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ABSTRACT
Automated finite-state verification techniques have matured con-
siderably in the past several years, but state-space explosion re-
mains an obstacle to their use. Theoretical lower bounds on com-
plexity imply that all of the techniques that have been developed to
avoid or mitigate state-space explosion depend on models that are
“well-formed” in some way, and will usually fail for other models.
This further implies that, when analysis is applied to models de-
rived from designs or implementations of actual software systems,
a model of the system “as built” is unlikely to be suitable for auto-
mated analysis. In particular, compositional, hierarchical analysis
(where state-space explosion is avoided by simplifying models of
subsystems at several levels of abstraction) depend on the modular
structure of the model to be analyzed. We describe how as-built
finite-state models can be refactored for compositional state-space
analysis, applying a series of transformations to produce an equiv-
alent model whose structure exhibits suitable modularity. The pro-
cess is supported by a parser which can parse a subset of Promela
syntax and transform Promela code into refactored state graphs.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verification -
formal methods, model checking.

General Terms
Algorithms, Design, Theory, Verification.
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1. INTRODUCTION
Although automated finite-state verification techniques and tools

have matured considerably in the past several years, they are still
fundamentally limited by the well-known state space explosion prob-
lem. A variety of techniques have been developed to mitigate space-
space explosion. Nonetheless, approaches to increasing the size of
system that can be accommodated in a single analysis step must
eventually be combined with effective compositional techniques[14,
3, 7] that divide a large system into smaller subsystems, analyze
each subsystem, and combine the results of these analyses to verify
the full system.

In practice, compositional techniques are inapplicable to many
systems (particularly large and complex ones) because their as-
built structures may not be suitable for compositional analysis. A
structure suitable for compositional analysis must contain loosely
coupled components so that every component can be replaced by
a simple interface process in the incremental analysis. Moreover,
composing the processes and deriving the interface process must
be tractable. Otherwise, we need to recursively divide the compo-
nent into smaller loosely coupled components until every subsys-
tem in the composition hierarchy can be analyzed. However, an
ideal structure seldom exists in practice. Designers often structure
their systems to meet other requirements with higher priority. It is
impractical to ask designers to structure a design in the beginning
for the purpose of verifying correctness.

If it is difficult to prove the correctness of a program as origi-
nally designed, one may need to prove the correctness of a trans-
formed, equivalent version of the program. This is a notion known
as program transformation, which has been widely studied in the
area of functional and logic languages. Here, we apply the idea to
transform finite-state models to aid automated finite-state verifica-
tion. In general, the purpose of our transformations is for obtain-
ing, starting from a model

�
, a semantically equivalent one, which

is “more amenable to compositional analysis” than
�

. It consists
in building a sequence of equivalent models, each obtained by the
preceding ones by means of the application of a rule. The rules
restructure as-built structures which are not suitable for composi-
tional techniques. The goal is to obtain a transformed model whose
structure contains loosely coupled components, where processes in



each component can be composed without excessive state explo-
sion. We refer to the process as refactoring.

The general approach to refactoring and some refactoring trans-
formations were first described in [2] conceptually with an exam-
ple (without explicit algorithms of transformations). That work de-
scribes the application of refactoring to construct network invari-
ants for systems with parameterized behaviors, where those sys-
tems are originally inapplicable to inductive verification. However,
the transformations described in [2] were derived on an ad hoc ba-
sis. They are unlikely to be automated and applicable for general
systems. Here we propose a unified approach to accommodate pre-
vious ad hoc transformations, extend refactoring to larger class of
systems, provide automated tool support, and focus on the major
application of refactoring – compositional analysis. We report upon
a case study involving the Chiron user interface system, comparing
analysis performance with results previously reported by Young et
al. [16] and Avrunin et al [1].

In past decades, many approaches have been proposed to address
the state explosion problem, such as minimizing overall state space,
enumerating states implicitly, or abstracting and compacting mod-
els. Unlike those approaches which seek improvement in the funda-
mental techniques, our approach aims for avoiding state explosion
at the level of system structure in a compositional fashion.

This paper is organized as follows. In Section 2, we describe the
relation between architecture and composition analysis. In Section
3, we give an overview of refactoring. In Section 4, we introduce
the refactoring transformations with simple examples. In Section 5,
our tool support for compositional techniques is described. In Sec-
tion 6, we show the results of applying refactoring to two examples.
Finally, we end the paper with related work and conclusions.

2. SYSTEM ARCHITECTURE AND COM-
POSITIONAL ANALYSIS

When applying compositional techniques to a system, we must
divide a system into several subsystems where these subsystems
form a hierarchy. Using that hierarchy, we compose processes in
a subsystem and replace it by a simpler process which represents
the external behaviors of the subsystem (often called an interface
process1). This process works from the bottom of the hierarchy
to the top, until whole system is analyzed. Ideally, state explosion
can be avoided in this divide and conquer manner but in practice,
compositional analysis often yields no savings in analysis effort.
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Figure 1: The communication structure of an example system.

