_k = m$) such that the sum $p[j_1] + p[j_2] + \dots + p[j_k]$ is maximized over all possible partitions of m . (15%)