國立中央大學資訊工程學系112學年度第一學期博士班資格考試題紙

科目：演 算 法（Algorithms）第一頁 共一頁（page 1 of 1）

1．Given a directed graph $G=(V, E)$ ，and two vertices u and v in V ，we call vertex v is reachable from u ，if there exists a directed path from u to v ．A vertex s in V is called a source vertex if every vertex in V is reachable from s ．
a）Given a directed graph $G=(V, E)$ ，and a specified vertex v ，design a linear time algorithm（i．e．your algorithm should run in $\Theta(|V|+|E|)$ time）to determine if v is a source vertex．You need to describe the data structure used in your algorithm．（10\％）
b）Given a directed acyclic graph（DAG；a directed graph is acyclic if it contains no directed cycles）$G=(V, E)$ ，you are asked to determine if G contains a source vertex．If you apply the algorithm of subproblem（a）on every vertex of G ，you will get an algorithm runs in $\Theta\left(|V|^{2}+|V| E \mid\right)$ time．It is not desirable．Design a more efficient algorithm for this problem．Analyze the time complexity of your algorithm．（10\％）

2．Design an algorithm to determine whether a given undirected graph with n vertices contains a cycle of length 4 as a subgraph．There is a naïve $\Theta\left(n^{4}\right)$ time algorithm that solves this problem by checking all possible 4 vertices of the graph．Your algorithm must be more efficient than this algorithm．（20\％）

3．For a set of variables $x_{1}, x_{2}, \ldots, x_{n}$ ，you are given some equality constraints，of the form ＂$x_{i}=x_{j}$＂and some disequality constraints，of the form＂$x_{i} \neq x_{j}$＂．Is it possible to satisfy all of them？For instance，the constraints ：

$$
x_{1}=x_{2}, ; x_{2}=x_{3} ; x_{3}=x_{4} ; x_{1} \neq x_{4} ;
$$

cannot be satisfied．Give an efficient algorithm that takes as input m constraints over n variables and decides whether the constraints can be satisfied．Describe the data structure used by your algorithm，and analysis the time complexity of your algorithm．（20\％）

4．Consider the following decision problem called＂Square＂appeared in the problem set of a program contest：Given a set of sticks of various lengths，is it possible to join them end－to－end to form a square？For example，if the given lengths are $10,20,30,40,50$ ，then the answer is＂no＂；if they are $1,7,2,6,4,4,3,5$ ，then the answer is＂yes＂．
a）Show that this problem is an NP problem．（10\％）
b）Prove that it is NP－hard．（10\％）
c）If the total sum of lengths is a polynomial of n ，the number of given lengths，then it is possible to solve this problem in polynomial time．Design such an algorithm to solve this problem．（20\％）