Consider an example subsystem in Fig. 1 which consists of pro-
cesses �������	�
���
� and ��� , where ���	�����
� and ��� have identical be-
haviors and � is parameterized by the number of � . In Fig. 2, we
show Promela [8] code and state graphs of process � and ��� . The
state graphs are of CCS semantics[12], in which processes com-

1The interface process can be automatically computed from mini-
mizing or abstracting the subsystem state space.

municate by two-way rendezvous. Note that in CCS, paired com-
munications are denoted by � and �� , but we use � and ��� instead.
In the example, process � iteratively reads an ��� from channel ���
(where ��� is sent by some process which is not in the subsystem)
and then uses ��� to do a sequence of synchronizations with process��� indexed by ��� . Process ��� , after activated by ��� tries to send
a message �
��� via a lossy channel �! #" and then return. The �
���
message is sent to some process which is not in this subsystem.
The internal action $ in ��� ’s CCS state graph is to emulate losing
message.

mtype = { id1, id2, id3, 
start, wait, finish }  
chan ch1 = [0] of {mtype} ;
chan ch2 = [0] of {mtype} ;
chan ch3 = [0] of {mtype} ;
chan in = [0] of {mtype} ;
chan out = [0] of {mtype} ;

proctype  R () {
mtype id ;
mtype waitmsg ;
do
:: in?id -> 
      if 
      :: id == id1-> ch1 !start ; ch1?
waitmsg ; ch1 ! finish ;
      :: id == id2-> ch2 !start ; ch2?
waitmsg;  ch2 ! finish ;
      :: id == id3 ->ch3 !start;  ch3?
waitmsg;  ch3 ! finish ;
      fi
od
}

proctype  S1() {
mtype startmsg, finishmsg;
do 
:: ch1?startmsg; 
   if 
   :: true -> skip ; 
   :: true -> out! ack ;
   fi
   ch1! wait; 
   ch1? finishmsg ;
od
}
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Figure 2: Example process R and S1.

Suppose we want to compose (R|S1|S2|S3) in one step. Let a={-
in_id1, -in_id2, -in_id3, out_ack} be the set of ports we must ex-
port2 in the composition. The number of states and transitions gen-
erated by parallel composition of (R|S1|S2|S3) is 13 states and 18
transitions (see Table 1). After minimized by weak bisimulation,
the size becomes 3 states/5 transitions.3 For larger systems, paral-
lel composition with many processes in one step may suffer state
explosion. So, we may try to divide the system and analyze it com-
positionally. Here, there are few choices to divide the example sys-
tem. We show three possible subsystems in Table 1, where b =
{ch2_start, -ch2_wait, ch2_finish} and c = {ch3_start,-ch3_wait,
ch3_finish}. Unfortunately, all the subsystems produce state space
nearly large as or larger than (R|S1|S2|S3). Furthermore, minimiza-
tions such as weak bisimulation are much less effective on the state
space of these subsystems. Compositional techniques have no merit
in this case and sometimes they can even produce worse results [7].
This explains why compositional analysis is thought as a promis-
ing approach for combating state explosion but has not yet been
widely adopted. In a structure like Fig. 1, no effective subsystems
or composition hierarchy can be drawn.
2The meaning of exporting ports and restriction operation in CCS
are contrary to each other. If a port is exported, it is not restricted
in CCS, and vice versa.
3The results in Table 1 are computed by Fc2tool[11]
.



Table 1: The state space sizes for different subsystems%�&('	)�*
+�%-,'	)
*�+�. ./+�0�+�%-.�1+�*20435. 687 3 79687;: %�,
(R | S1 | S2 | S3) 0 13/18 3/5
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Figure 3: The new structure of refactored example system.

We say a subsystem is loosely coupled to its environment if
its interface process contains simple and small state space. So,
in a tractable hierarchy, every subsystem must possess such prop-
erty. Unfortunately, the as-built architectures of many systems do
not have this property. In this paper, we propose an approach
called refactoring to transform a system from an architecture to an-
other with equivalent behavior. For example, refactoring can trans-
form the architecture in Fig. 1 into Fig. 3 by decomposing R into
RS1,RS2, and RS3. The behaviors highlighted by shaded region in
Fig. 2 are wrapped into a new process RS1 and the rest is done for
RS2 and RS3 in similar manner. In the transformation, refactoring
creates new synchronizations such as “-lock” and “-release” to pre-
serve behavioral equivalence and redirects some synchronizations
to the new processes. For example, “-in_id1” is redirected to RS1.
In next sections, we will explain the transformations in more detail.

The refactored, new structure of the example system has some
good properties which the original structure does not have. For
instance, the highlighted region in Fig. 3 becomes tightly coupled
inside but loosely coupled outside. The state-space size of (S1|RS1)
is only 6 states/7 transitions (see last row of Table 1, where d={-
in_id1, out_ack, release}).4 Besides, the behaviors of the subsys-
tem can be minimized more effectively because more rendezvous
can be hidden inside the subsystem.

3. AN OVERVIEW OF REFACTORING
To refactor a process, the steps are to decompose its behaviors,

make decomposed behaviors into new processes, and redirect com-
munications to the new processes. In the meantime, behavioral
equivalence must be preserved.

To explain how refactoring preserves behavioral equivalence, we

4The difference of size is not so significant in the example, because
it is a very small system. For real applications, the difference can
be enormous.
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Figure 4: Process P which iteratively invokes in_idi,i=1 to 3.
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Figure 5: The refactored R,P and the new process RS1.

introduce another process P into the example system. P’s behavior
is shown in Fig. 4, which invokes in_id1, in_id2, or in_id3 itera-
tively and nondeterministically. When R is refactored, the shaded
region s1 in Fig. 2 is removed from R and wrapped into a new pro-
cess RS1. The refactored behaviors and structure are shown in Fig.
5, where behaviors related to S2 and S3 are wrapped into RS2 and
RS3 in similar manner but are not shown in the figure. After refac-
toring, R becomes a process containing two new synchronizations
-lock and -release. In P, the action labeled in_id1 is now replaced
by two actions (lock.in_id1) and in_id1 is redirected to RS1. In
RS1, at the end of ch1_finish, a release is added to signal R the end
of an execution cycle in RS1.

