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ABSTRACT

Iris masks are essential in iris recognition. The purpose of having a good iris mask is to indicate which part of
iris texture map is useful and which part is occluded or contains noisy artifacts such as eyelashes, eyelids and
specular re�ections. The accuracy of the iris mask is extremely important. The performance of the iris recognition
system will decrease dramatically when iris mask is inaccurate, even when the best recognition algorithm is used.
Traditionally, people used naive rule-based algorithms to estimate iris masks from the iris texture map. But
the accuracy of the iris mask generated in this way is questionable. In this paper, we propose a probabilistic
and learning-based method to automatically estimate iris mask from iris texture map. The features used in this
method are very simple, yet the resulting estimated iris mask is signi�cantly more accurate than the rule-based
methods. We also demonstrate the e�ectiveness of the algorithm by performing iris recognition based on masks
estimated by di�erent algorithms. Experimental results show the masks estimated by the proposed algorithm
help to increase the iris recognition rate on NIST Iris Challenge Evaluation (ICE) database.

Keywords: Iris recognition, iris mask estimation, probabilistic inference, Figueiredo�Jain GMM, Gaussian
Mixture Models, machine learning, pattern recognition, biometrics

1. INTRODUCTION

Most iris recognition systems consist of four stages: image acquisition, iris segmentation, iris normalization
and recognition. In most cases, in the iris normalization stage, iris images are transformed from the Cartesian
coordinate system to the polar coordinate system as suggested by Daugman.1 There are two main advantages
of this coordinate transformation. First, it normalizes the nonlinear texture variation caused by changes of
environmental illumination that leads to pupil dilation and contraction. Without doing this transformation, it
may be hard to compare two irises when the size of the pupil is di�erent. The second advantage of coordinate
transformation is that it translates the rotational shift in the Cartesian coordinate to a pure translational shift in
horizontal direction in the polar domain. It also simpli�es the problem in the matching stage because it is much
more di�cult and error-prone to perform pattern matching with rotational variation than translational variation.
Because of these two advantages, most iris recognition systems adopt this type of iris texture normalization in
their implementation.

In most cases, after transforming the iris texture from the Cartesian coordinate to the polar coordinate, one
has to create a mask for the iris map in the polar coordinate. The goal of this mask is to indicate which part in
the iris map is truly iris texture, and which part is noise. The sources of the occlusions/artifacts of the iris map
may come from eyelids, eyelashes, or specular re�ections. Fig. 1 shows example images of an iris texture map in
polar domain and its accurate mask (created by manual labor). Note that in the iris texture, the noisy regions
consist of texture created by eyelids, eyelashes, and specular re�ections. All of these noises have to be indicated
in the mask in order for the high performance of iris recognition.

Figure 1. Normalized iris texture map (left picture) and its accurate mask (right picture), with white color indicates
occluded area. In this iris map, there are noises caused by (1) eyelids, (2) eyelashes, and (3) specular re�ections, as
indicated in the picture. All of these artifacts have to be indicated in the mask in order to achieve high recognition
performance.



The accuracy of the iris mask has a great impact to the recognition accuracy of iris recognition system.
Traditionally, the main focus of research around iris recognition addresses the power of matching algorithm and
feature extraction. Most researchers emphasize the novelty and e�ectiveness of their iris feature extraction and
matching algorithm. While these remain an important issue and a major role in iris recognition, we have found
that the accuracy of the iris mask contributes much more than what researchers thought in the past. Accurate
iris masks, combined with good features and e�ective recognition schemes, make the iris recognition system more
successful. However, if the iris mask is inaccurate, no matter how good the feature extraction and recognition
algorithm is, the overall recognition rate will decrease dramatically due to mis-matching insigni�cant occluded
iris regions. This has been proved in our experiments, presented in later section of this paper.

In this paper, we propose a probabilistic, learning-based algorithm to estimate iris mask from the original
normalized iris texture map. It does not require any other information from eye images in the original Cartesian
coordinate. Another advantage of our proposed algorithm is its e�ciency. Since we are modeling probability
distribution with mixtures of Gaussian, and the formula of Gaussian distribution is easy to evaluate, our proposed
algorithm can automatically generate an iris mask very e�ciently in a short time. These advantages make our
proposed algorithm not only theoretically appealing but also practically e�cient.

