3.4 COORDINATES

EXAMPLE 1
Let V be the plane in \mathbb{R}^3 with equation $x_1 + 2x_2 + 3x_3 = 0$, a two-dimensional subspace of \mathbb{R}^3. We can describe a vector in this plane by its spatial (3D) coordinates; for example, vector

$$\vec{x} = \begin{bmatrix} 5 \\ -1 \\ -1 \end{bmatrix}$$

is in plane V. However, it may be more convenient to introduce a plane coordinate system in V.

Consider any two vectors in plane V that aren’t parallel, e.g.

$$\vec{v}_1 = \begin{bmatrix} 1 \\ -1 \\ -1 \end{bmatrix} \text{ and } \vec{v}_2 = \begin{bmatrix} 1 \\ -2 \\ 1 \end{bmatrix}$$
See Figure 1, where we label the new axes c_1 and c_2, with the new coordinate grid defined by vectors \vec{v}_1 and \vec{v}_2.

Note that the $c_1\ -\ c_2$ coordinates of vector \vec{v}_1 is $\begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ and the coordinates of vector \vec{v}_2 is $\begin{bmatrix} 0 \\ 1 \end{bmatrix}$, respectively.

For a vector \vec{x} in plane V, we can find the scalars c_1 and c_2 such that

$$\vec{x} = c_1 \vec{v}_1 + c_2 \vec{v}_2.$$

For example, $\vec{x} = \begin{bmatrix} 5 \\ -1 \\ -1 \end{bmatrix} = 3 \begin{bmatrix} 1 \\ 1 \\ -1 \end{bmatrix} + 2 \begin{bmatrix} 1 \\ -2 \\ 1 \end{bmatrix}$
Therefore, the $c_1 - c_2$ coordinates of \vec{x} are

\[
\begin{bmatrix}
 c_1 \\
 c_2
\end{bmatrix} = \begin{bmatrix}
 3 \\
 2
\end{bmatrix}
\]

See Figure 3.

Let’s denote the basis \vec{v}_1, \vec{v}_2 of V by B (Fraktur B). Then, the coordinate vector of \vec{x} with respect to B is denoted by $[\vec{x}]_B$:

If $\vec{x} = \begin{bmatrix}
 5 \\
 -1 \\
 -1
\end{bmatrix}$, then $[\vec{x}]_B = \begin{bmatrix}
 3 \\
 2
\end{bmatrix}$
Definition 3.4.1

Coordinates in a subspace of \(\mathbb{R}^n \)

Consider a basis \(B \) of a subspace \(V \) of \(\mathbb{R}^n \), consisting of vectors \(\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_m \). Any vector \(\vec{x} \) in \(V \) can be written uniquely as

\[
\vec{x} = c_1 \vec{v}_1 + c_2 \vec{v}_2 + \ldots + c_m \vec{v}_m
\]

The scalars \(c_1, c_1, \ldots, c_m \) are called the \(B \)-coordinates of \(\vec{x} \), and the vector

\[
\begin{bmatrix}
c_1 \\
c_2 \\
\vdots \\
c_m
\end{bmatrix}
\]

is called the \(B \)-coordinate vector of \(\vec{x} \), denoted by \(\begin{bmatrix} \vec{x} \end{bmatrix}_B \).

Note that

\[
\vec{x} = S \begin{bmatrix} \vec{x} \end{bmatrix}_B
\]

where \(S = \begin{bmatrix} \vec{v}_1 & \vec{v}_2 & \ldots & \vec{v}_m \end{bmatrix} \), an \(n \times m \) matrix.
EXAMPLE 2
Consider the basis B of \mathbb{R}^2 consisting of vectors
\[
\vec{v}_1 = \begin{bmatrix} 3 \\ 1 \end{bmatrix} \quad \text{and} \quad \vec{v}_2 = \begin{bmatrix} -1 \\ 3 \end{bmatrix}
\]
a. If $\vec{x} = \begin{bmatrix} 10 \\ 10 \end{bmatrix}$, find $[\vec{x}]_B$

