OS Programming Project 4
Implementation of semaphore system call
Due date：Check website
Turn in websit：http://selina.ice.ntnu.edu.tw
Files：proj4.zip
Turn in files: awkos_sem.h
 awkos_sem.c

1. Introduction：

To support semaphores introduced in your text book, Unix provides a set of system calls. In your last project, you have learn how to use P(s) and V(s) to synchronize three processes. As you may know it, the P() and V() provided in your last project are actually implemented by UNIX system calls – semget(), semop(), and semctl(). semget() is used to request a semaphore array from UNIX. semop() is used to increase or decrease the semaphore values. Finally, semctl() is used to access the information about semaphores.
The original UNIX semaphore system calls have a more complicated interfaces and functions. In this project, you will need to implement a simplified semaphore system calls. They are:
int sys_semget(int ipc_key, int init_val);
int sys_semop(int semid, int op);

The function of sys_semget() is to create one semaphore for the user programs. This function accepts two integers. The first integer is called ipc_key. When two user processes want to access the same semaphore, they need to have an agreement first. The agreement can be expressed by the ipc_key. So, if two user processes create the semaphore with same ipc_key, they mean to use the same semaphore. Kernel will create the semaphore for the process that calls first. As for the second caller, kernel will return the semaphore rather than creating it.

Please read the two user programs, test1.c and test2.c to understand how user programs use the sys_semget() and sys_semop() to synchronize each other.
The function of sys_semget() is as follows: When it is called, it searches any existing semaphore with the ipc_key. If one semaphore has the ipc_key, sys_semget() simply returns its semaphore id. If not, a new semaphore is created and initialized by the init_val. The new semaphore id is returned.

sys_semop() is used to increase or decrease the semaphore value. sys_semop(semid,-1) is equal to P(semid). and sys_semop(semid,1) is equal to V(semid). If a semaphore’s value is smaller than 0, a call to sys_semop(semid,-1) will block the user process. You need to remove the user process from runqueue and link its PCB to a wait queue of the semaphore and then call schedule() to select a process to run next.
On the other hand, if op = 1 and semaphore value is less than 0, you need to wake up a process from the semaphore’s wait queue based on FIFO order.

To simplify your problem, please assume the value of op can only be 1 or -1. When succeeds, return 0. When failed, return -1.
2. File Description
The files provided by this project are very similar to the second programming project (sys_sleep). The details about Linux PCB and data structure, please read the handout of the second project again.

In awkos_sem.c, two system call templates is left empty for you to implement。

3. Implementation Guidelines
In sem.h, a semaphore data structure sem_struct is already defined for you. You can modify it for your own need. In sem.h, an semarray is declared using sem_struct. In this array, if used = 0, this semaphore element is not used by any processes. If used=1, this semaphore is created and owned by more than one process. The array index is the semaphore id.

When sys_semget() is called, please search if the given ipc_key is equal to any used semaphore. If yes, return sem_struct’s array index. If not, please find a unused sem_struct to create a new semaphore.

In sem_struct, an important field is list_head and semqueue_head. It is used to link the process’s task_struct for the semaphore’s wait queue. For example, suppose process_list has four processes, as in Fig. 1. When test1.c call sys_semop(semid,-1), sys_semop() should call list_del(&(current->run_list)) to have test1’s task_struct removed from runqueue_list. Next, list_add_tail(&(current->run_list), &semqueue_head) is called to add test1 to the wait queue list led by semqueue_head, as in Fig. 2.
[image: image1.wmf]
Fig. 1
[image: image2.wmf]
Fig. 2 Use semqueue_head to link the blocking process.
After finishing the task above, sys_semop should call schedule() to schedule a process to run next.

Assume later that test2 call sys_semop(semid,-1) and blocks on the semaphore, Fig. 2 will be changed into Fig. 3.
[image: image3.wmf]
Fig. 3
4. Correct Ouput
 There are two user programs - test1.c test2.c. If your implementation is correct, the output of awkos should be:
1111111

222222

1111111

222222

1111111

222222

……….
5. NOTES
You should test your implementation thoroughly. TA will prepare other user programs to test your implementation.
PAGE
4

