1. (20%) A string is a sequence of symbols; for example, $X = <x_1, x_2, ..., x_m>$ is a string of m symbols $x_1, x_2, ..., x_m$. When we delete 0 or more symbols (not necessarily consecutive) from X, we get a subsequence of X. Write a dynamic programming algorithm to calculate the length of the longest common subsequence of $X = <x_1, x_2, ..., x_m>$ and $Y = <y_1, y_2, ..., y_n>$.

2. (20%) Write an algorithm to have the following input:
a connected weighted digraph $G(V, E)$, w, x, and y, where V is the node set, E is the edge set, the weight of the edge (u, v) is stored in $w[u][v]$, and x and y are two nodes in V,
and the following output:
the shortest path from x to y.

3. (10%) How can we prove that a given problem H is NP-hard?

4. (25%) Consider a general version of coin changing problem: given a set of coins of different denominations with unlimited quantities, you are asked to make changes for K cents using these coins. Design an efficient algorithm to count the number of different ways of making changes. That is, if there are n kinds of coins of denominations c_1, c_2, ..., c_n, the problem is equivalent to asking you to design an algorithm to count the number of different solutions for the following integer linear programming problem: Given positive integers c_1, c_2, ..., c_n, and K, find non-negative integer solutions $(x_1, x_2, ..., x_n)$ such that $x_1c_1 + x_2c_2 + ... + x_nc_n = K$. For example, if $c_1 = 1$, $c_2 = 5$, $c_3 = 10$, and $c_4 = 25$, then there are four ways of making changes for 11 cents and there are 13 ways of making changes for 26 cents.

5. (25%) Given a list of n positive integers, d_1, d_2, ..., d_n, we want to efficiently determine whether there exists an undirected graph whose nodes have degrees precisely d_1, d_2, ..., d_n. This graph should not contain self-loops (edges with both endpoints equal to the same node) or multiple edges between the same pair of nodes. Design an algorithm to solve this problem.