b. If $[\vec{x}]_B = \begin{bmatrix} 2 \\ -1 \end{bmatrix}$, find \vec{x}

Solution
a. To find the coordinates of vector \vec{x}, we need to write \vec{x} as a linear combination of the basis vectors:

\[
\vec{x} = c_1 \vec{v}_1 + c_2 \vec{v}_2, \quad \text{or} \quad \begin{bmatrix} 10 \\ 10 \end{bmatrix} = c_1 \begin{bmatrix} 3 \\ 1 \end{bmatrix} + c_2 \begin{bmatrix} -1 \\ 3 \end{bmatrix}
\]

Alternatively, we can solve the equation

\[
\vec{x} = S [\vec{x}]_B = \begin{bmatrix} 3 & -1 \\ 1 & 3 \end{bmatrix} [\vec{x}]_B
\]
for $[\vec{x}]_B = \begin{bmatrix} c_1 \\ c_2 \end{bmatrix}$
\[
\begin{bmatrix}
\tilde{x}_B
\end{bmatrix} = S^{-1} \tilde{x} = \begin{bmatrix}
3 & -1 \\
1 & 3
\end{bmatrix}^{-1} \begin{bmatrix}
10 \\
10
\end{bmatrix} = \frac{1}{10} \begin{bmatrix}
3 & 1 \\
-1 & 3
\end{bmatrix} \begin{bmatrix}
10 \\
10
\end{bmatrix} = \begin{bmatrix}
4 \\
2
\end{bmatrix}
\]

b. By definition of coordinates, \(\begin{bmatrix}
\tilde{x}_B
\end{bmatrix} = \begin{bmatrix}
2 \\
-1
\end{bmatrix} \) means that
\[
\tilde{x} = 2\tilde{v}_1 + (-1)\tilde{v}_2 = 2 \begin{bmatrix}
3 \\
1
\end{bmatrix} + (-1) \begin{bmatrix}
-1 \\
3
\end{bmatrix} = \begin{bmatrix}
7 \\
-1
\end{bmatrix}
\]

Alternatively, use the formula
\[
\tilde{x} = S \begin{bmatrix}
\tilde{x}_B
\end{bmatrix} = \begin{bmatrix}
3 & -1 \\
1 & 3
\end{bmatrix} \begin{bmatrix}
2 \\
-1
\end{bmatrix} = \begin{bmatrix}
7 \\
-1
\end{bmatrix}
\]
EXAMPLE 3

Let L be the line in R^2 spanned by vector $\begin{bmatrix} 3 \\ 1 \end{bmatrix}$.

Let T be the linear transformation from R^2 to R^2 that projects any vector orthogonally onto line L, as shown in Figure 5.

1. In $\vec{x}_1 - \vec{x}_2$ coordinate system (See Figure 5): Sec 2.2 (pp. 59).

2. In $c_1 - c_2$ coordinate system (See Figure 6):

 T transforms vector $\begin{bmatrix} c_1 \\ c_2 \end{bmatrix}$ into $\begin{bmatrix} c_1 \\ 0 \end{bmatrix}$.

 That is, T is given by the matrix $B = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$, since $\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = \begin{bmatrix} c_1 \\ 0 \end{bmatrix}$

The transforms from $\begin{bmatrix} \vec{x} \end{bmatrix}_B$ into $\begin{bmatrix} T(\vec{x}) \end{bmatrix}_B$ is called the B-matrix of T:

$\begin{bmatrix} T(\vec{x}) \end{bmatrix}_B = B \begin{bmatrix} \vec{x} \end{bmatrix}_B$
Definition 3.4.2
The B-matrix of a linear transformation
Consider a linear transformation T from \mathbb{R}^n to \mathbb{R}^n and a basis B of \mathbb{R}^n. The $n \times n$ matrix B that transforms $\begin{bmatrix} \vec{x} \end{bmatrix}_B$ into $\begin{bmatrix} T(\vec{x}) \end{bmatrix}_B$ is called the B-matrix of T:

$$\begin{bmatrix} T(\vec{x}) \end{bmatrix}_B = B \begin{bmatrix} \vec{x} \end{bmatrix}_B$$

for all \vec{x} in \mathbb{R}^n.

