國立中央大學資訊工程學系102學年度第一學期博士班資格考試題紙

科目：演 算 法（Algorithms）第一頁 共一頁（page 1 of 1 ）

1．(10%) By definition，show that $7 n^{4}+2 n^{2}+6 n-5$ is of $\theta\left(n^{4}\right)$ ．
2．（20\％）Write a prune－and－search algorithm of $\mathrm{O}(n)$ time complexity to solve the selection problem：given a set S of n elements，find the k－th smallest element of S ．You should show that your algorithm is of $\mathrm{O}(n)$ time complexity．

3．（20\％）Write a divide－and－conquer algorithm of $\mathrm{O}(n \log n)$ time complexity to solve the closest pair problem：given n points on a plane， find a pair of points with the smallest distance between them．You should show your algorithm is of $\mathrm{O}(n \log n)$ time complexity．

4．（30\％）Given a weighted undirected graph $G(V, E, w)$ ，such that each edge e in E is assigned a non－negative weight $w(e)$ ，the problem Longest－Cycle is to find a longest cycle in G and the problem Shortest－Cycle is to find a shortest cycle in G ．Decide which problem is polynomial－time solvable and which one is NP－hard．For the problem that is polynomial－time solvable，you should give an algorithm to solve it，and for the problem that is NP－hard，you should describe a known NP－hard problem and then show that the latter is polynomial time reducible to the former．

5．（20\％）Show how to count the number of distinct substrings of a string T in time $O(n)$ ，where the length of T is n ．Also show how to enumerate one copy of each distinct substring in time proportional to the length of all those strings．