The rest of the paper is organized as follows. We will review previous work about automatic iris generation
in Section 2 and explain our proposed algorithm in Section 3. Our experimental results will be shown in Section
4. In Section 5, we will present a discussion about the results we get. Finally, we conclude the contribution of
our proposed algorithm and also give a suggestion about our future work in Section 6.

2. PREVIOUS WORK

Daugman's research is one of the earliest in iris recognition.1 He described details about the normalization
scheme for iris texture, and called it �Doubly Dimensionless Projected Polar Coordinate System�. However,
when considering which part of the iris texture in the polar coordinate system is the authentic iris, he did not
address this issue signi�cantly and proposed a simple method which assumed the top part and the 45◦ notch at
the 6 o'clock position is occluded, for every iris image.

Ma, et al. proposed a full framework for the iris recognition system as well.2 Although it addressed many
issues in iris recognition, it does not mention any speci�c solution for occlusion detection. The only thing
related to occlusion is that they discard the lower part of the normalized iris texture and focus only on the
more discriminative regions. This scheme is equivalent to automatically assuming the lower part of iris texture
is occluded. A similar assumption was proposed in the work of Tisse, et al.3

Daugman, in his later work, proposed a more sophisticated algorithm for �nding the occluded region in
an iris.4 He proposed to locate the boundary of eyelids at the segmentation stage. By replacing the circular
integration operator (for �nding the iris and pupil boundary) with spline parameters, one can approximately
locate the eyelid boundaries.

Kong and Zhang proposed a model for detecting the eyelashes and specular re�ections.5 They proposed
to use Gabor �lters to detect separable eyelashes and use variance of intensity in the local window to locate
clusters of multiple eyelashes. After that, the connective criterion is enforced to enhance the robustness of the
algorithm. For strong specular re�ections, they just used a hard threshold on pixel intensity to identify it. For
weak specular re�ection, they used the mean and standard deviation of the local window as a adaptive threshold
for pixel intensity to classify.

Zou et al. proposed a procedure for iris occlusion detection.6 It consists of four stages. First, it detects
horizontal edges, since eyelids are more likely to be horizontal. Second, it performs the morphological operation
on those edges to enhance them. Third, it uses the segmentation result to locate valid edges. Finally, it uses
connectivity information to re�ne the mask. Although this method looks simple and easy to implement, it may
not work well for eyelashes because they are mostly vertical. Also, the edge detection based algorithm may
incorrectly classify some part of iris texture into noisy region when the contrast within iris texture is large.



3. PROPOSED METHOD

All of the previous works have some limitations. The methods described by Daugman,1 Ma, et al.,2 or Tisse, et
al.3 appear naive and cannot handle iris images taken in real-time. The method described by Kong and Zhang5

is basically a rule-based approach. The rule-based approach may work well for a speci�c settings or particular
environment but may not work when the environment is changed. Parameter tuning for the rule-based approach
is also important. These issues make the rule-based approach �imsy and not �exible.

To overcome the shortcomings of all the methods mentioned above, we would like to propose a novel method
for automatic iris mask generation. We would like this method to be �exible in terms of that it will not need
information from previous stage, which means without knowing anything from the eye image in Cartesian coor-
dinate, we would still be able to get accurate iris masks. As we have mentioned, currently the most sophisticated
algorithm require information about eyelid boundary from images of Cartesian coordinate in order to generate
masks for images in polar domain.4 We would like propose a better algorithm that does not need to do that. On
the contrary, our proposed algorithm can estimate the occluded region just based on the image in polar domain.
In this way, our method would facilitate the whole iris recognition system to be more modular and each stage
would be more independent to each other.

We can treat the problem of iris occlusion estimation as a pixel-wise, two-class classi�cation problem. Given
an iris image I in polar domain, we would like to get a mask image M such that M(x, y) = 0 if and only if
I(x, y) is true iris texture, otherwise M(x, y) = 1. Therefore, the problem of iris occlusion estimation is equal
to perform a two-class classi�cation problem (iris texture vs. occlusion) on each pixel. Assuming the size of iris
image I is 30x180, then for one input iris image, we have to do such the pixel-wise classi�cation 5400 times in
order to generate the full mask for it.

