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The Model of PKC
The model
• m: plaintext        C: ciphertext
• EKeB(): encryptionencryption using B’s encryption key
• DKdB(): decryptiondecryption using B’s decryption key

computationally “infeasible” to find 
KdB knowing only algorithm & KeB

DE
m mC=EKeB(m)

Key 
KdB

encryption key
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y
Generation

encryption key
KeB



Information can be enciphered by encoding Information can be enciphered by encoding 
it through a very hard problemhard problem such that 
breaking the cipher would require solving g p q g
the hard problem in a usual way.

with the deciphering keydeciphering key, however, a 
h   l i  ld b  iblshort cut solution would be possible.

Example: Knapsack problem
given (r   r  r ) & (m   m  m ) where rgiven (rt, …, r1, r0) & (mt, …, m1, m0) where ri 
are random integers & mi ∈ {0, 1}
it is easyeasy to compute                   but it is hardhardC = ri ×mii 0

t∑
to recover all mi from C.
if ri = 2i*KK mod p, then knowing K it becomes 
very easy to recover all m from C*KK--11 mod p

i ii=0∑
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very easy to recover all mi from C*KK 11 mod p
where p ≥ 2t+1. 



Classification of security
•• ComputationalComputational security: exhaustive

h k l i i   h  search attack exploiting some math. 
properties of the cryptosystem is 
theoretically possible however it is theoretically possible however it is 
computationally infeasible

with bounded storage & computing power
I f ti  Th ti lI f ti  Th ti l it•• Information TheoreticalInformation Theoretical security

PostPost--quantumquantum cryptography
• Some hard problems (e.g., factorization) Some hard problems (e.g., factorization) 

become much easier under a quantum 
computer 
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Why Public-Key Cryptography?
d l d  dd   i• developed to address two issues:

key distribution – how to have secure 
communication? communication? 

set up secure communication between 
any two parties y p
without having to trust a KDC 

digital signature – how to verify? 
message comes from claimed sender 
signature generated by claimed sender 

The first PKC is due to Diffie & Hellman at 
Stanford University in 1976
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• known earlier in classified community 
(I will show you the documents later)



DiffieDiffie--Hellman Public KeyHellman Public Key--ExchangeExchange

Alice    “Diffie-Hellman”    Bob

YA=gXA mod p YB=gXB mod p
YA YB

A exchange B

YB YAAttacker can obtain 
YA and YB but not 

X d X

Z=YB
XA mod p Z=YA

XB mod p

XA and XB
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B p A p
=gXB*XA =gXA*XB



Security of Diffie-Hellman scheme
• passive adversary is impossible

given g  ga  and gb  no efficient algorithm given g, ga, and gb, no efficient algorithm 
exists to compute gab

• however, no protection against active attack
authentication on ga and gb is necessary to 

avoid/detect active attack
man-in-the-middle attack man in the middle attack 
to impersonate a user 
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Definition of OneDefinition of One--way Functionway Function
It is easy to compute y = f (x) for ∀ x
For almost all y, it is computationallycomputationally
infeasibleinfeasible to compute x =f -1(y) even if f  is 
known. For example,

ti  di t  l ith  • computing discrete logarithm 
x = logg y mod P ( or gx ≡ y (mod P) )

x y
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Definition of Trapdoor OneDefinition of Trapdoor One--way way 
FunctionFunctionFunctionFunction

Same as one-way function, but it is easy y , y
to compute f -1(y) given some additional 
information, e.g., 
• knowing how to factorize an integer n=p*q 

then we know how to compute y1/3 mod n 
(e g  RSA) or y1/2 mod n (e g  Rabin)(e.g., RSA) or y1/2 mod n (e.g., Rabin)

• knowing how to transform Knapsack 
problem to an easy Knapsack problem problem to an easy Knapsack problem 

9 中央大學資工系 密碼與資訊安全實驗室 (LCIS)



Operation Models of PKC
S  i  PKCSecrecy in PKC

A B
C=EB(m)

DB(C)=DB(EB(m))=m

Authenticity in PKC
A                   B

B( )

S D ( )
EA(S)=EA(DA(m))=m’

A                   BS=DA(m)

m
Checks m’ = m?

