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ABSTRACT 
 
In real life scenario, we may be interested in face recognition for identification purpose when we only got sketch of the 
face images, for example, when police tries to identify criminals based on sketches of suspect, which is drawn by artists 
according to description of witnesses, what they have in hand is a sketch of suspects, and many real face image acquired 
from video surveillance. So far the state-of-the-art approach toward this problem tries to transform all real face images 
into sketches and perform recognition on sketch domain. In our approach we propose the opposite which is a better 
approach; we propose to generate a realistic face image from the composite sketch using a Hybrid subspace method and 
then build an illumination tolerant correlation filter which can recognize the person under different illumination 
variations. We show experimental results on our approach on the CMU PIE (Pose Illumination and Expression) 
database on the effectiveness of our novel approach. 
 
Keywords: face recognition, correlation filter, face-sketch hybrid subspace, pattern recognition, computer vision, 
security  

1. INTRODUCTION 
 
Automatic criminal identification and tracking is a very interesting topic in terms of both research and developing 
practical system that can be deployed in the field. In many criminal investigations there are usually one or two human 
witnesses that have caught a glimpse of the criminal or terrorist suspects and the police and government authorities must 
use this vital information as means to catch these suspects. In such cases, typically a professional police sketch artist 
will work and co-operate with the witnesses to develop and synthesize a police sketch of the suspect. This sketch is then 
distributed among police officers in efforts to look for the suspects at ports of entry or other locations. The quality of the 
reconstructed sketch is extremely important for the officers as they visually have to recognize and find the suspect. 
 
To summarize, we can describe the problem we want to solve as following: 

 Available training data: a collection of face images which are recording by video surveillance, hence, those face 
images may suffer from great illumination variation. 

 Probe image: a sketch of face, drawn by artist based on description of witnesses of crime scene. 
 Objective: identify who this person is based on the probe sketch and our database 

1.1. Previous work 
  
X. Tang and X. Wang have done fabulous work toward this sketch-face reconstruction and recognition problem1~4. 
They attack this problem by dividing the work into two phases: (1) Photo-to-Sketch Transformation (2) Recognition on 
sketch space. Since their approach is symmetric and reversible, one can also do the experiment the other way around, 
i.e: first transform the sketch image into real face image then perform recognition in face space.  

 
Following the standard eigenface approach5, they compute eigenvector matrix Up for face images and the eigenvector 
matrix Us for sketch images. For a new face image Pf, after subtracting the mean of all face images, one can easily 
project it into face eigenspace and get a coefficient bp for reconstruction in eigenface domain. Then they synthesize 
sketch of this face image by taking product of Us and bp, then adding the mean of all sketch image.  



For recognition, with each test face image, they first perform face-to-sketch transformation, described above, then they 
calculate the distance of the projection coefficients between the synthesized sketch image and each of sketch image in 
training data to identify which class this synthesized image belonged to. Of course, one can do the task the other way 
around, i.e, given a test sketch image, one can perform sketch-to-face transformation (which is similar to face-to-sketch 
transformation, just in reverse direction) first, then calculate the distance of the projection coefficients between the 
synthesized face image and each face image in training data. They compared these two approaches in their paper. 

2. METHODOLOGY 
 
We propose a new method to attack the problem. At first stage (Transformation Phase), unlike Tang and Wang’s 
approach, which performs eigenface method within two different spaces (face and sketch), we propose to combine the 
image vector from both face and sketch to form a hybrid space, and do eigenface analysis on this hybrid space. The 
eigenvector calculated from this hybrid space is supposed to capture the orthonormal basis vector across this hybrid 
space, which should reveal more information about interdependency between face image and corresponding sketch 
image. Theoretically speaking, our proposed hybrid method should perform not worse than Tang and Wang’s method 
and should outperform their result when our database is big enough. 
 
At second stage, instead of using distance-based classifiers, we propose to use an illumination tolerant, frequency-based 
technique, which has been tested and proved to be a very useful and powerful patter recognition technique6~8. It’s 
advanced correlation filter. Let’s divided our approaches into three stages: (1) Training Stage (2) Synthesis Stage and 
(3) Recognition Stage. We will explain more details in each stage in following sub-sections. 

