## 國立中央大學資訊工程學系101學年度第一學期博士班資格考試題紙

## 科目：演算法（Algorithms）第一頁 共二頁（page 1 of 2 ）

1．（15\％）Given $a_{0}, a_{1}, \ldots, a_{n-1}$ ，the Fast Fourier Transform（FFT）algorithm can compute $A_{0}$ ， $\mathrm{A}_{1}, \ldots, \mathrm{~A}_{\mathrm{n}-1}$ in $\mathrm{O}(\mathrm{n} \log \mathrm{n})$ time complexity by the divide－and－conquer strategy，where

$$
\begin{aligned}
A_{j} & =\sum_{k=0}^{n-1} a_{k} e^{i 2 \pi j k / n}, 0 \leq j \leq n-1 \\
& =\sum_{k=0}^{n-1} a_{k} \omega^{k j}, \text { where } \omega=e^{i 2 \pi / n} . \text { Show the basic concept of the FFT algorithm. }
\end{aligned}
$$

2．（15\％）Given a set of $n$ planar points $P_{1}, P_{2}, \ldots, P_{n}$ ，the Euclidean All Nearest Neighbor problem is to find the nearest neighbor of every $\mathrm{P}_{\mathrm{i}}, 1 \leq \mathrm{i} \leq \mathrm{n}$ ．Show that the problem can be solved in linear time if the Voronoi diagram of the $n$ points is given．

3．（20\％）We have the following definitions and theorem related to NP－completeness．

Definition 1．Let $A_{1}$ and $A_{2}$ be tow problems．$A_{1}$ reduces to $A_{2}$（written as $A_{1} \propto A_{2}$ ）if and only if $A_{1}$ can be solved in polynomial time，by using a polynomial time algorithm which solves $A_{2}$ ．

Definition 2．A problem $A$ is NP－complete if $A \in N P$ and every NP problem reduces to $A$ ．

Cook＇s Theorem．NP＝P if and only if the satisfiability（SAT）problem is a P problem．

Let $S A T \propto B, B \propto C, C \propto D$ ，and $D \in N P$ for a given problem $D$ ．By the above definitions and theorem，show that D is NP－complete．
（Hint：You can first derive the reduction relationship of the SAT problem and every NP problem to complete the proof．）

4．Consider the problem to determine whether a given undirected graph with $n$ vertices contains a cycle of length $k$ as a subgraph．（a）（5\％）Show that if $k$ is a part of the input instance，then this problem is NP－complete．（b）（15\％）However，if $k$ is a constant，there is a naïve $O\left(n^{k}\right)$ time algorithm that solves this problem by checking all possible $k$ vertices of the graph．Design a more efficient algorithm for this problem．

## 科目：演 算 法（Algorithms）第二頁 共二頁（page 2 of 2 ）

5．Let $G$ be an undirected graph．Each edge $e$ in $G$ is assigned a probability $p_{e}, 0 \leq p_{e} \leq 1$ ．The reliability of a path is the product of the probabilities of edges of the path．Design an efficient algorithm to find a path with maximal possible reliability．（15\％）

6．Given a positive integer $m$ ，and an array $p[1 . . n]$ of $n(n \leq m)$ positive numbers，find a way to partition $m$ into one or more positive integers $j_{1}, j_{2}, \ldots, j_{k}\left(\right.$ i．e．$\left.j_{1}+j_{2}+\ldots+j_{k}=m\right)$ such that the sum $p\left[j_{1}\right]+p\left[j_{1}\right]+\ldots+p\left[j_{k}\right]$ is maximized over all possible partitions of $m$ ．（15\％）