Both secrecy and authenticity in PKC
A B EA(DB(X))

X=EB(DA(m))

• RSA can perform both secrecy and authenticity

=EA(DB(EB(DA(m)))) =m
B( A( ))
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p y y
• Signcryption (by Yuliang Zheng)



Issues of RSA CryptosystemIssues of RSA Cryptosystem

Basics of RSA
Security of RSA Security of RSA 
Large parameters generation (prime 
testing)testing)
Implementation of RSA
• Efficient implementation of RSAEfficient implementation of RSA
• Secure implementation against physical attack
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The RSA CryptosystemThe RSA Cryptosystem

System parameters: each user computes
n=p*q  (two large primes)n=p*q  (two large primes)
e: public key  (encryption key)
d  i t k  d≡1 d ( )d: private key ∋ e*d≡1 mod φ(n)

where φ(n)=(p-1)*(q-1)
d d( ( )) f dand gcd(e,φ(n))=1 for d to exist    
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RSA En/DecryptionRSA En/Decryption
Why not just let 

Encryption:
C=me mod n

ed=1+φ(n): 
C=me mod n
Cd ≡ med (mod n)

Decryption:
m ≡ Cd ≡ med (mod n)

( )
≡ m1+φ(n) (mod n)
≡ m

≡ m1+kφ(n) (mod n)
≡ m

where  e*d≡1 (mod φ(n))
e*d=1+kφ(n)  for some integer ke d φ( ) o so e tege
and
mφ(n)≡1 (mod n)
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m ≡1 (mod n)



Two cases of m: (1≦m≦n-1)
m=0 is a trivial case m=0 is a trivial case 

(1) For all m (i.e., gcd(m, n)=1)

mφ(n)≡1 (mod n)   Euler’s generalization

*
nZ

m ≡1 (mod n)   Euler s generalization

Therefore, m1+kφ(n) mod n
=m1

*(mφ(n))k mod n( )

=m*1 =m
(2) For all m \ {     , 0}*

nZnZ( ) \ { , }
Probability of such m=             =n-1-φ(n)

n-1
pq-1-(p-1)(q-1)

pq-1

nn

=             (large or small?)
Let |p| ≈ |q|=512 bit,
th              

p+q-2
pq-1

p+q-2 1
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then            ≈ p+q 2
pq-1

1
2511



If this indeed occurs, can RSA decrypt correctly? If this indeed occurs, can RSA decrypt correctly? 
gcd(m,n)=p or q The user’s RSA key has been broken

Let m=ap where 1≦a≦q-1 gcd(a,q)=1
(i) m (m mod p, m mod q)

=(0, ap mod q)

CRT

(ii) C=me mod n
C (0e mod p , (ap)e mod q) 
when decryption:

CRT

when decryption:
Cd mod n (0d mod p , (ap)ed mod q)

=(0  (ap)1+k(p-1)(q-1) mod q)
CRT

(0 , (ap) mod q)
=(0 , (ap)*[(ap)q-1]k(p-1) mod q)
=(0 , ap mod q)

∵gcd(ap, q)=1
∴(ap)q-1≡1 mod q
from Fermat’s theorem
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( , p q)from Fermat s theorem
this is m



RSA SignatureRSA Signature
RSA used as digital signature
signer A → → receiver B (Verifier)
{m, S}                          m’=SeA (mod nA){m, S}                          m S (mod nA)
S=mdA (mod nA)             checks if m’ = m

R bl ki   h  d f  b th  & th ti it  

?

Reblocking:  when used for both secrecy & authenticity: 
(i) When nA<nB: X=(mdA mod nA)eB mod nB (meB mod nB)  

→ m = (XdB mod nB)eA mod nA( B) A

Probability of reblocking problem=(nA−nB)/nA if nA>nB
Encryption first then signature, is used when nA>nB
(but preferred order of operations is to sign first!) (but preferred order of operations is to sign first!) 

(ii) Two moduli per entity:  smaller one for signature & 
larger one for encryption; always sign then encrypt. 

(iii) Prescribing the form of modulus n & always sign then 
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(iii) Prescribing the form of modulus n & always sign then 
encrypt:  refer to Handbook of Applied Cryptography, 
pp.435-436. 



