

1. (20%) A string is a sequence of symbols; for example, $X = \langle x_1, x_2, \dots, x_m \rangle$ is a string of m symbols x_1, x_2, \dots, x_m . When we delete 0 or more symbols (not necessarily consecutive) from X , we get a subsequence of X . Write a dynamic programming algorithm to calculate the length of the longest common subsequence of $X = \langle x_1, x_2, \dots, x_m \rangle$ and $Y = \langle y_1, y_2, \dots, y_n \rangle$.
2. (20%) Write an algorithm to have the following input:
a connected weighted digraph $G(V, E)$, w , x , and y , where V is the node set, E is the edge set, the weight of the edge (u, v) is stored in $w[u][v]$, and x and y are two nodes in V ,
and the following output:
the shortest path from x to y .
3. (10%) How can we prove that a given problem H is NP-hard?
4. (25%) Consider a general version of coin changing problem: given a set of coins of different denominations with unlimited quantities, you are asked to make changes for K cents using these coins. Design an efficient algorithm to count the number of different ways of making changes. That is, if there are n kinds of coins of denominations c_1, c_2, \dots, c_n , the problem is equivalent to asking you to design an algorithm to count the number of different solutions for the following integer linear programming problem: Given positive integers c_1, c_2, \dots, c_n , and K , find non-negative integer solutions (x_1, x_2, \dots, x_n) such that $x_1c_1 + x_2c_2 + \dots + x_nc_n = K$. For example, if $c_1 = 1, c_2 = 5, c_3 = 10$, and $c_4 = 25$, then there are four ways of making changes for 11 cents and there are 13 ways of making changes for 26 cents.
5. (25%) Given a list of n positive integers, d_1, d_2, \dots, d_n , we want to efficiently determine whether there exists an undirected graph whose nodes have degrees precisely d_1, d_2, \dots, d_n . This graph should not contain self-loops (edges with both endpoints equal to the same node) or multiple edges between the same pair of nodes. Design an algorithm to solve this problem.