

1. We have the following definitions and theorem related to NP-completeness.

Definition 1. Let X_1 and X_2 be two problems. X_1 reduces to X_2 (written as $X_1 \leq X_2$) if and only if X_1 can be solved in polynomial time, by using a polynomial time algorithm which solves X_2 .

Definition 2. A problem is said to be a P (resp., NP) problem if it can be solved in polynomial time by a deterministic (resp., non-deterministic) algorithm.

Definition 3. NP (resp., P) is the set of all NP (resp., P) problems.

Definition 4. A problem X is NP-complete if $X \in \text{NP}$ and every NP problem reduces to X .

Cook's Theorem. $\text{NP} = \text{P}$ if and only if the satisfiability (SAT) problem is a P problem.

(This implies that every NP problem reduces to SAT.)

We assume that $\text{SAT} \leq B$, $B \leq C$, $C \leq D$ and $D \in \text{NP}$. By the above definitions and theorem, show that D is NP-complete. (20%)

2. Given n objects with positive integer values P_1, P_2, \dots, P_n as profits, and positive integer values W_1, W_2, \dots, W_n as weights, and a knapsack with positive integer value M as its capacity, the 0/1 knapsack problem is to find a subset of selected objects such that the total profit sum of the selected objects is maximized and the total weight sum of the selected objects is not larger than M . Note that we assume $(P_i/W_i \geq P_{i+1}/W_{i+1})$ and we put a minus sign to each of P_1, P_2, \dots, P_n to turn the original 0/1 knapsack problem into a minimization problem to minimize the total profit sum of the selected objects. We can use the branch-and-bound strategy to solve the 0/1 knapsack problem by finding a lower bound and an upper bound for each solution tree node to terminate some tree nodes. **Explain how we can find the upper bound of a node (7%), and how we can find the lower bound of a node (7%), and how we can terminate a node (7%).**
3. An approximation algorithm for the problem has a ratio bound of $\rho(n)$ if for any input size n , the result C of the solution produced by the approximation algorithm is within a factor of $\rho(n)$ of the result C^* of the optimal solution. **What is the definition of the ratio bound $\rho(n)$? (9%)**

4. Given a set of n sticks of various lengths x_1, x_2, \dots, x_n , is it possible to join them end-to-end to form a square? For example if you are given 5 sticks of lengths 10, 20, 30, 40, 50, you should answer “no”; however, if the lengths are 10, 20, 30, 30, 30, the answer is “yes”. (a) Show that this problem is NP-complete. (10%) (b) If the sum of the lengths is small enough, it can be solved efficiently by a dynamic programming algorithm. Derive such an algorithm. (15%)

5. For an undirected graph $G=(V, E)$ and a vertex v in V , let $G\backslash v$ denote the subgraph of G obtained by removing v and all the edges incident to v from G . If G is connected, then $G\backslash v$ can be connected or disconnected. (a) Prove that for any connected graph G , we can always find a vertex v in G such that $G\backslash v$ is connected. (10%) (b) Design an $O(|V|)$ time algorithm to find such a vertex. (15%)