In principle, the composite behaviors of P,R, and RS1 must pre-
cisely simulate the behaviors of P and R. Let’s consider several
cases which could happen before refactoring: Suppose P invokes
in_id1 and returns. If P wants to invoke another in_idi (i=1 to 3),
P must wait until R finishes its sequence of synchronizations with
S1. So, after refactoring, every in_idi (i=1 to 3) in P is guarded
by a new synchronization lock. With lock, the new P is not able to
invoke in_id1 (i=1 to 3) continuously. Only after lock is granted,
new P can invoke in_id1, which is now redirected to RS1. In other
words, R’s new behavior is like a binary semaphore. It makes sure
only one in_idi (i=1 to 3) in RSi is invoked at any time. Thus, the
purpose of release is obvious. It is used by RS1 to notify R that RS1
has finished its execution cycle. R must be released to allow P to
invoke another in_idi (i=1 to 3).

Mathematically, a behavioral equivalence is needed to justify
the transformation. We resort to an equivalence that relates ex-
ternal behaviors of subsystems using weak bisimulation. For in-
stance, we view original (P||R) as a subsystem because it is changed
by the transformation. So, its interfaces are {chi_start, -chi_wait,
chi_finish}, i=1 to 3. Communications like in_idi, i =1 to 3, be-
come internal actions of the subsystem and therefore should be re-
stricted. After refactoring, (P|R) becomes (P|R|RS1|RS2|RS3). The
external interfaces remain the same. The newly added synchro-



nizations, lock and release, are internal to the subsystem, therefore,
should be restricted. So, in this example, the behavioral equiva-
lence before and after the transformation can be formally expressed
as C �ED �>FHGJI(��� _ ���K������LM�A"/�J�ON8PC �ED � D �>��� D �8�A� D �>���OFQGJI4��� _ ���K���-�QLR��"/���
�-SUT(VWT4�5X4TO�/V;�!���#NK�
where “ G ” is the restriction operator and “ P ” is the weak bisim-
ulation of CCS. This equivalence can be checked by tools if the
correctness of transformations is ever doubted.

As present, we borrow weak bisimulation to justify the correct-
ness of our transformations because it is well-known and supported
by several verification tools. Nonetheless, weak bisimulation is not
capable of relating two systems for some properties, such as live-
ness. So, we are working on a new equivalence relation which can
precisely relate two systems before and after refactoring. In princi-
ple, refactoring does not lose properties like liveness.

Some readers may interest in knowing why we favor CCS over
CSP in refactoring. We use the example to explain. It is known that
CSP rendezvous is of multi-way rendezvous semantics, which can
be formally described as:�ZY[ �8\ �-] Y[ ] \�ED^D ] Y[ � \ D^D ] \`_
Suppose there is a process waiting to synchronize with � , it must
wait for all other processes which can invoke � . The number of
processes participating in the rendezvous may be greater than two.

On the other hand, CCS rendezvous is of two-way rendezvous
semantics, which can be formally described as

� Y[ � \ �-]baY[ ] \�ED ]dc[ � \ D ] \e_
So, in CCS, if two processes with � want to rendezvous with a
communication �� at the same time, the two processes compete for
it. Because of this competition style of rendezvous, R can be as
simple as that in Fig. 5. That is, the behavior of R is indepen-
dent of other processes. However, in CSP semantics, if we want
to have processes compete for some resources, we must introduce
more communications to do so. If we adopt CSP semantics, R’s
behavior must be like Fig. 6(A). Its connection structure is shown
in Fig. 6(B). The connections between R and other processes, un-
fortunately, grow as the number of Si grows. The structure is not as
effective for utilizing compositional techniques compared with the
one of CCS semantics. In addiction, the structure is inapplicable to
inductive verification in [2].

4. REFACTORING TRANSFORMATIONS AND
TOOL SUPPORT

To automate refactoring, we adopt Promela as our front-end lan-
guage and add refactoring commands to its syntax. Promela is a
popular design language due to the popularity of SPIN. We select a
subset of Promela’s syntax (e.g., excluding executable commands
like printf()) and add some keywords for refactoring. The syntax
is called rc-Promela, where “r” stands for “refactoring” and “c”
stands for “ccs.” We build a parser in rc-Promela syntax to gen-
erate CCS state graphs for Promela codes. At present, these CCS
state graphs are used as input for Fc2tool[11]. Fc2tool is a tool-
suite which can explicitly or implicitly explore state space under
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Figure 6: (A) The behavior of R if refactoring adopts CSP se-
mantics. (B) The structure of example system if refactoring
adopts CSP semantics.

CCS semantics. It also provides tools for minimizing and com-
paring state graphs by weak bisimulation, branch bisimulation, or
strong bisimulation.