There are many di�erent machine learning algorithms that can solve two-class classi�cation problems. We
propose to use the Gaussian Mixture Modeling (GMM) to model the posterior probability distribution of both
iris texture and occlusion classes, and then the classi�cation decision can be made by comparing the posterior
probability of these two classes. GMMs have been widely used in all kinds of problems in machine learning
and pattern recognition, including speech processing,7 human skin detection,8 real-time tracking,9 hazardous
chemical agents detection10 and bearing damage detection for induction motor.11 The advantage of GMM is
its modeling ability. As long as the number of Gaussian distributions is large enough, GMM can virtually
model any shape of distribution. Another advantage of GMM is its mathematical equation is easy to evaluate.
Therefore, the classi�cation speed is high during testing stage. This is an important consideration when dealing
with problems like automatic mask generation because we have to perform pixel-wise classi�cation for every
iris image. If the classi�cation speed is not high enough, it will not have the practical value in a real-time iris
recognition system.

3.1 Probability density function for GMM

Let us review the basic mathematical foundations for GMM. The Gaussian distribution of a D dimensional
random variable X which has a value x is represented by (1)

X ∼ N (x;µ,Σ) =
1

(2π)
D
2 |Σ| 12

e[−
1
2 (x−µ)T Σ−1(x−µ)] (1)

where µ is the mean vector and Σ is the covariance matrix of the Gaussian distributed random variable X.

The probability density function of GMM can be de�ned as a weighted sum of multiple Gaussian distributions,
as shown in (2)

p(x; θ) =
C∑
c=1

αcN (x; µc; Σc) (2)

where αc is the priori probability that the random variable x is generated by the cth Gaussian mixture, and
they should satisfy



0 ≤ αc ≤ 1 and

C∑
c=1

αc = 1 (3)

Based on (1)-(3), the probability density function for a Gaussian mixture model can be completely de�ned
by a parameter list as shown in (4)

θ = {α1, µ1, Σ1, ..., αC , µC , ΣC , } (4)

We can calculate the number of free parameters for a GMM, given the random variable X is of dimension
D. For each µi, there are D free parameters; for each Σi, since it should be symmetric in nature, the number of
free parameters is

(
D2 −D

)
/2 + D = 1

2 (D2 + D). For each αi, we have one free parameter. Combining these
calculation and (3), the total number of free parameters is C( 1

2D
2 + 3

2D) + C − 1.

3.2 MLE and MAP estimation for model parameters

The process of training GMM is to estimate the parameter list θ, given the observation X. Suppose we have
a set of independently, identically distributed samples X={x1, x2, ..., xN} drawn from the same distribution
described by GMM probability density function p(x; θ). The likelihood function can be de�ned as (5)

L(X; θ) =
N∏
n=1

p(x; θ) (5)

It tells the probability that the series of observation X is generated by distribution governed by θ. The goal
of parameter estimation is to �nd the optimal parameter θ̂ that maximize the probability:

θ̂ = arg max
θ
L(X; θ) (6)

L(X; θ) in (5) and (6) contains many multiplication operations. We can speed-up the operation by taking
the logarithm function on both side. The log-likelihood function can be described as (7):

L(X; θ) = lnL(X; θ) =
N∑
n=1

ln p(xn; θ) (7)

Since the logarithm function is monotonically increasing, we can substitute L(X; θ)with L(X; θ) in (6) and
get the same answer.

Parameter estimation by (6) is called Maximum-Likelihood Estimation (MLE). Sometimes maximum a pos-
teriori (MAP) estimation is used instead of MLE:

θ̂MAP = arg max {lnL(X; θ) + lnL(θ)} (8)

3.3 EM algorithm

In literature, Expectation-Maximization (EM) algorithm is used to �nd the parameter θ̂MLE or θ̂MAP . EM
is an iterative procedure to estimate parameters when part of data is missing. In the case of GMM training
problem, we need to estimate multiple parameters at the same time, including the mean and covariance matrix
for each Gaussian mixture and which training sample belongs to which Gaussian mixture. EM can optimize all of
these unknown parameters and converges to a local maximum of θ̂. There are two main steps in EM algorithm,
described below.