Usually, cryptographic one-way hash h() 
is required to compute the digest of m

S = h(m)dA mod nA

• given h(m) it’s hard (?) to find m
• for 3 purposes: • for 3 purposes: 

to improve performance
to improve data integrity of large messagep g y g g
to avoid signature forgery (to discuss later)

Known RSA & D-H in classified community 
(Government Communications Headquarters in UK)
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• before Diffie & Hellman (in 1976)



An Early RSA in 1973An Early RSA in 1973

Public key: n=p*q where gcd(p q-1)=1 & gcd(q p-1)=1Public key: n p*q where gcd(p, q 1) 1 & gcd(q, p 1) 1

Encryption: C = mn mod n
or represented by CRT: C≡mq (mod p) & C≡mp (mod q)

Private key: q’*q≡1 (mod φ(n)) & p’*p≡1 (mod φ(n))
or just q’*q≡1 (mod p-1) & p’*p≡1 (mod q-1)

’ * ’ * ’ * ’Decryption: m = Cp’ *q’ = (mp*q)p’ *q’ mod n
Cocks cleverly proposed to speed up by using CRT: 

m ≡ Cq’ (mod p) & m ≡ Cp’ (mod q)   CRT equation is??
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m ≡ Cq (mod p) & m ≡ Cp (mod q),  CRT equation is??

SignatureSignature scheme?



Encryption by Encryption by Public Public 
Discussion (like DDiscussion (like D--H)H) in 1974in 1974Discussion (like DDiscussion (like D--H)H) in 1974in 1974

Public parameter: a prime pPublic parameter: a prime p

Sender A encrypts m to Receiver B:  C1 = mx mod p
where x is A’s private parameter 

Receiver B replies:  C2 = C1
y = mx*y mod p

where y is B’s private parameter
X’Sender A computes and returns:  C3 = C2
X’ = my mod p

where X’*x≡1 (mod p-1) 

Receiver B decrypts m:  m = C Y’ mod p
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Receiver B decrypts m:  m = C3 mod p
where Y’*y≡1 (mod p-1)



Security Consideration of RSASecurity Consideration of RSA

Three important/fundamental issues of Three important/fundamental issues of 
system parameterssystem parameters

(1) How many primes in [2, x]?( ) y p [ , ]
• Is it easy to get the same p or q in RSA?
• Problem of “primes distribution” (next page)

(2) Is it easy to factorize p*q?
(3) Some precautions for RSA usage
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Distribution of PrimesDistribution of Primes
The number of primes ≦ x:  denoted as π(x)
• Asymptotically, π(x)=x/ln xy p y ( )

x x/ln x

2256 1074

Density of prime: 1/ln x

2 10
2512 10151

• consider only odd integer, density → 2/ln x
• Ex:  for x near 2512

2/ln x=2/(512*ln 2)=1/177
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Th    k RSA ( i  d )

Factorization ProblemFactorization Problem
The ways to attack RSA (given e and n)
• factorize n=p*q and hence obtain φ(n) and d
• determine φ(n) directly and obtain d• determine φ(n) directly and obtain d

this also reveals the factorization of n
• find d directlyfind d directly

this usually also reveals the factorization
• special cryptanalytic hardware

TWIRL (Shamir & Tromer): to cryptanalyze 
RSA-1024 in 6 weeks on a US$10M budget

F t i ti  i  till  h d blFactorization is still a hard problem
• there is still small progress

quadratic sieve (old technique)
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quadratic sieve (old technique)
generalized number field (GNF) sieve



Some precautions of system parameters: Some precautions of system parameters: 
Security Precautions for RSASecurity Precautions for RSA
Some precautions of system parameters: Some precautions of system parameters: 

(1) strong prime: optional(1) strong prime: optional

(2) p & q had better differ in length by a few digits

(p & q should not be too close to each other)

∵ n=pq, 2 2( ) ( )p q p qpq+ −
− =
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∵ n pq, ( ) ( )
2 2

pq =



Ex: Let p=13 and q=11  n=11*13=143 Ex: Let p=13 and q=11, n=11 13=143 
√n = √143 = 11.958+ ≈ 12 (an easy problem!) 
(X/2)2−143=(Y/2)2( / ) ( / )
Suppose X=2*12=24

∴(24)2 143 = 144 143 = 12 = (2)2

p + q=24
 2 

∴(
2

) −143 = 144 −143 = 1 = (
2
)

→ p=13 and q=11p − q=2 
Ex: Let p=3 and q=29, n=3*29=87
Since                  then we have to try (p+q)/2 

→ p=13 and q=11

87=9 33Since                 , then we have to try (p+q)/2 
from 10 until 16 (=(3+29)/2) to factorize n. 