4.1 rc-Promela and segments
When rc-Promela parser is executed, it first creates an abstract

syntax tree (AST) for the Promela code. Next, we have an algo-
rithm traverse the AST to generate CCS states and transitions re-
peatedly starting from an initial state. In the cases without refactor-
ing, when we reach statement “in?id,” the possible values of vari-
able id are “symbolically expanded” to produce three transitions
with labels “in_id1”, “in_id2”, and “in_id3” and three new states.
The new states are put into a queue which saves the unexplored
new states. Next, from each new state, one symbolically expanded
value of id is used to traverse AST. The traversal continues until no
more new states are generated and the queue is empty. The CCS
state graph in Fig. 2 is so generated from its Promela code in the
left.

To activate refactoring, users can use command “refactorby {
}” to enclose a block of codes. For example, we can refactor R by
enclosing its Promela codes as follows:

proctype R() {
mtype id ;
mtype waitmsg ;
refactorby id {
do
:: in?id ->

if
::id ==id1->ch1!start;

ch1?waitmsg;ch1!finish ;
::id ==id2->ch2!start;

ch2?waitmsg;ch2!finish ;
::id ==id3->ch3!start;

ch3?waitmsg;ch3!finish ;
fi

od
}

}

We call the enclosed block as r-block. The codes inside an r-block
often begin with a statement which creates branches of control flow,
such as do block followed by a “in?id” in this example or if state-
ment. Decomposing behaviors at these locations often creates use-
ful segments (defined later) for compositional analysis.

When AST traversal algorithm enters an r-block, the way of gen-
erating CCS state graphs is changed. It begins to generate CCS



state graphs in segments. A segment is defined as the states and
transitions generated by one pass of an r-block via the AST traver-
sal algorithm. For the example above, starting from the first state-
ment of r-block, which is “in?id,” we use id1, one of the symboli-
cally expanded values of id, to traverse the r-block in one pass and
we obtain a segment in Fig. 7.

-in_id1 ch1_start -ch1_wait ch1_finish

Figure 7: Segment X4T�f _ ���B� .
We call this segment Seg_id1. If we use other symbolically ex-

panded values, id2 and id3 to traverse the r-block in one pass,
two similar segments Seg_id2 and Seg_id3 are generated for this
r-block. We call the first transition of a segment as guard.

4.2 Grouping segments
Once segments are generated, the next step is to divide the seg-

ments into groups and wrap each group in a new process. For pro-
cess R, we already know Seg_id1, Seg_id2, and Seg_id3 are di-
vided into 3 groups and each is made into a new process (see RS1
in Fig. 5). The grouping options are specified by the list behind
the keyword refactorby. In this example, command refactorby is
followed by a variable name id, which instructs the refactoring al-
gorithm to group segments by every possible values of variable id
(or conversely, divide the segments into groups by the values of id).
For example, segments whose transition labels contain id1 (which
is symbolically expanded from id) are grouped together. Process R
shows the simplest case of refactoring – one segment in one group.
Section 3 already shows how it is transformed. In practice, pro-
cess’s behaviors can be more complicated. After grouping, one
group may contain more than one segment. A unified transforma-
tion (see section 4.3) is derived to deal with such general cases.

We call the list behind keyword refactorby as grouping options.
Since the segments in a group will be wrapped in a new process,
the options decide the number of new processes to be created by
refactoring. One mostly used grouping option is variable names
like “refactorby var1, var2.” This option first divides the segments
into groups using all possible values of var1 and next divides these
groups again using all possible values of var2. Sometimes, for sys-
tems such as those in section 6 we need to use channel name and
a variable name to divide the segments. The refactoring command
is like “refactorby ch, var,” where ch is a channel name and var
is a variable name. This option first divides the segments into two
groups, one containing segments with ch in their edge label and
none in the other group. Next, refactoring uses all possible values
of var to divide the two groups into smaller groups.

To allow flexible refactoring decisions to be made, the grouping
options can be specified as expression, such as “refactorby ch1
and id == id1, waitmsg.” However, in practical applications we
have encountered, most behavior patterns of processes are regular
or patterned. So far, complicated options like that have never been
used practically.

4.3 The unified decomposition transformation

In practice, behavior patterns to be refactored are often compli-
cated by parameterization and the presence of data values. A vari-
able with a finite range is typically "unrolled" in finite state verifi-
cation, i.e., each state X in a process may be replaced by X _ � , X _ � ,

... X _ � for the � possible values of the variable (or the cross product
of multiple variable values). On these states, same request may be
responded differently. In Fig. 8, we introduce another process RR.
RR receives an index from channel in and uses the index to address
an element in array cv. Next, RR output the value of the element
and flip the element’s value.

-in_0

out_zero

-in_0

out_one

-in_1

-in_1
(0,0)

(0,1)(1,0)

(1,1)

mtype = { zero, one }
proctype RR() {
  bit id ;
  bit cv[2] ;
  refactorby id { 
  do 
  :: in?id ->
      if 
      :: (cv[id] == 0) ->
          out ! zero ;
          cv[id] = 1 ;
      :: (cv[id] == 1) ->
          out ! one ;
          cv[id] = 0 ;
      fi
  od
  }
}

out_zero

-in_1

out_zeroout_one

-in_0

out_zero

-in_0

out_one

-in_1

out_one

RR

Figure 8: The Promela code and state graph of process RR.

