1. (21%) Consider the following snapshot of a system:

<table>
<thead>
<tr>
<th>Allocation</th>
<th>Matrix</th>
<th>Available</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABCD</td>
<td>ABCD</td>
<td>ABCD</td>
</tr>
<tr>
<td>P0 0 0 1 2</td>
<td>0 0 1 2</td>
<td>1 5 2 0</td>
</tr>
<tr>
<td>P1 1 0 0 0</td>
<td>1 7 5 0</td>
<td></td>
</tr>
<tr>
<td>P2 1 3 0 4</td>
<td>2 3 5 6</td>
<td></td>
</tr>
<tr>
<td>P3 0 6 3 2</td>
<td>0 6 5 2</td>
<td></td>
</tr>
<tr>
<td>P4 0 0 1 4</td>
<td>0 6 5 6</td>
<td></td>
</tr>
</tbody>
</table>

Answer the following questions using the banker’s algorithm. Note that all the following questions are independent.

(a) Is the system in a safe state? Be sure to justify your answer.
(b) If a request from process P1 arrives for (0, 4, 2, 0), can the request be granted immediately? Be sure to justify your answer.
(c) If a request from process P4 arrives for (0, 4, 2, 0), can the request be granted immediately? Be sure to justify your answer.

2. (20%) For the dining philosophers problem, assume it has reached the deadlock state that each philosopher, Pi, has acquired the chopstick on his right-hand side, Ci, where 1 ≤ i ≤ 5. Please draw (a) the resource allocation graph and (b) the wait-for graph for the philosopher deadlock situation.

3. (9%) What are the advantages and disadvantages of using circuit switching?

4. (10%) What are two differences between user-level threads and kernel-level threads? Under what circumstances is one type better than the other?

5. (15%) Explain the purpose of the checkpoint mechanism. 5%

How often should checkpoints be performed? Describe how the frequency of checkpoints affects: 10%

- System performance when no failure occurs
- The time it takes to recover from a system crash
- The time it takes to recover from a disk crash
6. (25%) The first known correct software solution to the critical-section problem for \(n \) processes with a lower bound on waiting of \(n-1 \) turns was presented by Eisenberg and McGuire. The Processes share the following variables:
 1. `enum pstate { idle, want_in, in_cs};`
 2. `pstate flag[n];`
 3. `int turn;`
 4.
 5. All the elements of flag are initially idle; the initial value of turn is immaterial (between 0 and \(n-1 \)). The structure of process \(Pi \) is shown in the following:
 6. `do {
 7. while(TRUE) {
 8. flag[i] = want_in;
 9. j = turn;
 10. while (j != i) {
 11. if (flag[j] != idle) {
 12. j = turn;
 13. } else
 14. j = (j+1) % n;
 15. }
 16. flag[i] = in_cs;
 17. j = 0;
 18. while ((j<n) && (j == i) || flag[j] != in_cs)) j++;
 19. if ((j >= n) && (turn == i || flag[turn] == idle)) break;
 20. }
 21. }
 22. turn = i;
 23. } // CRITICAL-SECTION
 24.
 25. j = (turn+1) % n;
 26. while (flag[j] == idle)
 27. j = (j+1) % n;
 28. turn = j;
 29. flag[i] = idle;
 30. } // REMAINDER-SECTION
 31. } while(TRUE);

 (1). Prove that the algorithm satisfies all three requirements for the critical section. 15%
 (2). What is the basic assumption for hardware requirements? If the system is multicore or multiprocessor system, the processor use the cache to speed up the reference of shared memory, what problems should be considered? 10%