87=9.33

(32)2 87 256 87 169 132 (29 −3)2
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(32
2

)2 − 87 = 256 − 87 = 169 = 132 = (29 3
2

)2



(3) Of course, p and q should be large enough  
against factoring

(4) d can not be too small  
( h ll f )(why small?  For performance)
Some attacks exist for d < n1/4
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Some precautions of using RSA: Some precautions of using RSA: Some precautions of using RSA: Some precautions of using RSA: 

(1) Guessable message attack when encryption:(1) Guessable message attack when encryption:
If a small set of possible message will be 

encrypted and sent to the receiver, the attacker yp ,
cannot decrypt the ciphertext but he can just 
encrypt the possible message and compare it with 
the received ciphertext  the received ciphertext. 

Note:   The countermeasure
Deterministic encryption probabilistic encryption
(to concatenate the message with a large 
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random number (e.g. 64 bits long) ) 



(2) Encrypting message that is of much less 
the bit length of n where e=3

3Ex: Let |n|=512 and |m|=160 then |m3|=480

∴ C= m3 mod n= m3 → (an easy problem!)mC =3

Note:    The countermeasure: random padding
To force |m’|>|n|/3To force |m |>|n|/3
where

m’ : m  : 
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Note: given gcd(x,y)=1, x-1 (mod y) can be found 

(3) Send the same message m to more than 3  
recipients and all with e=3

3Ex: C1=m3 mod n1

C2=m3 mod n2 vs. C=m3 mod (n1×n2×n3)
C =m3 mod n

m
C3=m mod n3

where n1, n2, and n3 are pairwise relatively prime.
(i)Based on CRT, a number C in [0, n1×n2×n3-1] can be [ 1 2 3 ]

found  ∋ C mod n1=C1; C mod n2=C2; 
C mod n3=C3
In fact, C is m3. Note that m < n1, m< n2, and      In fact, C is m . Note that m < n1, m< n2, and      
m< n3, therefore m3 < n1×n2×n3. 

(ii)From m3,            (it is an easy problem).mm =3 3
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(iii)Countermeasure: random padding



(4) Common-modulus attack (Why common?)(4) Common modulus attack (Why common?)
• Alice and Bob are assigned the same

modulus n, but assigned different ei & di.  
S  d i  t d i   t  fSuppose di is stored in a tamper proof
device provided by the system manager.

(ea, n): Alice’s public key(ea, n): Alice s public key
(eb, n): Bob’s public key
suppose gcd(ea, eb)=1a b

• If Sunny sends ciphers  ci=mei mod n to 
Alice and Bob 

&  b  il  f d    1r & s can be easily found  ∋ rea + seb = 1
by using extended Euclid’s algorithm
then (ca)r×(cb)s ≡ mrea+seb ≡ m (mod n) 1
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then (ca) ×(cb)  m m (mod n) 1
• Countermeasure: random padding



(5) Bli d i i tt k  ( bli d d ti )(5) Blind-signing attack  (→ blind decryption)
• Bob’s signing/decryption key: d

ti  k  (  ) encryption key: (e, n) 
• Alice sends c = me mod n to Bob

How to decrypt c by the assistance of Bob• How to decrypt c by the assistance of Bob
attacker sends x=rec mod n to Bob 
(r: selected by attacker  so he knows r-1) (r: selected by attacker, so he knows r ) 
gets signature: (re*c)d = r*cd = r*m
decrypts m by:  m = (r*m)* r-1decrypts m by:  m  (r*m)* r
r-1 (mod n): by extended Euclid’s algorithm 
do NOT sign blindly if possible
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g y p
• RSA blind signature as anonymous payment



(6) RSA i t  f(6) RSA signature forgery
• (a) Existential signature forgery:

 X i   i t    any X is a signature on message m
m=Xe mod n

∵ md ≡ (Xe)d≡ X (mod n)∵ m ≡ (X ) ≡ X (mod n)
however, m=Xe mod n will not be a 

meaningful message (or with extremely low 
probability) 
countermeasure: use of one-way hash

will improve security since it is hard (?) to will improve security since it is hard (?) to 
find pre-image of m 

say, given m to find M ∋ m=h(M)
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y, g ( )
to sign by computing S=(h(m))d mod n