2.1. Training Stage 
 
What we are trying to do in training stage is to build a model for both face and sketch images so that later in Synthesis 
Stage we can use these models to synthesize face image when we only have sketch image. In this stage, the data we 
have already is a collection of face images, perhaps recorded by video surveillance. In order to achieve our goal, we 
should (1) get a collection of sketch images, each of which is a sketch of one face image in our face database; (2) make 
use of some powerful machine learning technique to discover and preserve the statistical dependency between our face 
and sketch database, and save it as our model, which can be used in Synthesis Stage. 
 
For task (1), since we don’t have corresponding sketch image in our database, we use Adobe Photoshop 7.0 to manually 
transform each face image into their sketch counterpart. The function is in menu Filter -> Sketch -> Photocopy. We use 
exactly the same parameter when transforming each image to ensure the transformation process preserves the same 
information for each image. Examples of images of face-sketch pairs are shown in Fig 
1.

 
 
As for Task (2), Principle Component Analysis (PCA) or Eigenface approach has been widely used in face recognition 
problem9. Eigenface approach calculates and preserves the principle components (PCs) of data and these PCs can be 
used to reconstruct a new face image later. But now our problem contains two types of data which is implicitly 
interdependent with each other. How are we going to use eigenface method to deal with our problem? 
 
One naïve approach is to do eigen-analysis on face and sketch domain independently and get eigenface and eigensketch, 
respectively. When one probe sketch image comes in, get projection coefficients by projecting this sketch onto 
eigensketch space. Finally, by using these projection coefficients as weighting factors on eigenface domain, one can 
synthesize the original face image. This is the main approach of the work of Tang and Wang3. 

Figure 1: examples of face images and their sketch counterparts. 



 
Basically, this approach neglects the interdependency between eigenface and eigensketch during derivation, and later 
assumes there’s a strong dependency between eigenface and eigensketch by saying that they can share the same 
projection coefficients. In contrast with this approach, we argue that we should take into consideration the 
interdependency between eigenface and eigensketch during derivation so that derived eigenface and eigensketch 
maintain their correlation between each other. 
 
Suppose we have a set of real face image F1, F2, … Fm, and a set of sketch images S1, S2, … Sm, where Si is the sketch 
image of Fi. First we compute the mean of Fi and Si to get mF and mS, ie: mF = (F1 + F2 + … Fm)/m; 
mS=(S1+S2+…Sm)/m. Then we subtract the mean from each image to get Bi and Di, i.e: Bi=Fi-mF, Di=Si-mS 
 
Then we form a matrix Xh=[ P1, P2, … Pm] where Pi is a column vector derived from concatenating Bi and Di, i.e: we 
form a hybrid space by concatenating the variance of face space and sketch space. After that, we follow the standard 
method of eigenface method to derive the orthonormal eigenvector matrix of the covariance matrix W. In details: W= 
XhXh

T is the covariance matrix in hybrid space. We want to find the principle component of W in order to capture the 
direction of maximal variations. In general, direct computation of eigenvectors of W is not practical since the 
dimensionality of W is too large. But since sample images number is in general much smaller than the dimensionality, 
the rank of W is only m-1. So the eigenvector of the smaller matrix Xh

TXh can be computed as (Xh
TXh)Vh=VhDh , where 

Vh is the eigenvector matrix and Dh is the diagonal eigenvalue matrix. Multiplying both sides by Xh , we have  
(XhXh

T)XhVh = XhVhDh 
 

Figure 2: The comparison of eigenfaces derived from three difference spaces. The first row is the eigenfaces derived from 
hybrid space. The second row is the eigenfaces derived from face images only. The third row is the eigensketch derived 
from sketch images only. Note that while the pseudo-eigenface and pseudo-eigensketch images are highly correlated 
among the images at first row, the eigenfaces in second row are not correlated to the eigensketch in third row. Hence, 
calculating eigenface and eigensketch independently will not keep the corresponding information between each other, 
while calculating eigenface in hybrid space will. 



