
 
 

  

“Hallucinating Irises” – Dealing with Partial & Occluded Iris Regions 
Taihei Munemoto, Yung-hui Li, and Marios Savvides 

Electrical and Computer Engineering, Carnegie Mellon University, 5000 Forbes Ave, Pittsburgh PA 15213 
 

 

  

Abstract—In this paper, we examine a novel image-filling 
algorithm to fill the occluded and partial regions of the iris. In 
iris recognition, these occlusions naturally appear due to eyelids 
being partially closed, eye movements and eye-lashes.  
Additionally, specular reflections arising from the iris-camera 
illuminator are present and produce occlusion artifacts on the 
iris region. In the polar representation of iris images, additional 
‘nuisance’ parameters include image regions containing the 
pupil and sclera due to inaccurate iris segmentations. Thus, for 
accurate iris recognition, it is important to reduce the effect of 
these nuisance parameters so that the performance of the iris 
recognition system can be maximized. Typically, a mask region 
(automatic or manual) is defined to ignore occluded or affected 
iris regions from such nuisance artifacts. However, in the 
feature extraction stage, especially using Gabor type extraction, 
the features near the edge of these artifacts are also affected due 
to the tail supports of these filters that overflow on occluded 
irises. We propose a novel method for filling in the occluded 
regions by synthesizing the iris pattern from this current 
exemplar image and show that a significant improvement on the 
Iris Challenge Evaluation (ICE) dataset can be made.  

I. INTRODUCTION 
RIS identification is regarded as a reliable biometric 
system for identification and authentication, and therefore, 
has been intensively studied for over a decade. There are 

advantages to using iris patterns as a biometric modality. One 
of the advantages is that the iris remains relatively stable over 
a lifetime. Another advantage is that the iris pattern is known 
to have statistical independence for each person, or even each 
eye. One of the early successes of iris recognition algorithms 
was shown in the work of J. Daugman [1]. He applied a 
complex two dimensional Gabor filter to normalized iris 
images and created binary maps by encoding the phase of 
complex valued filter responses. Other successful algorithms 
by Wildes [2], and Boles [3] also show the robustness of iris 
patterns for human verification and identification. 
  While many proposed algorithms are shown to be successful 
in particular iris databases prepared in relatively controlled 
environments, there are also limitations. This is due to several 
factors, such as occlusions, poor focus of images, and 
inconsistent camera angles. Occlusions occur especially 
frequently because it is natural for a person’s eyes to be 
covered by the eyelids and eyelashes. Also, specular 
reflections appear in the iris image due to illumination while 
the eye images are captured. The pupil and sclera may also 
appear in the polar representation of an iris image because of 

inaccurate iris segmentation. An example of noises in an iris 
image is shown in Figure. 1. If an eye image database is taken 
under the condition that these noises appear on the captured 
iris images, frequently, it is difficult to properly 
identify/verify an individual. 

 
 

 

Fig. 1. Top: Occluded iris regions found in Cartesian domain. The numbers 
in this figure correspond to, 1) eyelids, 2) eyelashes, 3) specular reflections, 
4) pupil, 5) sclera, and 6) shadow caused by an eyelid. Bottom: Iris 
occlusion regions found in polar domain. The numbers in the bottom figure 
correspond to the noise types in the top figure. 

 

 
 

  In one of the most common frameworks of the iris 
recognition system, an iris image is unwrapped to polar 
representation and linearly filtered by using Gabor filters for 
feature extraction and occluded regions are detected and 
excluded by using a mask. In this framework, it is important 
to not only exclude the noise region, but also estimate the true 
texture patterns behind these occlusions. Even though masks 
are used for comparison of iris features, the features around 
masks are still affected by noise. This is because the response 
of filters near the boundary of the mask is affected by the 
noisy pixels. 

In our work, we focused on reducing these noises in the 
polar representation of iris images. Given an iris image and a 
mask, we applied an image-filling algorithm to estimate the 
texture pattern inside the occluded iris region. We tested the 
image-filling algorithm proposed by Criminisi et al. [4], 
where the masked regions are filled with texture patterns 
from a non-occluded iris region within the same iris image. A 
detailed description of the algorithm is given in Section III. 
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The rest of this paper is organized as follows. Section II 
describes the related work for noise removal of iris images. 
Section III describes the image-filling algorithm that we 
applied. Section IV explains the experimental details and 
results. Finally, conclusions are given in Section V. 

