科目：演 算 法（Algorithms）第一頁 共一頁（page 1 of 1）

1．A string is a sequence of symbols；for example，$X=\left\langle x_{1}, x_{2}, \ldots, x_{m}\right\rangle$ is a string of m symbols x_{1} ， x_{2}, \ldots, x_{m} ．When we delete 0 or more symbols（not necessarily consecutive）from X ，we get a subsequence of X ．（a）（ 15% ）Write a dynamic programming algorithm $\operatorname{LCSS}(X, Y)$ to calculate the length of the longest common subsequence of $X=\left\langle x_{1}, x_{2}, \ldots, x_{m}\right\rangle$ and $Y=\left\langle y_{1}, y_{2}, \ldots, y_{n}\right\rangle$ ．（b）（ 8% ） Analyze the time complexity of the $L C S S$ algorithm．

2．（ 15% ）Let $S=\left\{s_{1}, s_{2}, \ldots, s_{n}\right\}$ be a non－empty set of n elements．Write an algorithm to select the media of S with the linear time complexity in the worst case．

3．（12\％）Suppose problem X has been proven to be an NP－hard problem．Show that how to prove a given problem Y to be NP－hard based on the NP－hardness of problem X．

4．（ 25% ）Let $x_{1}, x_{2}, \ldots, x_{n}$ be a sequence of real numbers（not necessarily positive）．Design an algorithm to find a subsequence $x_{i}, x_{i+1}, \ldots, x_{j}$（of consecutive elements）such that the product of the numbers in it is maximum over all subsequences of consecutive elements．The product of the empty subsequence is defined as 1 ．

5．（ 25% ）Suppose you have one machine and a set of n jobs to process on that machine．Each job j has a processing time t_{j} ，a profit p_{j} ，and a deadline d_{j} and the machine can process only one job at a time．If job j is completed by its deadline d_{j} ，you receive a profit p_{j} ，but if it is completed after its deadline，you receive a profit of 0 ．Give an algorithm to find the schedule that obtains the maximum amount of profit．