(6) RSA signature forgery (cont )(6) RSA signature forgery (cont.)
• (b) Smooth number and multiplicative attack

smooth number: product of reasonably p y
small primes, Ex:81345=3×5×11×17×29 
multiplicative attack: 

given {m1; s1=m1
d mod n} {m2; s2=m2

d mod n}
→ {(m1×m2 mod n); (s1×s2 mod n)}

{ 1 d 1 d }→ {m1
-1 mod n; s1

-1 mod n}
*m1

-1 & s1
-1 mod n can be computed easily

→ {m j mod n; s j mod n}  → {m1
j mod n; s1

j mod n}  
→ {(m1

j×m2
k mod n); (s1

j×s2
k mod n)}

countermeasure: to sign by computing 
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countermeasure: to sign by computing 
S=(h(m))d mod n since h(m1)×h(m2)=h(?)



Rabin’s Encryption & Signature Rabin’s Encryption & Signature 
S hS hSchemesSchemes

Rabin’s Rabin’s encryptionencryption schemescheme
• The ciphertextciphertext C for message m is

 ,*    wheremod 2 qpnnmC == )4(mod 3& ≡qp
the plaintextplaintext is one of the 4 (or 2 if 
gcd(m,n)≠1) solutions of  

f t  d d i  d t  fi d 
)mod(  nC

format or redundancy is used to find m
A try but fails (why?)

2 bit header is sent with C: (a b)2-bit header is sent with C: (a,b)
a: Jacobian symbol J(m,n)
b: sign bit of m  b 0 if 0≤m<n/2  b 1 
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b: sign bit of m, b=0 if 0≤m<n/2, b=1 
otherwise. 



Rabin’s encryption scheme (cont.)Rabin s encryption scheme (cont.)
If u=CRT(x1,x2), -u=CRT(-x1,-x2), 

v=CRT(x1,-x2), and -v=CRT(-x1,x2) are the ( 1 2) ( 1 2)
4 square roots of C, then a = J(m,n) is 
used to distinguish u & v. (or -u & -v) 

J(u,n)=J(u,p)*J(u,q)
J(u,q)=-J(v,q) if q≡3 (mod 4)  [same for p]
Th   L t b   dd iTheorem:  Let q be an odd prime
L(-1,q)=(-1)(q-1)/2 = +1 if q≡1 (mod 4)

=  1 if q≡3 (mod 4)=  -1 if q≡3 (mod 4)

sign bit b is used to distinguish u and -u.
Exactly one of u  v  -u  -v is in QR
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Exactly one of u, v, u, v is in QRn
(to discuss later, see Blum integer) 



Rabin’s encryption scheme (cont.)
A valid method to select m from 4 square 

roots of C is to use replication (part) of m
itself or with a fixed format  itself or with a fixed format. 

C=(m||[last 64 bits of m])2 mod n
C=(m||[64 bits of “0”])2 mod n
C=(m||[64 bits of “1”])2 mod n 
any better solutions? 

C=([64 bits of “1”]||m)2 mod n 
Why padding on MSB & with leading “1”? 
Si il    RSA ith ll (  27)  Similar case as RSA with small e (page 27). 
C=([32 bits 1]||[32-bit random]||m)2 mod n 
Why random?  For probabilistic encryption. 
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y p yp
Why not just 64-bit random with leading “1”? 



Rabin’s encryption scheme (cont.)
• Security of Rabin’s encryption scheme (i)

It’s a “provably secure” cryptosystem
“breaking Rabin’s scheme” & “factoring n” 
are computationally computationally equivalentequivalent

“factoring breaking Rabin’s” is trivial
If an attacker can break Rabin’s scheme
(i.e., he can compute SQRTn(C)), then we
can use him to factorize n  can use him to factorize n. 

We randomly compute C=m1
2 mod n, then 

send C to the attacker and we receive one 
m2= SQRTn(C).  Then, gcd(m1±m2, n) gives p
or q with probability of 0.5. 
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Since factoring n is infeasible now, then 
Rabin’s scheme is secure (unbreakable). 