Therefore, the orthonormal eigenvector matrix of the covariance matrix W is Uh = XhVh
 

 

Note that this eigenvector matrix Uh is for hybrid space. If we plot each column of Uh into a 2D gray scale graph, one 
can see that it contains two images. We can treat it as the upper half image is a “pseudo-eigenvector” for face images 
(we can call it pseudo-eigenface) and the lower half image is a “pseudo-eigenvector” for sketch images (call it pseudo-
eigensketch). Examples of pseudo-eigenface and pseudo-eigensketch are shown in Fig 2. 
 
In Fig 2, we can notice an interesting and important fact that if we calculate eigenface and eigensketch independently 
from our database, the resulting eigenfaces are not correlated to resulting eigensketches. But by performing eigen-
analysis on hybrid subspace, we can clearly see that the upper half of each eigenvector is highly correlated with the 
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Figure 3: illustration of experimental procedure during training stage. 



lower half of it, which means our proposed method can capture the nonlinear mapping function between face and sketch 
images. 
 
Fig. 3 gives us a graphical illustration of our procedure in Training Stage. 
 

2.2. Synthesis Stage 
 
In this stage, the problem we want to solve is: given a probe sketch image, with pseudo-eigenface and pseudo-
eigensketch models at hand, how can we synthesize the original face image? 
 
One can easily think of the standard procedure in eigenface approach, i.e, project the sketch image on eigensketch 
subspace and get projection coefficients. But now what we have is “pseudo” eigenface and “pseudo” eigensketch. 
Pseudo-eigenface and Pseudo-eigensketch are not “real” eigenvectors by themselves. They are eigenvectors when being 
concatenated in hybrid space. Once we split the hybrid space into two parts, the orthogonality is destroyed. So we 
should not treat them as eigenvectors. 
 
Instead, we use “pseudo-inverse” least squares fitting technique to compute the projection coefficients since this method 
gives us projections with least-squared errors. After we have projection coefficients (PCs) of the probe sketch image, we 
use PCs on hybrid eigenvectors to synthesize a new image in hybrid subspace. This new image in hybrid subspace will 
consist of two parts. The lower half should be an approximation of the probe sketch image, and the upper half should be 
corresponding original face image. By keeping only the upper half of the image, we finish the process of face image 
synthesis. The steps we take in Synthesis Stage are illustrated in Fig. 4. 
 

2.3. Mathematical Justification of our approach 
 
We can justify our approach is better than previous work not only from experiment result, but also from insight derived 
from mathematical equations. Assume xf and xs denotes the face and sketch data, respectively. When performing eigen-
analysis on face domain, we are trying to find the projective direction ωf onto which xf has maximal variation. Hence, 
our objective function J(ωf) is: 
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Figure 4: illustration of experimental procedure during reconstruction phase. 
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where μf is the mean of the face data xf  and  Σf = E(xf –μf) (xf –μf)T 

 
So our objective is to maximize J(ωf) =ωf

 TΣfωf , subject to the constraint that ωf
 Tωf = 1. We can solve this problem by 

Lagrange Multiplier: 
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Take derivative with respect to ωf and set it to zero: 
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From here we can see that the the projective direction ωf we are looking for is indeed the eigenvectors of covariance 
matrix Σf  
 
Same argument applies to sketch domain. If Σs is the covariance matrix of sketch data, i.e:  
 

 
T
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After Lagrange Multiplier method, we have 
 

    ssss ωλω =Σ  (5) 
 

Now, let’s look at what we will get if we perform eigen-analysis on a hybrid subspace created from concatenating face 
and sketch data. Suppose xf and xs denotes the face and sketch data, respectively, as stated above. The vector in hybrid 
space is formed by: 
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Then our objective function J(ωh) will become 
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where Σh = E(xh –μh) (xh –μh)T , and μh is the mean of the hybrid data xh 
 
Substitute (6) into Σh and we will get 
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Where Σfs = E(xf –μf) (xs –μs)T ,  Σsf = E(xs –μs) (xf –μf)T 
 