II. RELATED WORK 
So far, there are several papers that focus on noise and 

occlusion removal on iris images in either the Cartesian 
domain or polar domain. While some proposed algorithms 
only exclude the noisy regions in an iris image, others 
estimate the texture patterns behind these regions found on 
iris images. 

Kong and Zhang [5] proposed modeling two types of 
eyelashes, separable eyelashes and multiple eyelashes. To 
detect separable eyelashes, he used a one-dimensional Gabor 
filter. He located separable eyelashes by thresholding the 
results of convolution of iris images (in Cartesian domain) 
and the filter. To detect multiple eyelashes, he used the 
variance of a 5×5 window. If the window was located where a 
lot of eyelashes overlapped, the variance of the intensity 
within the window was smaller. Thus, he found a way to 
detect multiple eyelashes by simply thresholding the variance. 
It is important to note that his method has not been tested on a 
large open iris database. It is still unknown if his method 
performs well on the common benchmarking iris database 
such as NIST ICE database [10]. 

Huang et al. [6] proposed the use of phase congruency. He 
used a bank of two-dimensional Log-Gabor filters to obtain 
phase congruency, and then used it in the criterion function to 
detect noises in iris images. After finding the noise regions, 
he filled the regions with the image-filling algorithm 
described in [7]. 

Zhang et al. [8] proposed an eyelash removal algorithm. In 
his method, first the magnitude and direction of gradient are 
calculated for all pixels in an iris image by approximating the 
partial derivatives with Sobel operators. Then, for each pixel 
with its gradient magnitude higher than a threshold, the 
variance of gradient magnitude within a window of size m×n 
centered at the pixel is calculated. If eyelashes are present 
within the window, the gradient direction in the window is 
strong in one direction. Therefore, the eyelashes can be found 
by thresholding the variance of gradient directions. After 
eyelashes are detected, the one-dimensional median filtering 
is applied to fill in these eyelashes. 

III. IMAGE-FILLING ALGORITHM 
In this section, the image-filling algorithm proposed by 

Criminisi et al. [4] is described. Given an iris image with 
occlusions, this algorithm estimates the texture pattern behind 
the occlusions by taking sample patterns from a non-occluded 
area in the same iris image. This algorithm is designed to 
preserve the textures of the image as well as the boundaries of 
different textures. 

A. Notations and Definitions of Regions and Points 
First, noise regions to be removed, Ω, are defined. In our 

framework, the noise regions are the eyelid, eyelashes, 
specular reflections, pupil, sclera, and shadows of eyelids on 
iris images. For all images in a database, we created masks in 
two ways: 1) manually and 2) by using the algorithms 
proposed by Libor Masek [9]. While masks created manually 
completely cover all occluded regions in the iris images, the 
masks created by Masek’s algorithms contain errors. His 
method only excludes eyelashes and eyelids, and is less 
accurate in comparison to the manually created mask as the 
algorithm performs the linear Hough transform to find eyelids 
and uses simple thresholding for eyelashes. The goal of this 
paper is to examine the effect of recovering the texture of 
occluded regions and mitigating the effect of feature 
extraction at these boundaries.  

 We also define the source region Φ. From this region, 
we take sample windows to place them into noise regions, Ω. 
In our implementation, we define the source regions as an 
entire non-occluded region in an iris image that is Φ =  - Ω, 
where is the entire image. We can also choose the source 
region as dilated regions of masks, yet in this experiment, it is 
out of our focus. 

Other notations are as follows. We define the size of 
template window Ψa, where the subscript “a” defines the 
center of the window. We choose a 9×9 window size as 
Criminisi did in [4]. We use δΩ for the contour of noise 
regions, and np as a unit vector orthogonal to the contour line 
at point p, where p lies on the contour line ( p
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Fig. 2: The notations diagrams. The noise region is denoted as Ω, and its 
contour is denoted as δΩ. The vector np is orthogonal to the contour δΩ. Ψp  is 
a window taken from the noise region, centered at p, and Ψq is a window taken 
from source region, centered at q. 

pI ⊥∇  is a gradient vector at point p. 

