OS Programming Project 2

Implementation of sys_sleep()
Due date：Check website
Turn in websit：http://selina.ice.ntnu.edu.tw
Files：proj2.zip
Turn in files；awkos_timer.c
 awkos_sched.h

You are supposed to turning the two files only. Please follow the direction of TA to turn in your files.
1. Introduction：

In this programming project, the provided files are an executable and simplified instructional operation system called Awk-linux. Unzip the file into one of your directory in a Linux or Cygwin.. To compile and make an executable, please enter the commands as follows:

gawk –f makekernel.awk test1.c test2.c

gcc -g -o awkos awklinuxos.c awkos_timer.c awkos_exec.c awkos_command.c awkos_sched.c
After the compilation is done, an executable called awkos is generated。 If you have installed make, a makefile is provided to save you from the trouble of keying these commands. Please refer to other resource for understanding the make tool.

To complete this project, you do not need to understand what is gawk and makekernel.awk, but you need to take a look at test1.c and test2.c first. The two programs are user programs which are supposed to be loaded and executed by the awk-Linux. When you run awkos, awkos runs the two programs in a context switch manner.

In test1.c and test2.c, the main program is a for loop to print a message and then sleep for n clock ticks. A clock tick is defined as when the timer interrupt handler is called. The timer interrupt handler is do_timer() in awkos_timer.c. When awkos is executed, do_timer() is called at some time interval repeatedly.

You should have noticed that awkos does not make test1.c and test2.c to sleep. This is because the implementation of sys_sleep() (in awkos_timer.c) is left empty. Please complete the implementation of sys_sleep() and recompile the Awk-Linux kernel awkos. If your implementation is correct, the output of awkos should be like
 This is 1111111

 >>>>> 2222

 This is 111111

 This is 111111

 This is 111111

 >>>>> 2222

 This is 111111
 This is 111111

 This is 111111

 >>>>> 2222

The output of test1.c is roughly 3 or 4 times than test2.c.
2. Linux Kernel Data Structures
1.1. Process Control Block

The concept of process is already introduced in the class and text book. You should have a clear understanding before working on this project. In Linux, the process control block (PCB) is defined in a data structure called task_struct in awk_sched.h. The real task_struct is much more complicated than the one in your files. You do not need to worry how Awk-Linux creates the PCB for test1.c and test2.c in this project.
1.2. Process Lists:
In Linux, when a program is loaded by OS and become a process, its PCB will be linked in a doubly linked list. This list is called process lists in Linux. The process list has a unique node called init_task. init_task cannot be removed from process list. Adjacent PCBs are linked by pointers next_task and prev_task. When awkos is started, there are four processes in the process list. The linked PCB is like in Fig. 1.
[image: image1.wmf]
Fig. 1 Process list.
To insert and remove a PCB into/from the process list, two C macros can be used.

SET_LINK(p)

REMOVE_LINKS

You can find these two macros in awkos_sched.h. Please note that, process list is not a ready queue. Any executed programs will be added to the process list. Each process has a process status, such as running, blocked, stopped, etc.

Fig. 2 describes a two-state scheduler. The provided kernel is exactly a two-state scheduler with a simple round-robin algorithm.
[image: image2.wmf]
[image: image3.wmf]
Fig. 2 A two-state scheduler.
There are only two states – ready or running, in the this scheduler。However, in Linux, there is no state called “ready” as in text book. In Linux, all the executable process is in a status called TASK_RUNNING (defined in awkos_sched.h). The process which has CPU is pointed by a variable called current (in awkos_sched.h). Linux uses another doubly linked list to link all the process with status TASK_RUNNING for form a ready queue. In task_struct, there is a field called run_list. run_list is a type of list (defined in awkos_list.h). run_list can be used to link the PCBs which have the same status. In Linux, the ready_queue is linked by a list head called runqueue_head (defined in awkos_sched.h) as in Fig. 3.
[image: image4.wmf]
Fig. 3 Use run_list to link processes with TASK_RUNNING.
There are C macros to manipulate run_list. These macros are defined in awkos_list.h.

You can use init_list_head() to create a doubly linked list head like runqueue_head. You can use list_add() or list_add_tail() to insert a PCB into arbitrary list. You can use list_del() to remove a list node. Note that next and pre of run_list point to the head of a list node, not the head of task_struct.

If you want to know the task_struct address from a list node address, macro list_entry() (in awkos_sched.c) can be used。list_entry() is used in schedule(), please learn to use this macro。
3. Function Description
There are some basic kernel functions you need to understand.。

· do_timer() (in awkos_timer.c)

do_timer is the timer interrupt handler in Linux。The do_timer() provided to you is very simple. When a clock tick occurs, it decreases a variable counter. If counter is zero, the current process has exhausted its time quantum and it calls schedule(), the scheduler. schedule() will determine a process and make context switch.
· schedule() (in awkos_sched.c)
The scheduler given to you is very simple. It finds one process from the runqueue_head list, which has the largest counter value. If all the processes in the runqueue_head all have counter=0, they are reset to begin another run. The last statement of schedule() is switch_to(). switch_to() is the context switch code. Variable current will be pointed to the new PCB. Anytime, when a process should be relinquished its CPU, call schedule() will do the rest for you.
You can begin thinking and implementing your sys_sleep()。
HINT：
To complete this project, you need to add a new process status called TASK_INTERRUPTIBLE and make the scheduler into one in Fig. 4. In Linux, TASK_INTERRUPTIBLE is the blocked state in your text book.
[image: image5.wmf]
Fig. 4 A three-state scheduler.
To make the scheduler into a three-state scheduler, you need to implement a wait queue in your new kernel, such as in Fig. 5. The wait queue is used to keep the processes that call sys_sleep().
[image: image6.wmf]
Fig. 5 Wait queue.。
You may need to modify task_struct to deal with this wait queue using the run_list fields in PCBs. You may also need to modify do_timer() in order to wake up processes that sleep for n clock ticks.
May force be with you.

~ Yoda，the Master
PAGE
5