Let ωsf and ωss denotes pseudo-eigenface and pseudo-eigensketch in our approach, respectively. In our approach, we 
calculate ωsf and ωss from decomposing the hybrid eigenmatrix ωh : 
 

 ⎥
⎦

⎤
⎢
⎣

⎡
=

ss

sf
h ω

ωω  (10) 

 
The relationship Σh between and ωh is: 
 
 hhhh ωλω =Σ  (11) 
 
Substitute Σh and ωh with (9) and (10) into (11) we will get: 
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 sfhssfssff   ωλωω =Σ+Σ  (13) 

 sshsfsfsss ωλωω =Σ+Σ  (14) 
 
By comparing equation (3) with (13), (5) with (14), we will get inside of the difference between our approach and Tang 
and Wang’s work. Equation (13) and (14) reveals there’re interdependencies between ωsf and ωss. If we calculate ωsf and 
ωss independently, like (3) and (5), we will lose this interdependency in our model, and the representative power of our 
model will be degraded. By equation (13) and (14), we claim our approach is a better approach and will outperform the 
previous work. 
 

2.4. Recognition Stage 
 
After we successfully synthesize the original face image of the probe sketch, we would like to do recognition to identify 
who this person is. Unlike previous work, which simply uses Euclidean distance to compare the distance between the 
synthesized face image and the face images in database, we propose to use a frequency-based, illumination tolerant 
technique, which is advanced correlation filters. 
 



 
 
Advanced correlation filters10 are advanced template-based classifiers that when correlated with an image result in a 
correlation plane. The correlation plane C measures the correlation between the filter and the image. Correlation of a 
class-specific filter with authentic and impostor data yield very different correlation planes. Fig. 5 demonstrates this 
difference. These advanced correlation filters optimize specific criteria to obtain sharp correlation peak outputs as 
shown below; this is very different from matched filters or normalized correlation approaches which are more common 
in the literature. 
 
To quantify the difference between the two types of correlation planes, we define a measure of recognition called Peak 
to Correlation Energy (PCE). This is a measure the sharpness of the largest peak in the correlation output with respect 
to the rest of the correlation plane.  
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The Minimum Average Correlation Energy (MACE) Filter11 is designed to minimize the average energy E in the 
correlation plane or Average Correlation Energy (ACE). In the filter design for h we also constrain the value of the 
correlation peak at the origin to be set to 1. Assuming that we have a matrix X which contains the 2D Fourier 
transforms of training images along the columns, we can write the linear constraints as follows: 
                       
 X+h=u           (16)  
 
To achieve peak sharpness we must then also minimize correlation plane energy, thus we compute the average power 
spectrum of the face image which is vectorized and placed on the diagonal of matrix D.  
Our goal is to minimize E which is defined as: 
 

 DhhE +=   (17) 
 
where + denotes the conjugate transpose. The constrained minimization of equation (17) results in the MACE filter 
hMACE. 

 ( ) uXDXXDhMACE
111 −−+−=  (18) 

 
where u is the constrained peak values (vector of ones).  
 
The Unconstrained MACE (UMACE) Filter12 removes the constraint on the peak value. By removing this constraint, 
we may be able to find a better solution to the energy minimization. Instead, we try to maximize the average value of 
the peaks or Average Correlation Height (ACH). The closed form solution to the UMACE filter hUMACE: 
 
 hUMACE  =  D -1m (19) 
 
where m is the average of the columns of X. 

Figure 5: Left: correlation plane of an authentic sample. Right: 
Correlation plane of an imposter sample 

 



 
We will consider generalizations of the MACE and UMACE filters called the Optimal Tradeoff Synthetic 
Discriminant Function (OTSDF) filter13 and the Unconstrained OTSDF (UOTSDF) filter respectively. These 
generalized filters offer sharp correlation peaks and some noise tolerance. Given a desired proportion of peak sharpness 
to noise tolerance, the filter designs hOTSDF and hUOTSDF are: 
   

 ( ) uXTXXThOTSDF
111 −−+−=  (20) 

 mThUOTSDF
1−=  (21) 

 
where T is defined as: 
 

 101 2 ≤≤−+= ααα givenCDT                 (22) 
 
where C is the assumed to be white noise power spectral density (so in this case C=I the identity matrix). In this paper 
we use OTSDF (alpha=0.99) throughout all the recognition experiments. 
 

