1. 30% Consider the linear system

\[
\begin{array}{ccc}
 x + y - z &=& -2 \\
 3x - 5y + 13z &=& 18 \\
x - 2y + 5z &=& k
\end{array}
\]

where \(k \) is an arbitrary number.

a. For which values(s) of \(k \) does this system have one or infinitely many solutions?

b. For each value of \(k \) you found in part a, how many solutions does the system have?

c. Find all solutions for each value of \(k \).

2. 20% Find all solutions \(x_1, x_2, x_3 \) of the equation

\[\vec{b} = x_1 \vec{v}_1 + x_2 \vec{v}_2 + x_3 \vec{v}_3 \]

where

\[\vec{b} = \begin{bmatrix} -8 \\ -1 \\ 2 \\ 15 \end{bmatrix}, \vec{v}_1 = \begin{bmatrix} 1 \\ 4 \\ 7 \\ 5 \end{bmatrix}, \vec{v}_2 = \begin{bmatrix} 2 \\ 5 \\ 8 \\ 3 \end{bmatrix}, \vec{v}_3 = \begin{bmatrix} 4 \\ 6 \\ 9 \\ 1 \end{bmatrix}. \]

3. 20% Compute the products \(A \vec{x} \) for

\[
\begin{bmatrix}
1 & 2 & 3 \\
2 & 3 & 4
\end{bmatrix}
\begin{bmatrix}
-1 \\
2 \\
1
\end{bmatrix}
\]

4. 20% True or False?

a. Consider the system \(A \vec{x} = \vec{b} \), where \(A \) is an \(n \times n \) matrix. This system has a unique solution if and only if \(\text{rank}(A) = n \).

b. Matrix \(\begin{bmatrix}
1 & 2 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{bmatrix} \) is in rref (reduced row-echelon form).

5. 10% Let \(A \) be the \(n \times n \) matrix with all 1’s on the diagonal and all 0’s outside the diagonal. What is \(A \vec{x} \), where \(\vec{x} \) is a vector in \(R^n \)?