Rabin’s encryption scheme (cont.)
S i  f R bi ’  i  h  (ii) • Security of Rabin’s encryption scheme (ii) 

C=m2 mod n  is secure against passive
(ciphertext only) attack(ciphertext-only) attack.
But, simple version C=m2 mod n might be 

vulnerable to “chosen-ciphertext” attackvulnerable to chosen-ciphertext attack.
Attacker selects x, computes C=x2 mod n, 
then asks “decryption oracle” the plaintext y. 
Attacker computes gcd(x±y, n) which gives p
or q with probability of 0.5. 

C (m||[last 64 bits of m])2 mod n is C=(m||[last 64 bits of m])2 mod n is 
secure against the above attack. Why?

How about other padding schemes?
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How about other padding schemes?



Rabin’s Rabin’s signaturesignature schemescheme
Th  ii f   i  (S  )• The signaturesignature for message m is (S, x)

 mod  ),(= nxmhS

x is a random integer selected to make 
h(m x) be in QR

)4(mod3 & ,*where ≡= qpqpn

h(m,x) be in QRn.

• Security of Rabin’s signature scheme

Existential forgery (as RSA): randomly select s, 
related message is m=s2 mod n.   If with h()?

N  i   i d d  l  b  Never sign on received random value because 
of the factorization attack if without hash. 

Blind signing for RSA will NOTNOT lead to 
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Blind signing for RSA will NOTNOT lead to 
factorization attack even without hash. 



Rabin’s schemes: Why Rabin’s schemes: Why p p & & qq ≡≡33 (mod 4)?(mod 4)?Rabin s schemes: Why Rabin s schemes: Why p p & & qq 33 (mod 4)?(mod 4)?
• Let a ∈ QRp and p≡3 (mod 4), then square 

roots of a are 
± a(p+1)/4 mod p

don’t need algorithm in Handbook (p.100)g (p )

Proof:  Since a ∈ QRp, then a(p-1)/2≡1 mod p
and a*a(p-1)/2≡a(p+1)/2≡a ((mod p)). 
p≡3 (mod 4), so p+1≡0 (mod 4) and (p+1)/4 is 
an integer.  We can have a(p+1)/4 mod p as a 
square root. square root. 

• After finding square roots mod p & mod q, 
CRT is used to compute message or 

39 中央大學資工系 密碼與資訊安全實驗室 (LCIS)

signature.  



Blum integer: n=p*q where p&q≡3 (mod 4)
Blum Integer & Its ApplicationBlum Integer & Its Application

Blum integer: n=p q where p&q≡3 (mod 4)
• If n is a Blum integer, then 

SQ : y=x2 mod n (x QR ; QR >QR ; permutation)SQn: y=x2 mod n (x∈QRn; QRn-->QRn; permutation)

SQn
-1 is a trapdoortrapdoor permutation (hard)

l  l t √ QR ( i i l  t) only select √y ∈ QRn (principal square root) 
Why SQn is a bijective function?

If x1≠x2  then x1
2≠x2

2 (mod n)  for p&q≡3 (mod 4)If x1≠x2, then x1 ≠x2 (mod n)  for p&q≡3 (mod 4)
Proof by contradiction x1

2 - x2
2≡0 (mod n)

(1) x1=x2 (contradiction!)
(2) x1=-x2:  if x2∈QRn, then -x2 is NOT! (p.34)

Theorem:  Let p & q be distinct odd primes 
and n=p*q  Then  |QR |=(p-1)*(q-1)/4
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and n p q. Then, |QRn| (p 1) (q 1)/4.

• Application for one-time password (How?) 



• Given the trapdoor p & q: SQn
-1 is easy

SQ -1(y)=y[(p-1)(q-1)+4]/8 mod nSQn
1(y)=y[(p 1)(q 1)+4]/8 mod n

Can SQn
-1(y) be used in Rabin’s signature?

Do we need it?  (suppose y ∈ QRn) ( pp y Q n)
Answer:  
YES.  We can define the signature to be a 
QR and use SQ -1(y) to sign  QRn and use SQn

1(y) to sign. 
However, we can just use 
± y(p+1)/4 mod p (& mod q) & CRT to have 
more efficient solution (2 times efficient; more efficient solution (2 times efficient; 
need to check y(p+1)/4 ∈ QRp or NQRp). 
But, if we apply CRT on SQn

-1(y) directly 
then 4 times of speedup is possible  (p 55  59)

Can SQn
-1(y) be used in Rabin’s decryption?