When we begin traversing the Promela code to generate state
graph, the initial state is set as a product of ( �2g?h i!j��-�
g?h^�
j ), which
is initialized as (0,0). The easiest way to represent a state is using
the product of all variables plus an address of current statement.
There are three variables �
g?h i!j��-�2g?hk�2j�� and ��� in this example but
id can be excluded from the product because including it in the
product is irrelevant for producing state graph. Whether a variable
is relevant for producing state graph are checked statically by data
flow analysis, but here we ignore the implementation details.5Also,
in the figure, the address information in the product is omitted.

The state graph in Fig. 8 shows that when id=0 is received from
channel in at first time, RR outputs “zero” and enters a new state
(1,0). Next time, when id=0 is received, RR outputs “one” and
returns to (0,0). So, when you send RR a zero, the outputs may vary
depending on the state of �2g?h i!j ; that is, RR is a stateful process.

Suppose refactoring is activated. Using id=0, we begin the traver-
sal of r-block. At the end of r-block, we produces a segment Seg0
in Fig. 9. Let the traversal continue from a new state (1,0). We re-

-in_0 out_zero

Figure 9: Segment ��T�fli .
turn to the beginning of r-block and use id=0 again to traverse the
r-block. Another segment Seg1 in Fig. 10 is produced. Suppose
the grouping option is “refactorby id.” The two segments belong
to the same group.

-in_0 out_one

Figure 10: Segment ��T�f?� .
5The data flow analysis is also used to decide which variable should
be represented by a value process, which will be described later.



Consider wrapping Seg0 and Seg1 into a new process, say RRS0,
and redirecting action in_0 to it. One problem arises – should we
redirect to Seg0 or Seg1? We know it is determined by �2g?h i!j . To
assist RRS0 making the choice, we introduce a new process called
Value Process ( m � ). We use m � C glF to denote the value process of
a variable g . In Fig. 11 we show the value process of the variable�
g?h i!j .

Constructing a m � C glF for a variable g is straightforward. If there
are � possible values of variable g , create � states to represent each
value. At each state, add a transition which returns to itself labeled
“-v==#,” where # is the value of the state. Between states, if g
can change its value from � to n , add a transition labeled “-v:=j”
between state � and state n . Next, search in segments the places
where g is updated and insert an edge labeled “v:=#,” where # is
the new value v is changed to. As of this example, we append
“ �2g?h i!jQo LM� ” to segment Seg0 and “ �2g?h i!jpo Lqi ” to segment Seg1.

-cv[0]==0

-cv[0]==1

-cv[0]:=1 -cv[0]:=0

VP(cv[0])

Figure 11: The value process of �
g?h i!j
Once m � C �2g?h i!j;F is constructed, we place Seg0 and Seg1 together

to create a new process RRS0 (see Fig. 12). In the beginning,
RRS0 must be enabled by a new synchronization “-startRRS0.”
This synchronization is to prevent RRS0 from rendezvousing withm � C �2g?h i(jWF privately. Next, either “ �2g?h i!j�L>LRi ” or “ �2g?h i!j�L>Lr� ”
is enabled by m � C �2g?h i(jWF to activate the correct segment. At the
end of segment, S	T(VWT4�#X4T is used to release RR. Note that inside the
caller of (in_0), every (in_0) is now replaced by (lock s startRRS0 s in_0).

-in_0 -in_0

out_zero

cv[0]]:=0cv[0]:=1

cv[0]==0 cv[0]==1

release release

-startRRs1

release

-startRRs1
CV[0]:=0

CV[0]:=1

CV[0]==1

CV[0]==0

RR

VP(CV[0])

RRS0

caller

-in_0

in_0

is replaced by 

in_0lock

startRRs1 out_one

out_zero out_one

Figure 12: The state graph and interface of �t�>��� .
In Algorithm 1, we list the algorithm of this unified transforma-

tion. The algorithm has other variants to deal with different kinds
of guard in segments, such as $ or else. These variants are not listed
in this paper.

Without loss of generality, we assume there is only one state vari-
able g which has � possible values. So, there are � self-loop transi-
tions labeled “-v==i” in m � C glF . The algorithm assumes there are� segment to be wrapped into a new process. Let the segments be
collected in a set u and each segment u�v is activated by transition

“v==i.” Let � be the guards of segments in u . The algorithm also
assume transitions labeled “v:=i” have been inserted properly. The
algorithm is quite straightforward. Its complexity is w C�x F , wherex

is the number of segments.

Algorithm 1 The unified decomposition transformation

UnifiedDecomposition( u , � )
begin
Construct m � C glF for segment in u .
Create an empty state graph y with an initial state X(z .
Add transition {�X z ���|X2"/�
S("}y��-XU~�� to y
for each segment u v in u do {

copy u�v to y .
add transition {�XO~2��g�L>L����l" v � to y , where " v is the initial

state of segment u�v .
for every exited state X(� of u v do

add transition {�X � ��SUT(VWT4�5X4TO�-X4z4� to y .
}
update other processes whose edges labeled �	�l�
into V;�	�2� _ X2"/�
S("}y _ � .

end.

4.4 Simplifying state graphs
Although the processes in Fig. 12 look more complicated than

the original, most synchronizations are internal between �8�>��i andm � C �2g?h i!j;F . This seemingly complicated synchronizations can be
easily conquered by grouping them into subsystems. Fortunately,
for many cases, we can transform them into a more compact form.
For example, it is not difficult to determine that segments ��T�fli and��T�f?� are activated one after another regularly in a loop. Using this
observation, we can delete m � C �2g?h i!j;F and reduce RRS0 into RRS0’
of Fig. 13.

