國立中央大學資訊工程學系110學年度第二學期博士班資格考試題紙

科目：演算法（Algorithms）第一頁 共一頁（page 1 of 1 ）

1．Consider the problem of neatly printing a paragraph on a printer．The input text is a sequence of n words of lengths $l_{1}, l_{2}, \ldots, l_{n}$ ，measured in characters．We want to print this paragraph neatly on a number of lines that hold a maximum of M characters each．Our criterion of＂neatness＂is as follows．If a given line contains words i through j and we leave exactly one space between words，the number of extra space characters at the end of the line is $M-j+i-\sum_{k=i}^{j} l_{k}$ ．We wish to minimize the sum，over all lines except the last，of the cubes of the numbers of extra space characters at the ends of lines．Give a dynamic－programming algorithm to print a paragraph of n words neatly on a printer．Analyze the running time and space requirements of your algorithm．（20\％）

2．Consider the following even－partition problem：Given a list of n positive integers，partition the list into two sublists，each of size $n / 2$（assume that n is even），such that the difference between the sums of the integers in the two sublists is minimized．
a）Give a dynamic programming algorithm to solve this problem．（20\％）
b）Give a decision version of this problem，and show that it is NP－Complete．You may assume that the sum of subset problem is a known NP－Complete problem．（10\％）
3．Let $S=\left\{s_{1}, s_{2}, \ldots, s_{n}\right\}$ be a non－empty set of n elements．Write an algorithm to select the media of S with the linear time complexity in the worst case．（20\％）
4．The $0 / 1$ knapsack problem is described as follows．Given the capacity m of a knapsack and n objects whose weights are w_{1}, \ldots, w_{n} and whose profits are p_{1}, \ldots, p_{n} ，find the largest value of $\sum_{1 \leq i \leq n} p_{i} x_{i}$ by assigning either 0 or 1 to x_{1}, \ldots, x_{n} under the constraint $\sum_{1 \leq i \leq n} w_{i} x_{i} \leq m$ ，where w_{1}, \ldots, w_{n} and p_{1}, \ldots, p_{n} are positive integers．Write a dynamic programming algorithm to solve the $0 / 1$ knapsack problem with the time complexity $\mathrm{O}(n \cdot m)$ ．You should analyze your algorithm to show that its time complexity is indeed $\mathrm{O}(n \cdot m)$ ．（ 20% ）

5．How can you show that a problem is an NP－Complete problem？（10\％）

