
Assignment 1 of CE2004, Principles of Programming Languages

Score: 100 points

Due Time: 24:00 6th April

(1)You need to type your answers in an excel file and then submit your file to the

TAs through new ee-class. The 作業 section of this course in the new ee-class

has a template of this excel file.

(2)Your file name should have this format 學號_姓名_PPL_Assignment_1.xlsx.

(3)Late submission will not be accepted.

(4)You can discuss these questions with your classmates; however, copying other

student’s answers is strictly prohibited.

==

(1) (6 points)

The CPU of Mary’s computer can complete an instruction more quickly than the CPU

of Tom’s CPU; hence, Mary’s computer can always complete a program more quickly

than Tom’s computer. Is the above statement correct? Give your explanation.

Ans.

(2) (12 points)

Good language readability can improve writability.

Good language writability is detrimental to readability.

(a) Which one of the above two statements is correct? Which one of the above two

statements is wrong?

(b) Give your explanation.

Ans.

(3) (9 points)

What follows is an excerpt of a Javascript program. Assume before location 1,

variable list has never been used.

 : -- location 1

 list = [1, 2]

 prefix= list -- location 2

 prefix = 47

 list = prefix -- location 3

 :

(a) At location 1, what is the data type of variable list?

(b) At location 2, what is the data type of variable prefix?

(c) At location 3, what is the data type of variable list?

Ans.

(4) (12 points)

A program consists of the following two files, fileu.c and filev.c

/*============ fileu.c ================*/

int a=100; // location 1

extern int t; // location 2

int bar(int y) // location 3

{int x; // location 4

 x=y+t; // location 5

 return(x);

} // location 6

/*============ filev.c ================*/

#include<stdio.h>

int t=9; // location 7

extern int a; // location 8

extern int bar(int); // location 9

int main() // location 10

{ int z; // location 11

 printf("a=%d\n",a);

 printf("bar(3)=%d\n",bar(3));

} //location 12

(a) List the locations of all variable definitions in the above two files.

(b) List the locations of all variable declarations in the above two files.

(c) List the locations of all function definitions in the above two files.

(d) List the locations of all function declarations in the above two files.

P.S.: A function formal parameter is also deemed as a variable.

Ans.

(5) (8 points) What follows is a C program.

#include <stdio.h>

int total_income, total_visitors_global;

void zoo(char *name, int visitors)

{int adult, children;

 static int total_visitors=0;

 :

 total_visitors=total_visitors+visitors; // location 1

 total_visitors_global=total_visitors;

:

}

int main()

{

 int ticket_price_each_animal_type=2;

 printf(“Good Morning!\n”); // location 2

 zoo(“giraff”, 600);

 zoo(“elephant”, 300);

 zoo(“hippo”,100);

total_income=ticket_price_each_animal_type*total_visitors_global;

 :

}

(a) At location 1, list the names of variables or parameters that have memory assigned

to it.

(b) At location 2, list the names of variables or parameters that have memory assigned

to it.

Ans:

(6) (9 points)

What follows is the content of program add_a.c.

/*--*/

#include <stdio.h>

int a=1 , b=6;

int c[10000]={1};

int main()

{

 a=b+c[0]; /* location 1*/

}

/*--*/

Assume add_a.exe is the executable of add_a.c.

What follows is the content of program add_b.c.

/*--*/

#include <stdio.h>

int a=1 , b=6;

int c[10000];

int main()

{

 c[0]=1;

 a=b+c[0]; /*location 2*/

}

/*---*/

Assume add_b.exe is the executable of add_b.c.

(a) At location 1 of add_a.c what is the value of variable a?

(b) At location 2 of add_b.c what is the value of variable a?

(c) For files add_a.exe and add_b.exe, which of these two files has larger size

and why?

Ans.

(7) (12 points)

(a) What follows is a C program.

include <stdio.h>

int a;

int bar(int x, int y)

{ int b;

 return b = x+y;

}

int main()

{ int *p;

 p = (int *) malloc (sizeof(int));

 *p = bar (8,9);

}

In the above program, (i) which variables are static variables? (ii) And which

variables are stack dynamic variables? (iii) And which variables are explicit-heap

dynamic variables? P.S.: A function formal parameter is also deemed as a variable.

(b) What follows is a Java program excerpt.

class Circle

{

 int setVariable(int s)

 { int r;

 r=6;

return s+r;

 }

}

public class ShowArea

{

 public static void main(String args[])

 {

 Circle cir= new Circle();

 int a;

a= cir.setVariable(8);

 }

}

In the above program, (i) which variables are static variables? (ii) And which

variables are stack dynamic variables? (iii) And which variables are explicit-heap

dynamic variables?

Ans.

(8) (10 points)

What follows is the content of a C program example.c.

#include <stdio.h> /* location 11*/

int bar(int x)

{ int a, b, c; /* location 1*/

 c=x; /* location 2*/

 b=x*9; /* location 3*/

 a=foo(); /* location 4*/

 return a; /* location 5*/

}

int foo()

{int a=1, b=2, c; /* location 6*/

 c=a+b; /* location 7*/

 return c; /* location 8*/

}

int main()

{int a=1, b=2, c=3; /*location 9*/

 return bar(a); /*location 10*/

}

(a) Are variable b defined at location 1, variable b defined at location 6, and variable

b defined at location 9 the same variable?

(b) During run time, at what locations of the above program, variable b defined at

location 9 and variable b defined at location 1 have storage bound to them, but

variable b defined at location 6 does not have storage bound to it?

Ans.

(9) (8 points)

Assume each integer variable uses four bytes to store it values. And each float point

variable uses four bytes to store its value. For the following two C program excerpts,

(a) and (b), which of them have a type error? Explain your answers.

(a)

 int a;

union course

{

 int b;

 float c;

} security;

security.b = 3; // location 1

a = security.b; // location 2

(b)

 int a;

union course

{

 int b;

 float c;

} security;

security.c = 3.3; // location 3

a = security.c; // location 4

Ans.

(10) (8 points)

What follows is a Fortran program.

 PROGRAM Hello

 IMPLICIT NONE

 INTEGER :: Patrick island, a

 PRINT *, 'Welcome to Fortran'

 a=6

 Pat rick is land = 19

 Patrick island = Pat rick is land + a ! line 8

 END PROGRAM Hello

After line 8 of the above program is executed, (i) what is the value of variable

Patrick island? (ii) what is the value of variable Pat rick is land?

Assume that the version of Fortran you use allows space characters to appear in a

variable name but will ignore space characters. Hence ab cd and abcd are the

same variable.

Ans:

(11) (6 points)

Compiler Optimization tries to improve programs by making them smaller or faster or

both. Hence, we should always use compiler optimization to compile our programs. Is

the above claim correct? Give your explanation.

Ans.