3. DATA 
 
The database we used in our experiment is CMU-PIE database14. The PIE database consists two datasets which we will 
refer to as Light (images captured with ambient background lighting) and NoLight(images captured without any 
background lighting on). Light database contains the pictures which were taken under sufficient environmental lighting, 
so in general one can see clear face images in all pictures in Light database. NoLight database contains pictures taken in 
the harshest illumination conditions, so the face suffers with larger cast shadows making face recognition in NoLight 
database a much harder task than in the PIE Light database because of these harsh illumination variations. 
 
There are 65 people in both databases. In Light database, each person has 22 images; in NoLight, each person has 21 
images captured under different lighting variations. Total number of images in this database is 2795. CMU-PIE 
database has following characteristics: 

Figure 6: Examples of CMU-PIE-Light database. For each person there’re 22 images, each of which has different orientation 
of illumination. 

Figure 7: Examples of CMU-PIE-NoLight database. For each person there’re 21 images, each of which has different 
orientation of illumination. 



 Contains both male and female faces 
 Contains people from different race and color 
 Contains images of people with and without glasses. 
 Contains severe illumination variation across images of each person, as shown in Fig. 6 and 7. 

 
As one can imagine, due to the large variation in gender, skin colour, the presence or absence of eye-glasses, and 
illumination; this is a very challenging task to perform face recognition on this database. Examples of face and their 
sketch counterpart images are shown in Fig. 1. 
 
During the Training Stage, we selected two images with evenly distributed illumination (i.e. neutral frontal lighting) 
from every person, calculate eigenvectors in hybrid subspace. During recognition, we pick one sketch image, then 
synthesize the face image using algorithm described in Section 2.2. After building an OTSDF filter for this 
reconstructed face image, we use this filter to match all other images (all images except the two for training and the one 
for reconstruction). The rational for doing this is to simulate the real scenario when our system is applied in real life 
where the person we are looking for is walking under varying illumination causing their facial appearance to vary 
significantly due to lighting. The proposed method will allow us to match the reconstructed face images with those 
pictures taken from a surveillance camera. So we believe this experiment setting will yield results which are more 
strongly related with the one we would get in real world application.  
 

4. RESULTS 
 
In order to see the performance of the proposed method, we contrast it with 1NN classifier. Moreover, we also use 
different number of eigenfaces in Synthesis Stage to see if the proposed method degraded gracefully when the quality of 
synthesized images is getting worse. In addition, all the experiment results are based on the first rank, i.e: we only take 
the one with the highest score, both OTSDF and 1NN. Fig. 8 and 9 shows the result.  
 

 

5. CONCLUSION 
 
The experimental results obtained are very encouraging. When experimenting on PIE Light database, which is a 
relatively easier task, we can get 100% recognition rate with either the OTSDF or 1NN method. However, OTSDF can 
achieve 100% even when only 30% of eigenvectors are used, while the 1NN can only achieve recognition rate of 
87.69%. 
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Figure 8: Recognition rate on CMU-PIE-Light database Figure 9: Recognition rate on CMU-PIE-NoLight database 



When experimenting on the CMU PIE NoLight dataset, which is a much more challenging task, the OTSDF approach 
clearly outperformed 1NN in all experiments clearly showing its capabilities to perform illumination tolerant face 
recognition. From these experimental results, we can conclude that our proposed novel face synthesis from sketch 
approach coupled with advanced correlation filters for face recognition is a successful solution to this problem and is 
more feasible to work in real world system than the latest work proposed1~2. 
 

6. FUTURE WORK 
 
We plan to apply our approach on larger dataset, for example, FERET15 and the Notre Dame Face Recognition Grand 
Challenge16 to see the performance of our proposed method in large scale face database. 
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