)δ∈ Ω
(q

. Point 
q is a point that lies in the source regions Φ )∈ Φ . These 
notations are illustrated in Figure. 2. 

Given these defined regions and points, the algorithm 
iterates three steps to fill in the noise regions. These steps are 
1) computing priority for the order of filling process, 2) filling 
the noise region with a patch from source region, and 3) 
updating priority values. The algorithm repeats these three 
steps until it fills all noise regions in the given image. These 
steps are explained in detail below (Also, the block diagram 
for these steps is described in Figure. 3). 

B. Computing Priorities 
To fill the region in a way we can preserve the structure of 

the original image, the order of filling is important. So, for 
each pixel on the contour of the noise region p δ∈ Ω , a 
priority function P(p) is calculated as the multiplication of 



 
 

 

two values: 
( ) ( ) ( )P p C p D p=        (1) 

 
Fig. 3: The block diagram of the image-filling algorithm 

C(p) is called confidence term and D(p) is called data term. 
These values are defined as the follows: 

( )
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where |Ψp| is the area of Ψp, α is a normalization constant set 
to 255, and pI ⊥∇ is a gradient vector (a vector whose 

components are the partial derivatives with respect to x and y 
directions) rotated 90 degrees. 
 The intuition behind the confidence term C(p) is that the 
term gives preference to a point on the contour whose 
window contains less unknown values. For example, if a 
window centered at a noise pixel contains only the noise pixel, 
the confidence value at the noise pixel is high (C(p) is close to 
1). As a result, this term weights the priority term so that the 
priority of filling to be roughly concentric order. Initially, the 
confidence term C(p) is set to zero for the noise region, and 
one for the source region. 

 The data term D(p) describes how strong the edge of 
different texture hitting the contour of occluded regions δΩ is. 
The data term is the inner product of two unit vectors. One of 
the vectors is the unit vector whose direction is orthogonal to 
the gradient orientation at the pixel, and the other is the unit 
vector whose direction is normal to the contour of noise 
region Ω. If, at a pixel, a strong edge of two textures is hitting 
the contour of the occluded region orthogonally, the data term 
is high for that pixel. The data term is necessary for 
preserving the boundary of different iris textures. 

 

(a) Original iris image 

(b) Filled image at iteration 200 

(c) Filled image at iteration 250 

(d) Filled image at iteration 320 

(e) “Hallucinated Iris image” whose occlusions are completely filled 
 

Fig. 4: Iris image filling process. The green box in Figure 4b-4d shows the 
sample texture patterns copied. The red box in Figure. 4b-4d shows the 
occlusion region filled with the sample texture patterns from the same iris.
  

After computing P(p) around the contour of the noise 
region we get a point p̂ which has the maximum 
priority . ˆ( )P p

C. Searching the Best Window 
After computing the point with the maximum priority, p̂ , 

we select a window, , around this point. Within this 

window, occluded pixels are chosen to be filled in. In this step, 
we find a window , which is a window centered at a 

point in the source region. To find , we search the points 
in the source region that are with the following criteria 
function 

p̂Ψ

q̂Ψ

q̂ q̂
q ∈ Φ

ˆ ˆarg min ( , )
q

q pd
Ψ ∈Φ

Ψ = Ψ Ψq        (3) 

where the distance function ˆ( , )p qd Ψ Ψ is the sum of squared 

difference (SSD) between the known pixels in window p̂Ψ  

and corresponding pixels in Ψq. After finding the best 
window , the corresponding pixels are copied into the 

noise pixels in window
q̂Ψ

p̂Ψ . 

D. Updating Confidence Values 

After q̂Ψ is copied into p̂Ψ , the confidence term C(p) is 

updated according to the following criteria: 



 
 

 

ˆ( ) ( )C p C p=           (4) 

 

(a) Original iris image (dataset 1) 

(b) Mask to cover occluded regions 

 

(c) Iris image whose occlusions are filled with a constant value(dataset 2)

 

(d) Hallucinating iris. Occlusions are filled with the image-filling
algorithm (dataset 3) 
  
Fig. 5: Example iris images from iris images segmented by CMU-1
algorithm. (a) Original iris image in polar domain. (b) Manually created
mask for the original image. (c) Iris image whose masked region is filled
with the mean value of non-masked region in the same image. This is same
as the Masek’s algorithm. (d) Iris image whose masked region is filled with
the image filling algorithm described in Section III 