-in_0

-in_0

out_zero

release

release

release

RR

RRS0'

-in_0

out_one

out_zero

out_one

Figure 13: The simplified �t�>��i

Seg0 Seg1

Figure 14: The directed graph of Seg0 and Seg1.

To simplify a new process in this way we need to know whether
segments activate other segments in a regular and predictable way.
The algorithm is listed in Algorithm 2. The algorithm attempts
to construct a directed graph representing the activation relations
among segments. Let each node represent a segment. If only a di-
rected edge is established from a segment � to a segment � , it means



segment � is activated for next time after segment � is executed. If
there are more than one outgoing edges from � to other segments,
it means one of those segments can be activated for next time. So,
the directed graph of Seg0 and Seg1 can be constructed as Fig. 14.
From Seg0 to Seg1 there is exactly one directed edge and vice versa.
It means that Seg0 and Seg1 activate each other in a deterministic
way and looped like the directed graph in Fig. 14. That is, they are
eligible for simplification.

Let u be the set of segment from which the new process is con-
structed and

D u D L�� . Let each segment u v is activated by the
transition labeled “v==i.” Again, without loss of generality, we
assume there is only one control variable g which have � possi-
ble values and each value � can activate segment u v . Let

� SUT C X(F
be the set of edges that start from some states and end at X . Let��S!� C T!F be a function which returns the source state of an edge T .
Let �>�B��"�T4� C ��F be the set of exited states of segment � .

Given a segment u v , we use data flow analysis (procedure Com-
puteGotoSet) to compute the set of segments that could possibly be
activated by u v at every exited states. If a segment u v can activate
a segment uH� , we add a directed edge between node u�v and uH� .
Initially, a segment activates itself. So, if g is not updated in the
segment, there is at least one outgoing edge back to itself. Once
the directed graph is constructed, we check if every node has ex-
actly one outgoing edge. If not, the segments in u are not suitable
for the simplification. If yes, we follow the directed graph � to
connect the segments into a new process. The algorithm has a low-
order polynomial complexity. For the procedure ComputeGotoSet,
provided the number of edges into each state is bounded by a con-
stant, the worst-case complexity is w C �A�4F , where � is the number
of states in a segment. So, the worst-case complexity of Algorithm
2 is w C�x �A�(F , where

x
is the number of segments.

Note that Algorithm 2 is always used to check segments first.
If they are eligible for simplification, follow its directed graph to
connect segments. If not, Algorithm 1 is used to wrap them into a
new process.

5. TOOL SUPPORT FOR COMPOSITIONAL
ANALYSIS

To facilitate compositional analysis, we build a set of tools on
top of Fc2tool [11] to automate hierarchical composition. Although
Fc2tool provides some support for compositional analysis, it is too
tedious and difficult to use directly. For example, to create a hier-
archy in Fc2tools, users must create, label, and connect every port
by hand, which is error-prone and time consuming.

To use our tools to compose a system hierarchically, a user only
needs to put the state-graph files (in a format for Fc2tools) in a
directory and provide a hierarchy file like the following:

T1 := P R
T2 := S1 S2 T1
@ T2 is the whole system

Our tools will compute the necessary information automatically. In
the example, suppose there are four state-graph files, P,R,S1, and
S2. When

�
and � is composed into y�� , our tools examine the di-

rectory and know its environment is constituted by ��� and ��� . Cor-
rect label restriction (or exportation) for y�� is computed automat-
ically. Unless specified, weak bisimulation is the default method
for minimizing the state space of subsystem. In next section, all the
experiments are done in this environment with 128M of memory
under Linux platform.

Algorithm 2 The simplification transformation
Simplification( u )
begin

Initialize � as an empty directed graph.
Create a new node " v for segment u v in � .
// construct directed graph � from segments
For each segment u v in u dof
�("/�8� ComputeGotoSet( u v );
for each integer � in f
�!"}� do
add a directed edge " v [ "�� in �

if (
D f
�("/� D L>L�� ) then mark node " v

end for ;

// check the directed graph to see if it is
// eligible for reduction
if (all the nodes in � are marked) then
// the case is eligible for reduction
Follow � to connect the segments
into a new process.

else
return “not eligible for reduction”;

end if ;
end.

procedure ComputeGotoSet( u v )
begin

Let X z be the initial state of u v ;f
�!"}� C X z F�L�I(�}NK� // initially, a segment activates
// itself for next time.

Set �	 #" C T!F�LRI�N for all the edges of u�v .
Repeat
for each state X in u�v do

for each edge T�� � SUT C X(F do
if ( V9�l�2T(V C T!F ==”v:=i”) then �	 #" C T!FALqI4�/N ;
else �! #" C T	F = f
�("/� C ��S!� C T!F�F ;

end for ;f
�("/� C X!F�o L�� �
�O���-�
�^�/� �! #" C T!F ;
end for ;

Until f
�("/� C X!F has no change for all X ;
return � �
�O�p� v�� �} (�k¡
¢�� f
�("/� C X(F ;

end.

6. EXAMPLES

In this section we demonstrate the power of our approach by two
examples. We choose the examples by two reasons. First, both ex-
amples have been used to gauge the scalability of verification tools.
Second, when their system sizes increased, their as-built architec-
tures make compositional techniques futile.