3.3.1 E-step

The E-step in EM is to estimate the expectation of the likelihood of the observed data, assuming that we know
the optimal model parameters. In other words, it is to evaluate the expectation function Q(θ; θi) in (9)

Q(θ; θi) = EY

[
lnL(X, Y; θ)|X; θi

]
(9)

where Y is the unknown feature, in our case, the labels that indicate which Gaussian mixture each sample
belongs to.

3.3.2 M-step

The M-step in EM is to search the parameter space to �nd the optimal parameter θ̂ that can maximize the
likelihood function de�ned in (9):

θi+1 = arg max
θ
Q(θ; θi) (10)

The two steps will be executed repeatedly until θ converges to a local maxima. Usually we can de�ne a
convergence criteria as a threshold on the di�erence of the likelihood between two iterations:

Q(θi+1; θi)−Q(θi; θi−1) ≤ T (11)

Alternatively, convergence criteria can be de�ned as a threshold on the distance in parameter space:

||θi+1 − θi|| ≤ ε (12)

3.4 Figueiredo�Jain's extension for GMM training

EM-based parameter estimation for GMM training has a few drawbacks. First, the number of Gaussian mixtures
has to be manually chosen. Therefore, a wrong estimation for the number of Gaussian mixtures will de�nitely
hurt the accuracy of the trained GMM. Second, the initialization of the mean of each Gaussian mixture is also
crucial. Similar to K-means algorithm, if the initial position of the means of Gaussian is placed inadequately,
EM algorithm may be not able to converge to the true location of the mean of each Gaussian.

Because of these two major drawbacks in EM training algorithm, we would like to use alternative training
method. Figueiredo and Jain proposed an unsupervised learning method for GMM.12 This method can estimate
the number of Gaussian mixtures without human intervention, and can avoid the boundary of the parameter space
during the converging stage. The basic idea of Figueiredo�Jain's extension for GMM training (FJ algorithm) is
that it dynamically adjusts the number of Gaussian distributions by eliminating Gaussians that are not supported
by the observation. Also, during the mixture elimination process, it chooses to eliminate the Gaussians that are
becoming singular. By doing this, it can avoid converging to small Gaussians on the boundary of parameter
space.

FJ algorithm uses the idea of Minimum Descriptive Length (MDL) and applies it to mixture model training.
It is equivalent to using the objective function in (13)

Λ(θ, X) =
V

2

∑
αc>0

ln
(
Nαc
12

)
+
Cnz

2
ln
N

12
(13)

+
Cnz (V + 1)

2
− lnL(X, θ)

where N is the number of training points, V is the number of free parameters of the GMM, Cnz is the number
of Gaussian mixtures that have a nonzero weight (αc > 0), θ is de�ned as in (4), and the last term is de�ned in
(7).
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Figure 2. Visualization of GMM trained on single iris texture. (a) Example image for training; (b) Example iris texture
viewed in 3D, where z coordinate is the pixel intensity value; (c) 3D GMMs trained with FJ algorithm. Mixtures with
red color represent GMMs for occlusion; mixtures with green color represent GMMs for authentic iris texture; (d)-(f)
Plotting original iris texture data together with trained GMM, in 3D view, viewed from 3 di�erent angles. From (d)-(f),
We can see that trained GMMs �t the training data very well.

By using (13) as new objective function, the formula for estimating the prior distribution of the Gaussian
mixture in FJ algorithm becomes

αi+1
c =

max
{

0,
(∑N

n=1 wn,c

)
− V

2

}
∑C
j=1 max

{
0,
(∑N

n=1 wn,c

)
− V

2

} (14)

where wn,c is the probability that the n
th observation is generated from the cth Gaussian mixture, de�ned as

wn,c =
αicp

(
xn|c; θi

)∑C
j=1 α

i
cp (xn|c; θi)

(15)

The formula for estimating parameter µc and Σc is the same as in the traditional EM algorithm:

µi+1
c =

∑N
n=1 xnwn,c∑N
n=1 wn,c

(16)

Σi+1
c =

∑N
n=1 wn,c

(
xn − µi+1

c

) (
xn − µi+1

c

)T∑N
n=1 wn,c

(17)

We will not repeat too many details about FJ algorithm. Interested readers should refer to Figueiredo and
Jain's work.12
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Figure 3. Comparison of the iris mask estimated by di�erent algorithms. (a) the input iris texture image in polar
coordinate; (b) the �perfect� mask, generated by manual labor; (c) the mask generated by a rule-based method; (d) the
mask generated by FJ-GMM algorithm, with IMS feature set.