Fact 3.4.3 The columns of the B-matrix of a linear transformation
Consider a linear transformation T from \mathbb{R}^n to \mathbb{R}^n and a basis B of \mathbb{R}^n consisting of vectors $\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_n$. Then, the B-matrix of T is

$$B = \begin{bmatrix} \begin{bmatrix} T(\vec{x}_1) \end{bmatrix}_B & \begin{bmatrix} T(\vec{x}_2) \end{bmatrix}_B & \cdots & \begin{bmatrix} T(\vec{x}_n) \end{bmatrix}_B \end{bmatrix}$$

That is, the columns of B are the B-coordinate vectors of $T(\vec{v}_1)$, $T(\vec{v}_2)$, \ldots, $T(\vec{v}_n)$.
EXAMPLE 4
Consider two perpendicular unit vectors \vec{v}_1 and \vec{v}_2 in \mathbb{R}^3. Form the basis \vec{v}_1, \vec{v}_2, $\vec{v}_3 = \vec{v}_1 \times \vec{v}_2$ of \mathbb{R}^3; let’s denote this basis by B. Find the B-matrix B of the linear transformation $T(\vec{x}) = \vec{v}_1 \times \vec{x}$.

(see Exercise 2.1: 44 on pp. 49,
\[
\begin{bmatrix}
a_1 \\
a_2 \\
a_3
\end{bmatrix} \times \begin{bmatrix}
b_1 \\
b_2 \\
b_3
\end{bmatrix} = \begin{bmatrix}
a_2b_3 - a_3b_2 \\
a_3b_1 - a_1b_3 \\
a_1b_2 - a_2b_1
\end{bmatrix}
\]

Solution
Use Fact 3.4.3 to construct B column by column:

\[
B = \begin{bmatrix}
T(\vec{x}_1) \\
T(\vec{x}_2) \\
\vdots \\
T(\vec{x}_n)
\end{bmatrix}_B = \begin{bmatrix}
\vec{v}_1 \times \vec{v}_1 \\
\vec{v}_1 \times \vec{v}_2 \\
\vec{v}_1 \times \vec{v}_3 \\
\vec{0}
\end{bmatrix}_B = \begin{bmatrix}
0 \\
0 \\
-1 \\
0
\end{bmatrix}_B
= \begin{bmatrix}
0 & 0 & 0 \\
0 & 0 & -1 \\
0 & 1 & 0
\end{bmatrix}
\]
EXAMPLE 5

Let T be the linear transformation from \mathbb{R}^2 to \mathbb{R}^2 that projects any vector orthogonally onto the line L spanned by $\begin{bmatrix} 3 \\ 1 \end{bmatrix}$. In Example 3, we found that the matrix of T with respect to the basis B consisting of $\begin{bmatrix} 3 \\ 1 \end{bmatrix}$ and $\begin{bmatrix} -1 \\ 3 \end{bmatrix}$ is

$$B = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$$

What is the relationship between B and the standard matrix A of T (such that $T(\vec{x}) = A\vec{x}$)?

Solution

Recall from Definition 3.4.1 that

$$\vec{x} = S \begin{bmatrix} \vec{x} \end{bmatrix}_B, \text{ where } S = \begin{bmatrix} 3 & -1 \\ 1 & 3 \end{bmatrix}$$

and consider the following diagram: (Figure 7)
Note that $T(\vec{x}) = AS \begin{bmatrix} \vec{x} \end{bmatrix}_B$ and also $T(\vec{x}) = SB \begin{bmatrix} \vec{x} \end{bmatrix}_B$, so that $AS \begin{bmatrix} \vec{x} \end{bmatrix}_B = SB \begin{bmatrix} \vec{x} \end{bmatrix}_B$ for all \vec{x}.

