國立中央大學資訊工程學系 101 學年度第一學期博士班資格考試題紙 科目: 演算法 (Algorithms) 第一頁 共二頁 (page 1 of 2)

- 1. (15%) Given a_0 , a_1 , ..., a_{n-1} , the Fast Fourier Transform (FFT) algorithm can compute A_0 , A_1 , ..., A_{n-1} in O(n log n) time complexity by the divide-and-conquer strategy, where
- $$\begin{split} A_{j} &= \sum_{k=0}^{n-1} a_{k} e^{i2\pi j k/n}, 0 \leq j \leq n-1 \\ &= \sum_{k=0}^{n-1} a_{k} \omega^{kj}, \text{ where } \omega = e^{i2\pi/n} \\ \text{. Show the basic concept of the FFT algorithm.} \end{split}$$
- (15%) Given a set of n planar points P₁, P₂, ..., P_n, the Euclidean All Nearest Neighbor problem is to find the nearest neighbor of every P_i, 1≤i≤n. Show that the problem can be solved in linear time if the Voronoi diagram of the n points is given.
- 3. (20%) We have the following definitions and theorem related to NP-completeness.

Definition 1. Let A_1 and A_2 be tow problems. A_1 *reduces to* A_2 (written as $A_1 \propto A_2$) if and only if A_1 can be solved in polynomial time, by using a polynomial time algorithm which solves A_2 .

Definition 2. A problem *A* is NP-complete if $A \in NP$ and every NP problem reduces to *A*.

Cook's Theorem. NP=P if and only if the satisfiability (SAT) problem is a P problem.

Let SAT \propto B, B \propto C, C \propto D, and D \in NP for a given problem D. By the above definitions and theorem, show that D is NP-complete.

(Hint: You can first derive the reduction relationship of the SAT problem and every NP problem to complete the proof.)

4. Consider the problem to determine whether a given undirected graph with *n* vertices contains a cycle of length *k* as a subgraph. (a) (5%) Show that if *k* is a part of the input instance, then this problem is NP-complete. (b) (15%) However, if *k* is a constant, there is a naïve $O(n^k)$ time algorithm that solves this problem by checking all possible *k* vertices of the graph. Design a more efficient algorithm for this problem.

國立中	央大學	學資訊工	-程學系 10]	學年度	第一學其	用博士班	資格考試品	題紙
科目:	演	算 法	(Algori	thms)	第二頁	共二頁	(page 2 of	2)

- 5. Let *G* be an undirected graph. Each edge *e* in *G* is assigned a probability p_e , $0 \le p_e \le 1$. The *reliability* of a path is the product of the probabilities of edges of the path. Design an efficient algorithm to find a path with maximal possible reliability. (15%)
- 6. Given a positive integer *m*, and an array p[1..n] of $n \ (n \le m)$ positive numbers, find a way to partition *m* into one or more positive integers j_1, j_2, \ldots, j_k (i.e. $j_1 + j_2 + \ldots + j_k = m$) such that the sum $p[j_1] + p[j_1] + \ldots + p[j_k]$ is maximized over all possible partitions of *m*. (15%)