
國立中央大學資訊工程學系 111 學年度第二學期博士班資格考試題紙

科目： 演 算 法 (Algorithms) 第一頁 共二頁(page 1 of 2)

1. The 0/1 knapsack problem is described as follows. Given the capacity m of a knapsack
and n objects whose weights are w1,…,wn and whose profits are p1,…,pn, find the
largest value of by assigning either 0 or 1 to x1,…,xn under the constraint

, where w1,…,wn and p1,..,,pn are positive integers. Write a dynamic

programming algorithm to solve the 0/1 knapsack problem with the time complexity
O(n⋅m). You should analyze your algorithm to show that its time complexity is indeed
O(n⋅m). (25%)

2. A non-deterministic (ND) algorithm has two phases, the choosing phase and the checking
phase, for solving a given problem. The former is for selecting one from a specific set of
choices iteration by iteration. The latter is for checking if all selected choices constitute a
solution to the problem. If so, the algorithm returns SUCCESS; otherwise, FAILURE. It is
assumed that an ND algorithm always selects choices that lead to the return of SUCCESS
unless there are no such choices. A problem is called an NP problem if there exists a
polynomial time-complexity ND algorithm solving the problem. For example, the famous
satisfiability (SAT) problem is an NP problem. The SAT problem is to determine if a given
Boolean formula f(x1,…,xn) of n Boolean variables x1,…,xn is satisfiable or unsatisfiable. A
formula f(x1,…,xn) is satisfiable (resp., unsatisfiable) if there exists an (resp., no)
TRUE-FALSE assignment of the n variables to make the formula TRUE. The following
polynomial time-complexity ND algorithm, called ND-SAT, can solve the SAT problem, which
is the evidence that the SAT problem is an NP problem.

Algorithm: ND-SAT
Input: a Boolean formula f(x1,…,xn) of n variables x1,…,xn
Output: SUCCESS if f is satisfiable; FAILURE, otherwise.
for i ← 1 to n do
 xi ← choice({TRUE, FALSE}) //Choose TRUE or FALSE to assign to xi
if f(x1,…,xn) == TRUE then //Check if f(x1,…,xn) is satisfiable or unsatisfiable

 return SUCCESS
else

return FAILURE

In practice, we can prove a problem to be an NP problem by showing a polynomial
time-complexity ND algorithm solving the problem. (a) By this concept, please prove

that the exact cover decision problem (ECDP) is an NP problem by showing a
polynomial time-complexity ND algorithm solving the ECDP (18%). Note that you
should follow the above-mentioned ND algorithm definition and the format of the

ND-SAT algorithm. That is, the ND algorithm should contain the input description,
the output description, the choosing phase, the checking phase, and return statements;

otherwise, you will lose some points. (b) Furthermore, please analyze the time
complexity of your ND algorithm in terms of the big O notation to show that it indeed

背面還有 Please Turn Over

國立中央大學資訊工程學系 111 學年度第二學期博士班資格考試題紙

科目： 演 算 法 (Algorithms) 第二頁 共二頁(page 2 of 2)

has a polynomial time complexity (7%). The ECDP is defined as follows. Given a
universal set U={u1,...,um} of m elements, and a collection S={S1,...,Sn} of n sets, where
Si is a non-empty subset of U, 1≤i≤n, the ECDP is to determine if there exists a
collection S* of sets that is an exact cover of U, where S*⊆S. A collection S* of sets is
an exact cover of U if every element u in U appears exactly once in only one set of S*.
For example, suppose U={1,2,3,4,5,6,7} is a universal set of seven elements, and
S={A,B,C,D,E} is a collection of five sets, where A={1,2,7}, B={1,4}, C={4,5},
D={3,5,6}, and E={4}. Then, S*={A,D,E}⊆S is an exact cover of U. In summary, the
ECDP with the input of U ={1,2,3,4,5,6,7} and S={A={1,2,7}, B={1,4}, C={4,5},
D={3,5,6}, E={4}} will return SUCCESS, since S*={A,D,E}⊆S is an exact cover of U.

3. You have inherited the publishing rights to n songs by the Raucous Rockers. You want

to release a boxed set of d compact disks, each of which can hold at most m minutes of
music. To satisfy the fans, you must put the songs in chronological order, but you can
omit songs (regardless of when they were recorded) if necessary. Of course, no song can
be split across a disk. Given a list of the song lengths in chronological order, your task is
to figure out the maximum number of songs that can be recorded on the set of disks
subject to these criteria. (25%)

4. Given a sequence of objects where each object is associated with a value and a weight,
design an algorithm to find a subsequence such that its corresponding value sequence is
increasing and its weights’ sum is maximized. (25%)