6.1 The elevator system
The model of elevator system is extracted from the elevator sys-

tem of Richardson et al. [13]. Its implementation uses array of Ada
tasks and is designed to be extended to arbitrary number of eleva-
tors. If the number of elevators is � , there are �¤£¥� tasks, including�¦T(VWT4g _ X���§ _ "/�5X4�Hh ��j which emulate the moving elevators for lift-
ing customers, one controller task to command elevators to serve
hall calls or car calls, one command dispatcher task (elevator), and
one task (driver) to emulate customer pushing the hall call or car
call button. In [5], Corbett analyzed (by global analysis) the sys-
tem with maximum to 4 elevators. However, due to the difference
in analysis tools used, memory capacity, and platform, we can only
analyze up to 3 elevators in our environment.

We use elevator index and channel name as grouping options to
refactor controller and elevator. In the model, they both are not
stateful processes, so, no m � is created. The model is refactored
in a way similar to the steps of refactoring the example in section



3. The number of new tasks created by refactoring plus the original
task is listed in Table 2.

Fc2tools can enumerate reachable states explicitly and report the
number of explored states and transitions. In a composition hier-
archy, among all the subsystems analyzed, we pick the one which
consumes most memory as the memory requirement to accomplish
the compositional analysis. We compare three methods in Fig. 15.
They are global analysis, compositional analysis without refactor-
ing, and compositional analysis with refactoring. The hierarchy to
compose the system without refactoring is (..((controller|elevator)|
elevator_sim_task1)|..elevator_sim_taskn)| driver). This hierarchy
is carefully chosen by experience and trial-and-error so that state
explosion is at least not worse than global analysis.

In the experiment, both global and compositional analysis with-
out refactoring exhaust memory rapidly. On the other hand, the
refactored model shows mildly linear growth of memory usage and
the ability to analyze hundreds of elevators. The hierarchy for com-
posing the refactored elevator system is to compose a base system
with one elevator first and then gradually add other elevators. Weak
bisimulation and context constraints [3] are used to reduce subsys-
tems in the hierarchy. One of the reasons that it can be analyzed
to hundreds of elevators is that its refactored structure is “near to”
a structure that is suitable for inductive verification (see [2]). We
only check for deadlocks in this experiment. Because we adopt
weak bisimulation, we currently limit our approach to safety prop-
erties, where a safety property can be translated into a deadlock
detection problem [4].

CA with refactoring
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12000

13000

14000

10 20 30 40 50 60 70 80 90 100
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n=2 ,3600 states
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Traditional CA

memory
requirement
(in number 
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Number of elevators

Figure 15: The states generated for elevator system by (1)
global analysis (2) compositional analysis (3) compositional
analysis with refactored structure.

6.2 Chiron user interface system
Chiron user interface system [10] is a moderate-size concurrent

Ada program. It was built to address concerns of cost, maintain-
ability, and sensitivity to changes in the development and mainte-

Table 2: The summary of refactored elevator model.

task name no. of states the number of subtasks after refacting

controller ¨�© 3 ¨ 3�ª ©
elevator_sim_task[i] 8 no change

elevator « 3 3Jª ©
driver ¬ 3 3Jª ©

nance of user interfaces for large applications. Chiron’s design phi-
losophy is to separate application code from user interface code.
So, there are user interface agents called artists attached to se-
lected data abstract types (ADT) belonging to the applications. At
runtime, each artist can register events of interests to dispatcher.
Whenever there is an operation call on the ADT, the dispatcher in-
tercepts the call and notifies each of the artists associated with that
ADT with the event.

Chiron has been analyzed by Young et al. [16] and Avrunin et al.
[1], both with 2 artists analyzed. Its Ada code and Promela code can
be accessed via http://laser.cs.umass.edu/verification-examples. In
[1], different analysis tools (INCA,SPIN and FLAVERS) are stressed
by increasing the event number of Chiron model. In that study,
they decompose the dispatcher task into a subsystem with a sep-
arate task that maintains the array of each event, together with a
single interface task that receives the requests for registration, un-
registration, and the notification of events and passes them to the
appropriate task for a particular event. Consequently, INCA shows
better performance than SPIN and FLAVERS. The decomposition
resembles our refactoring. However, it is done by rewriting design
codes which requires human expertise and is difficult to automate
and guarantee behavioral equivalence.

To demonstrate the power of refactoring, our tool is stressed by
increasing the number of artists. A 2-artist Chiron consists of 6
tasks. So, for an � -artist Chiron, there are �E£®­ tasks.

When we began refactoring dispatcher task, we begin to real-
ize why the number of artists has been limited to two in the past.
For each event, the dispatcher maintains an array for bookkeeping
the registered artists. The array is implemented as a queue. For
example, suppose there are 3 artists, � ~ �-� � and �l¯ , registering an
event T consecutively. Let the event array be TKh}j?L C �H~4��� � ��� ¯ F . If� � unregisters the event T , the content of TKh}j becomes

C � ~ ���l¯U� _ F ;
that is, the artists behind � � are shifted left by one element. As-
sume there are � artists, all possible combinations of the array are��£±°³²v;´ ~ µ � �·¶ ��¸ . If there are § event array, the combinations

are
C ��£ ° ²v;´ ~ µ � �·¶ ��¸ F/¹ . So, task dispatcher grows at a prodi-

gious rate as the number of artists increased. On the other hand, for
a 2-artist dispatcher, it contains only 5 combinations. When event
number is § , the size of 2-artist dispatcher is proportional to ºU¹
and the number of tasks remains unchanged.