4. EXPERIMENTS AND RESULTS

4.1 GMM trained on single image

First, we use only one iris image to train GMM models. The training image we used is image 245241.ti� from
ICE2 database. After manually segmenting the iris and performing iris normalization, we get Fig. 2(a). Now, if
we think the intensity value of every pixel as the Z coordinate of that pixel in three-dimensional space, we can
plot the iris texture map in Fig. 2(a) in 3D perspective, as shown in Fig. 2(b). We also manually created a
mask for Fig. 2(a) to indicate which part is the authentic iris texture and which part is the occlusion, as shown
in Fig. 3(b). By using 3D coordinates of each pixel as the feature vector for that point, and using a manually
created mask as the class label set for each point on the image, we trained two GMM models; the �rst one is to
model the distribution of iris texture, and the second is the occlusion regions. We plot the trained GMMs in 3D
space in Fig. 2(c). In Fig. 2(c), GMMs with the red color represent the GMMs trained for occlusion and the
GMMs with the green color are models for iris texture. The brighter the color, the higher the prior probability
it has among all GMMs.

From Fig. 2(d)-(f), we can see that the trained GMMs �t very well with the original points in three-
dimensional space. The red GMMs �ts to the noisy part while the green GMMs �t the authentic iris texture. It
shows the proposed algorithm works for this single image case.

If we use the Fig. 2(a) as our test image and use the trained GMM to perform classi�cation for every pixel
on this image, and plot the results of the classi�cation back into a two dimensional matrix, with 0 indicating the
authentic iris and 1 indicating occlusion region, we can visualize the mask generated by the GMM. We show the
comparison of the iris mask estimated by di�erent algorithms in Fig. 3. The input iris texture image in polar
coordinate is shown in Fig. 3(a), while the ground truth of the mask shown in Fig. 3(b), which is manually
labeled. The mask generated by proposed method is shown in Fig. 3(d), compared with another mask generated
by a rule-based method, shown in Fig. 3(c). As we can see, the result generated by proposed algorithm is much
better than what we can get by the rule-based method.

4.2 Automatic iris mask generation on ICE database

We also performed a large-scale experiment on automatic mask generation using the proposed method, and
compared the results with masks generated by the other methods. We used the following mask to compare
our method: masks that are created by manual labor, masks that are estimated by a rule-based method, and
masks that are estimated by FLDA method. The rule-based method we used here is the one we used in both
the previous and next sections. It is similar to the method described in Kong and Zhang's work.5 Basically it
detects whether there is a strong variance of pixel intensity on a local window and uses it as a feature to perform
classi�cation. It can be illustrated in four steps:



1. Normalize the image so that the energy of pixel intensity sums up to one.

2. Compute the mean value of the local 5x5 window centered at each pixel. It is the mean image.

3. Compute the global mean and standard deviation of all pixel intensity of the mean image.

4. For every pixel on the mean image, if the di�erence between its intensity value and global mean is less than
twice the global standard deviation, classify it as iris texture. Otherwise, classify it as an occluded region.

The Fisher-Linear Discriminant Analysis (FLDA)-based occlusion detection method we used is described in Jason
Thornton's PhD Thesis.13

For the proposed algorithm, we would like to try to experiment with all kinds of di�erent features and see
which feature is really discriminative for the goal of the occlusion estimation. The feature we would like to try
includes:

• X, Y coordinate of the location of the pixel and pixel intensity

• Mean and standard deviation in a local 3x3 neighborhood

• Response intensity after the image is �ltered by Sobel edge �lter

• Response intensity after the image is �ltered by Gaussian

• Response intensity after the image is �ltered by Laplacian of Gaussian (LOG)

• Response intensity after the image is �ltered by Gabor �lter

• Response intensity after the image is �ltered by �rst-order and second-order Haar wavelet

We give a code name to each experiment in order to better distinguish what we tried in each experiment. The
code name and the features are listed below.