Thus,

$$AS = SB \text{ and } A = SB S^{-1}$$

Now we can find the standard matrix A of T:

$$A = SB S^{-1}
= \begin{bmatrix} 3 & -1 \\ 1 & 3 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 1/10 & 3 \\ -1 & 3 \end{bmatrix}
= \begin{bmatrix} 0.9 & 0.3 \\ 0.3 & 0.1 \end{bmatrix}$$

Alternatively, we could use Fact 2.2.5 to construct matrix A. The point here was to explore the relationship between matrices A and B.
Fact 3.4.4
Standard matrix versus B-matrix of a linear transformation
Consider a linear transformation T from R^n to R^n and a basis B of R^n consisting of vectors $\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_n$. Let B be the B-matrix of T and let A be the standard matrix of T (such that $T(\vec{x})=A\vec{x}$). Then, $AS=SB$, $B=S^{-1}AS$, and $A=SBS^{-1}$, where

$$S = \begin{bmatrix} \vert & \vert & \vert \\ \vec{v}_1 & \vec{v}_2 & \ldots & \vec{v}_m \\ \vert & \vert & \vert \end{bmatrix}$$

Definition 3.4.5 Similar matrices
Consider two $n \times n$ matrices A and B. We say that A is similar to B if there is an invertible matrix S such that

$$AS=SB, \text{ or } B=S^{-1}AS$$
EXAMPLE 6
Is matrix \(A = \begin{bmatrix} 1 & 2 \\ 4 & 3 \end{bmatrix} \) similar to \(B = \begin{bmatrix} 5 & 0 \\ 0 & -1 \end{bmatrix} \) ?

Solution
We are looking for a matrix \(S = \begin{bmatrix} x & y \\ z & t \end{bmatrix} \) such that \(AS = SB \), or
\[
\begin{bmatrix} x + 2z & y + 2t \\ 4x + 3z & 4y + 3t \end{bmatrix} = \begin{bmatrix} 5x & -y \\ 5z & -t \end{bmatrix}.
\]
These equations simplify to
\[
z = 2x, \quad t = -y,
\]
so that any invertible matrix of the form
\[
S = \begin{bmatrix} x & y \\ 2x & -y \end{bmatrix}
\]
does the job. Note that \(\det(S) = -3xy \). Matrix \(S \) is invertible if \(\det(S) \neq 0 \) (i.e., if neither \(x \) nor \(y \) is zero).
EXAMPLE 7
Show that if matrix A is similar to B, then its power A^t is similar to B^t for all positive integers t. (That is, A^2 is similar to B^2, A^3 is similar to B^3, etc.)

Solution
We know that $B = S^{-1}AS$ for some invertible matrix S. Now, B^t

$$= \underbrace{(S^{-1}AS)(S^{-1}AS)\ldots(S^{-1}AS)(S^{-1}AS)}_{t-times}$$

$$= S^{-1}A^tS,$$

proving our claims. Note the cancellation of many terms of the form SS^{-1}.
Fact 3.4.6
Similarity is an equivalence relation

1. An $n \times n$ matrix A is similar to itself (Reflexivity).

2. If A is similar to B, then B is similar to A (Symmetry).

3. If A is similar to B and B is similar to C, then A is similar to C (Transitivity).

Proof
A is similar to B: $B = P^{-1}AP$
B is similar to C: $C = Q^{-1}BQ$, then

$C = Q^{-1}BQ = Q^{-1}P^{-1}APQ = (PQ)^{-1}A(PQ)$

that is, A is similar to C by matrix PQ.

Homework Exercise 3.4: 5, 6, 9, 10, 13, 14, 19, 31, 39