Where . Therefore, priority values around the 
contour of the noise region δΩ are also updated. These three 
steps are iterated until all pixels in the fill region δΩ are 
replaced with the patch taken from source region Φ. The 
example images for this process are shown in Figure 4.  

p̂p∀ ∈ Ψ ∩ Ω

IV. EXPERIMENTAL SETTING AND RESULTS 

A. Baseline Algorithms 
We have tested the performance of our algorithm by using 

Libor Masek’s [9] feature encoding and matching algorithm, 
a public implementation of interpretation of Daugman’s 
algorithm[1] which has become a standard in benchmarking 
iris performance improvements in the field. One advantage is 
that the MATLAB code is publicly available and, therefore, 
widely tested and benchmarked in many papers. 

In summary, Masek’s implementation extracts features 
from the polar representation of iris images by convolving 
them with the one-dimensional complex Log-Gabor filter, 
row by row. As in Daugman’s algorithm, the phase 
information at each pixel location is quantized into two bits of 
binary information. When we compare two different iris 
codes, the Hamming distance is calculated to find the 
similarity of these codes. 

In the feature encoding process, the only difference 
between Daugman’s algorithm and Masek’s algorithm is that 
Daugman uses a complex two-dimensional Gabor filter 
whereas Masek uses a complex 1D Log-Gabor filter. 

 
 

 

 
Fig. 6.  Top: ROC curves for iris images segmented by CMU-1 algorithm.
Bottom: ROC curves for iris images segmented by Masek’s algorithm 

B. Dataset 
We conducted our research on NIST Iris Challenge 

Evaluation (ICE) database [10]. The ICE database includes 
left and right eyes from test subjects. In our experiment we 
use the left-eye dataset, which contains 1528 images from 
120 different classes. The image size is 640×480, and these 
images are segmented and unwrapped so that the iris is 
represented in the  polar domain. 

From the left eyes in the ICE database, we created two iris 
datasets using two different segmentation algorithms. One 
algorithm is proposed by Masek [9]. His segmentation 
scheme assumes that the inner and outer boundary of the iris 
is a non-concentric circle. We also use another segmentation 
method proposed by [11], which we name CMU-1. 

For the dataset processed by Masek’s algorithm, we 
observed that the segmentation results of the 133 images are 
extremely inaccurate. Therefore, we excluded these images in 
our testing. We only used 1395 iris images out of the 1528 
ICE left-eye images (91.3%). For the dataset processed by 
CMU-1 algorithm, we used all the images as CMU 
segmented could handle all the images. The number of 
intra-class comparisons (authentic) is 12512 for the dataset 
created by Masek’s algorithm and 14653 for the dataset 
created by CMU-1 algorithm. The number of inter-class 
comparisons (imposter) is 959,803 for the dataset created by 



 
 

 

Masek’s algorithm and 1,151,975 for the dataset created by 
CMU-1 algorithm. 

As we discussed in the previous section, we created two 
types of masks to cover the occluded regions in the iris 
images in the polar domain. For the iris dataset created by 
Masek’s algorithm, we used masks created by his method. 
For the iris dataset created by CMU-1 algorithm, we used 
manually created masks. 

Given two datasets created by different segmentation 
algorithms, we created 6 sets of different features. For each 
dataset, we obtained features (iris codes) by encoding 1) 
original iris images, 2) iris images whose masked regions are 
replaced with the mean values of non-masked regions, and 3) 
iris images whose masked regions are replaced with the 
intensity values found by the image-filling algorithm. An 
example of these images is shown in Figure 4 (segmented by 
CMU-1 algorithm). The iris images shown in Figure 5 are 
encoded by our baseline algorithms.  