1. IMS: Intensity of the pixel, Mean and Standard deviation within 3x3 neighborhood.

2. SxSyL: Response intensity after the image is �ltered by Sobel edge �lter (both horizontally and vertically),
and by Laplacian of Gaussian

3. IG: Intensity of the pixel and response intensity after the image is �ltered by Gabor �lter

4. IMSSxSyLG: Combination of all of the three above

5. GFS: Response intensity after the image is �ltered by Gaussian, and the �rst-order and second-order Haar
wavelet

6. GFSG: Similar to GFS, plus the response intensity after the image is �ltered by Gabor �lter

Note that all of the above experiments included features of the (X,Y) coordinate of the pixel location.

We performed our experiments on NIST ICE database.14 In ICE database, there are two subsets: ICE1 and
ICE2. We run experiments on both of them. We performed segmentation and generated masks for every image
in ICE manually to get the ground truth for every mask. For each iris class in ICE, we picked one image as
training data and left all the other images as test data. For each testing image, we computed the average error
rate (AER) of the masks estimated by di�erent algorithms. AER can be computed as:

AER =
∑N
i=1 ei
N

(18)



Figure 4. The Average Error Rate for the mask generated by di�erent algorithms.

Figure 5. A few example mask created by proposed method, with GFSG feature set. Red color denotes the detected
occlusion, dark green region denotes the detected iris region.

ei =
NP (maskalg ⊗maskgt)

W ×H
(19)

where (W, H) is the size of the mask, maskalg and maskgt is the mask generated by speci�ed algorithm and
human labor, respectively; N is the total number of testing images; ⊗ is XOR operator that can be used to
compute the di�erence between two images; NP () is the function that counts the number of pixels in the images
which are not zeros. The results are shown in Fig. 4. A few examples of iris mask images created by GFSG
method are shown in Fig. 5.

As stated in Section 3, the e�ciency of the proposed algorithm is one of its advantages. Therefore, we
also measured how much time it takes for each algorithm to create one iris mask. We test all of our proposed
algorithms as well as the baseline algorithms on the same platform, which has dual core AMD opteron processor.
The speed of CPU is 2.6GHz. All the methods are implemented with Matlab codes, running on Linux server.
The results are plotted in Fig 6.

4.3 Iris recognition performance based on di�erent masks

We also measured the iris recognition performance based on di�erent masks. The iris feature extraction and
matching algorithm we used in this experiment was Libor Masek's Matlab implementation of Daugman's al-
gorithm, which is publicly available.15 We performed iris recognition experiment on the ICE database, with
manually created masks, and masks estimated by the two baseline algorithms, as well as masks estimated by
proposed algorithms. The results are plotted in the format of ROC curves and shown in Fig. 7.

5. DISCUSSION

5.1 Average error rate for occlusion estimation

First, in terms of the accuracy of generated iris mask, Fig. 4 shows that in both ICE1 and ICE2 database,
our proposed method (no matter which feature sets we use) is better than rule-based method and FLDA-based



Figure 6. Time analysis: how much time it takes for each algorithm to create one iris mask

10
−4

10
−3

10
−2

10
−1

98.6

98.8

99

99.2

99.4

99.6

99.8

100

False Accept Rate

V
er

ifi
ca

tio
n 

R
at

e(
%

)

ROC for ICE1

 

 

FLDA
GFSG
GFS
IG
IMSSxSyLG
IMS
Manual
RuleBased
SxSyL

(a)

10
−4

10
−3

10
−2

10
−1

10
0

95

95.5

96

96.5

97

97.5

98

98.5

99

99.5

100

False Accept Rate

V
er

ifi
ca

tio
n 

R
at

e(
%

)

ROC for ICE2

 

 

FLDA
GFSG
GFS
IG
IMSSxSyLG
IMS
Manual
RuleBased
SxSyL

(b)

Figure 7. ROC curves of recognition performance, based on masks generated from experiment con�gurations. (a) ROC
for ICE1 (right eyes) (b) ROC for ICE2 (left eyes)

method. This result proves our proposed method is useful and is able to create iris masks which are much more
similar to manually created ones.