In our first attempt, the unified transformation constructs a m �
for each array element and wraps segments into new processes for
different artists. The grouping options are channel name and artist
id. Unfortunately, the refactored structure has little hope to scale
well compositionally because m � X not only communicate with
segments, but also with other m � X _ This happens when an artist
is unregistered. It starts a cascading changes of m � X because of
shifting elements in the event array.

After a second look at the code, we discover that the event array,
though implemented like a queue, is actually used only for keeping
track of which artists are registered. The unregistration need not
obey the FIFO rule. We are not sure why the event array is so im-
plemented. Actually, a bit array of size � is adequate for the book-
keeping. For example, an event array TKh}jQL C �U��il�4�(F means artists� ~ and �l¯ have registered. If an artist wants to unregister the event,
dispatcher simply sets its bit to zero. By replacing the queue with
this bit array, the size of dispatcher becomes proportional to � ² . Al-
though � ² is still a formidable growth rate, refactoring can createm � X and new tasks which are loosely coupled to its environment.
We analyze the refactored Chiron with bit array compositionally. It
can be analyzed up to 14 artists as in Fig. 16.
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Figure 17: The refactored structure of 2-artist Chiron system.
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Figure 16: The states generated from refactored Chiron (bit
array version).

The refactored structure of a two-artist Chiron is shown in Fig.
17. The dispatcher task is in the middle. The new tasks gener-
ated from decomposing dispatcher is named “dispatchersubaXeY,”
where X is the index of artist and Y is the index of event. The struc-
ture may look complicated in the beginning. Searching a tractable
composition hierarchy seems difficult. However, heuristics exist
for searching the hierarchy.6 We can search in the components
of first artist first. Like composing the elevator example, we start
by composing all the components of artist a1. Let A = (notifye1|
notifye1suba1), B = (notifye2 | notifye2suba1), C = (dispatcher-
suba1e1|VPa1e1), D = (dispatchersuba1e2|VPa1e2) , E = (adtwrap-
per| clientinit | artistmgr ). The composition hierarchy we use is
((((C | a1 | dispatcher) | D) | A| B) | E ). After the base system is
completed, we begin composing components of artist a2 into the
base system.

Composing the base system always generates maximum states
and transitions, because there are transitions and states must be ex-
ported for rendezvousing with other artists later. The number of
these exportations is strictly decreased when more artists are com-
posed. In the experiment of 15 artists, the weak bisimulation of
Fc2tool consumes too much time and disk space while composing
the base system.

Although we consider the result a significant improvement, the
extent of improvement is not as good as elevator system. The cause

6Finding an optimal solution is NP-hard, but in practice an accept-
able solution can often be found with modest effort.

is that Chiron contains a FOR loop that makes rendezvous with all
artists sequentially. This small part of behaviors can not be refac-
tored perfectly and made into a semaphore independent of other
processes. As a result, more exportations are inevitable. Since
FOR loop like that can be common in practice, research to address
the problem continues. We have found that if the order of making
rendezvous in a FOR loop is irrelevant to property of interest, we
may refactor the behavior into a better structure for compositional
analysis. However, more works remain to be done for that, so we
exclude the results from this paper.

7. RELATED WORK
Researches addressing systems that are not suitable for com-

positional, incremental analysis can be found in [15, 6]. Corbett
and Avrunin [6] observe that in the analysis of large and com-
plex programs, a module » may not be further decomposed into
many loosely coupled units and the composition of its processes
may yield intractable results. They assume the module interfacing
with its environment is a specification process � . The analysis of
the module becomes a problem of proving the trace equivalence
between � and » using integer programming techniques. Their ap-
proach, however, is limited to a restricted class of systems, requir-
ing processes to be deterministic.

Yeh and Young [15] considered the problem of “design for anal-
ysis” with a goal of compositional analysis using process algebra.
In that work, it was proposed that analyzability should be an impor-
tant factor in structuring the design of actual implementations. Be
that as it may, one is often in the position of trying to apply anal-
ysis post hoc to systems that are not structured as we would like.
Even if one has the luxury of structuring a design with analysis in
mind, there may be good reasons (performance, physical distribu-
tion, reuse of existing artifacts) for the “as built” system to differ
from the structure needed for verification, and a way of reconciling
the verified and as-built structures will still be needed.

8. DISCUSSIONS AND CONCLUSIONS

In [9], Holzmann has argued that blindly derived design models
are unlikely to be amenable to analysis. That argument applies to
other verification tools and may apply to refactoring on occasion
as well. The array usage as a queue in Chiron is an example. That
particular data structure may prevent refactoring from constructing
suitable structures for compositional analysis. Fortunately, behav-
iors of most systems are regular or patterned. The growing popu-



larity in design patterns shall reduce the occurrence of those prob-
lematic behaviors. On the other hand, we will continue explor-
ing new transformations for those problematic behaviors and data
structures.

Automating the heuristic search of a tractable hierarchy is an-
other problem worth pursuing. Furhter automation is important for
producing refactoring tools that can be used routinely by software
developers.

In summary, the refactoring transformations described here per-
mit decomposing processes and recombining them in a structure
that is more amenable to compositional analysis using process alge-
bra, allowing larger versions of a model to be verified. We have de-
scribed some important refactoring transformations and a refactor-
ing tool that automates restructuring models in a subset of Promela.
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