C. Results 
The Receiver Operating Characteristic curve (ROC curve) 

is shown in the Figure 6. For both top and bottom ROCs in 
Figure 6, we observed that using the dataset whose occluded 
regions are filled with our algorithm results in a lower False 
Reject Rate (FRR) or higher Verification Rate (VR), 
especially when the False Accept Rate (FAR) is required to 
be small. In Figure 6 top ROC, we can see that at a FAR of 
0.0001%, the FRR is reduced by more than 10% (VR is 
increased by 10%). In contrast, in Figure 6 bottom ROC, we 
observed that the FAR reduced slightly (1.5%). This is 
because the mask created by Masek’s algorithm is inaccurate, 
causing the image filling algorithm to replicate the incorrect 
iris sample patterns into the mask regions and use incorrect 
regions for matching. The results are also summarized in the 
Table 1. The example iris images whose noise regions are 
filled with the filling algorithm is in Figure 7 and Figure 8. In 
Figure 7, the iris images are segmented by CMU-1 algorithm 
and masks are created manually. In Figure 8, the iris images 
are segmented by Masek’s algorithm and masks are also 
generated by his algorithm.  

 
Table 1: False Reject Rate at False Acceptance Rate at 0%, 0.0001%, and 
0.001%. Original is a set of original iris images. Constant is a set of iris 

images whose noises are replaced with constant values (the mean value of 
non-masked region is chosen for each images).  

 FAR 
(%) 

Original  
FRR (%) 

Constant 
Filling  
FRR (%) 

Hallucinating 
Irises – FRR 
(%) 

Segmented 
by CMU-1 

0 16.56 7.04 5.83 
0.0001 7.7 6.77 4.7 
0.001 4.34 4.09 3.7 

Segmented    
by Masek 
algorithm 

0 8.45 7.4 6.99 
0.0001 8.45 7.4 6.99 
0.001 4.76 5.55 5.02 

 
 

V. CONCLUSIONS 
In this paper, we proposed a new approach to produce 

“hallucinated iris images” from partial occluded irises. We 
showed that the proposed algorithm can improve the 
performance of iris recognition by replacing occlusion 
regions with sample textures from a valid partial iris region. 
We can effectively reduce the effects of occlusion around 
masks and thus reduce the effects on the Gabor feature 
extraction around the boundary regions of the occlusions. 
Using the “Hallucinated Irises” generated in this paper and 
the results recorded suggest that other iris recognition 
algorithms with similar linear filtering approaches can also 
improve their performances by using the proposed algorithm. 

From the experimental results shown in section IV, a few 
observations are worth noting. First, when looking at the 
recognition performance for the data segmented by 
CMU-1algorithm, there is a significant improvement in the 
verification accuracy when our proposed algorithm is applied 
(10% gain at lowest FAR). 

Second, when we compared the results from the data 
generated by the two different segmentation schemes, we can 
see that our proposed method does not improve the 
verification rate too much in the case of Masek’s 
segmentation. The reason for this is stated in section IV-C. 
Therefore, our proposed algorithm shows its full power only 
when the occlusion masks are correctly identified to provide a 
substantial improvement, otherwise only a small 
improvement is observed. If the masks are incorrect, the 
image-filling algorithm may end up filling the images with 
noisy information, and using occlusion masks which are 
inaccurate will indubitably lead to a lower verification 
performance which might result in an even lower recognition 
rate. However, even in such circumstances, our proposed 
algorithm enhances the recognition rate, compared to filling 
the occluded region with a constant value. 

There is still significant room to improve our proposed 
algorithm. For example, in [4], the goal of image-filling is to 
remove some undesired object in the image and make the iris 
image look more natural. But in our case, the goal of 
image-filling is to enhance the recognition performance. 
Therefore, if we can use a different objective function in the 
candidate searching scheme, our proposed method may 
further enhance the recognition rate. 

Another key factor is the accuracy of the iris mask. As 
stated above, the accuracy of the iris mask has the greatest 
impact to the success of the proposed algorithm to produce 
occlusion free iris images. We should further investigate how 
to generate more accurate iris masks which cover all the 
occlusions in iris images. 
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(b) 

 

 

 

(c) 
Fig. 7: Set of iris images in polar domain (segmented by CMU-1 algorithm). 
For each set of three images, the first image is an original image, the second
image is a mask, and the third image is the “Hallucinated Iris” after the 
image-filling algorithm is applied. 
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(a) 

 

(b) 
Fig. 8: Set of iris images in polar domain (segmented by Masek’s algorithm). 
For each set of three images, the first image is an original image, the second 
image is a mask, and the third image is the resulting “Hallucinated Iris” after 
the image-filling algorithm is applied. In (a), we can see that the inaccurate 
mask causing the incorrect image filling results. 