Considering the question of which feature set is more suitable for the goal of creating accurate iris masks,
we can see that in both ICE1 and ICE2 experiments, IMS gives the best result. This means we can simply use
pixel intensity, mean and standard deviation to be our features to train GMM and create a very accurate iris
mask learning machine. Other features are also good, though not as good as IMS, in learning the characteristic
of the occlusion region. One thing that is opposite to our intuition is that we may think the performance of
IMSSxSyLG should be at least as good as IMS, if not better. But experimental result tells us this intuition is
wrong. It tells us that in the problem of learning the texture representation, it is not true that the more features
the better result. Only discriminative feature can give us best results. Redundant feature will not improve but
only hurt our classi�er.



(a) (b)

(c) (d)

Figure 8. Examples of incorrect iris masks created by GFSG feature set. (a) and (b) are images from class 4 in ICE2. (c)
and (d) are images from class 6 in ICE2.

5.2 Time analysis

As for the e�ciency perspective, from Fig. 6, we can see that FLDA-based algorithm takes much longer time
than all of the others, making it a very bad choice for the purpose of occlusion estimation, both in terms of
accuracy and e�ciency. Second, the rule-based method is most e�cient algorithm. However, the fact that the
accuracy of the created iris mask is bad makes it a sub-optimal algorithm.

All of our proposed algorithm falls within the bounds within FLDA and rule-based algorithm, in terms of
consuming time. We can see that there is a trend that the more features an algorithm uses, the longer the time
it takes to estimate iris mask. It is pretty reasonable and coincides with our intuition.

5.3 ROC curve analysis

The ultimate goal for us to have a good iris occlusion detector is to enhance the iris recognition performance with
better iris mask. Therefore, besides measuring the similarity between the manual masks and masks estimated
by each algorithm, we also perform the whole iris recognition process using the created iris masks. From Fig. 7,
we can clearly see the rank of performance of each algorithm. For both ICE1 and ICE2, the performance rank
is similar. Manually created masks achieved the highest score, which make sense to us. FLDA and rule-based
algorithms are two of the worst, which makes sense too because their masks deviated farthest from the perfect
masks.

One thing that counters our intuition is that for both ICE1 and ICE2, the best performance given by proposed
algorithm is GFSG. For ICE1 database, it is still reasonable because from Fig. 4, the AER of GFSG is second
best. But for ICE2 database, AER of GFSG is in the middle rank. Therefore, the result shown in Fig. 7(b) is
surprising to us.

The possible explanation is that although the mask created by GFSG is not so accurate as some other
feature set, and some eyelid/eyelash occlusions are mistakenly being recognized as the iris texture, but those
eyelid/eyelash regions may carry discriminative information for iris recognition. This discriminative information,
plus original iris texture information, makes the �nal iris recognition system performs well.

This explanation can be illustrated by Fig. 8. In Fig. 8, two pairs of example images are shown. Figure
8(a) and (b) are two images from the same iris class, and its corresponding masks created by GFSG feature set.
These two images are example iris masks that have higher error rate compared to the rest of the iris masks for
the same class. Figure 8(c) and (d) show another pair of iris and their masks, from another iris class. From these
two pairs of examples, we can see that for the case that GFSG gives an erroneous iris mask, usually the regions
that are mistakenly recognized as iris texture still have some discriminative information. In examples shown in
Fig. 8, the incorrectly recognized region has spacial eyelash patterns that belong to that class. Therefore it is
possible to have higher iris recognition performance.



6. CONCLUSIONS AND FUTURE WORK

Extracting robust iris masks is one of the key stages to improving iris recognition. This is something that many
researchers have neglected. How to estimate iris occlusion and create accurate iris mask robustly and e�ciently
is key to high performance iris recognition. In this work, we have demonstrated that our approach for the iris
occlusion estimation is e�cient, and e�ective. It can detect the iris occluded region and the detection result (iris
mask) can be very similar to manually created result. It is e�ective because we only use one training image for
each class to get such a satisfactory result. Also, it only requires less than 0.1 second for one image (for GFSG
case, in Matlab implementation). Experiments have also shown that the iris masks created by proposed method
can help improve iris recognition performance to be very close to the manually created masks.

On the other hand, there is still room for improvement. The best AER we get is 9.5%, which means we
can still try to improve the results. Future works include using more sophisticated �lters to extract features for
FJ-GMM training. Also, we can apply some other method like morphological operation to re�ne the estimated
iris mask so that it can be more similar to manually created ones. In addition, we can also try other machine
learning algorithms like SVM or KNN to see if they are better than FJ-GMM method.
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