Answer:  NO.  Because SQn
-1(y) cannot 

then 4 times of speedup is possible. (p.55, 59)
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Qn (y)
always reach the solution with format 
(m||[last 64 bits of m])



Primality Test Primality Test –– Algorithm Algorithm 
& Skill& Skill& Skill& Skill
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Types of Primality TestTypes of Primality Test
T diti l t i l di i i  hTraditional trial division approach
• divided by all primes less than n1/2

• time complexity → O(n1/2)• time complexity → O(n / )
• infeasible for very large n

Probabilistic approach
• based on number theoretic properties of 

prime number
composite number (optional)

• but pseudo-primes (composite number) • but pseudo-primes (composite number) 
sometimes pass the test
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A First Try A First Try ---- FermatFermat’’s Tests Test
B d  F t  th  if i  i  Based on Fermat’s theorem, if n is prime, 
then always an-1 mod n = 1  (a<n)
O  th  th  h d  On the other hand, 

• if an-1 mod n ≠ 1 (1<a<n-1), n is composite
• but for some a an-1 mod n = 1  n might be prime • but for some a, an 1 mod n = 1, n might be prime 

or pseudoprime
if pseudoprime, the random number a is p p ,
called a liar

Why Fermat’s test is not popular? 
• 1st disadvantage: at most 1/2 of a in 1<a<n-1 

are liars  (cf. 1/4 of Miller-Rabin test on p.49) 
• 2nd disadvantage: Carmichael numbers (most a
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• 2nd disadvantage: Carmichael numbers (most a
are liars, but Carmichael number is of rare case)



Carmichael numbers (smallest one is 561)
http://en wikipedia org/wiki/Carmichael numberhttp://en.wikipedia.org/wiki/Carmichael_number

• Definition 1: composite integer n, but 
an-1 mod n = 1 for all gcd(a, n)=1g ( , )

for n with most prime factors large, φ(n) is 
a large value → most a are liars!

D fi iti  2  it  b   i   • Definition 2: composite number n is a 
Carmichael number iff it is square-free and 
pi−1|n−1 for all prime divisors pi of npi | p pi

Relationship between Def. 1 & 2: 
• For any composite n & gcd(a, n)=1, the order 

of a always divides lcm(all pi -1); 
refer to next page (also notice: lcm vs. φ(n))

• For Carmichael number  lcm(all p 1)|n 1
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• For Carmichael number, lcm(all pi -1)|n−1
So an-1 mod n = 1



1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

ai mod 21; 21=3*7; lcm(ø(3),ø(7))=lcm(2,6)=6

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
2 2 4 8 16 11 1 2 4 8 16 11 1 2 4 8 16 11 1 2 4 
3 3 9 6 18 12 15 3 9 6 18 12 15 3 9 6 18 12 15 3 9 
4 4 16 1 4 16 1 4 16 1 4 16 1 4 16 1 4 16 1 4 16 

has
4 liars 

5 5 4 20 16 17 1 5 4 20 16 17 1 5 4 20 16 17 1 5 4 
6 6 15 6 15 6 15 6 15 6 15 6 15 6 15 6 15 6 15 6 15 
7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 
8 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 18 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 
9 9 18 15 9 18 15 9 18 15 9 18 15 9 18 15 9 18 15 9 18 

10 10 16 13 4 19 1 10 16 13 4 19 1 10 16 13 4 19 1 10 16 
11 11 16 8 4 2 1 11 16 8 4 2 1 11 16 8 4 2 1 11 16 a
12 12 18 6 9 3 15 12 18 6 9 3 15 12 18 6 9 3 15 12 18 
13 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 
14 14 7 14 7 14 7 14 7 14 7 14 7 14 7 14 7 14 7 14 7 
15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15

a

15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 
16 16 4 1 16 4 1 16 4 1 16 4 1 16 4 1 16 4 1 16 4 
17 17 16 20 4 5 1 17 16 20 4 5 1 17 16 20 4 5 1 17 16 
18 18 9 15 18 9 15 18 9 15 18 9 15 18 9 15 18 9 15 18 9 
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19 19 4 13 16 10 1 19 4 13 16 10 1 19 4 13 16 10 1 19 4 
20 20 1 20 1 20 1 20 1 20 1 20 1 20 1 20 1 20 1 20 1 



Example of Carmichael numbers
• 561=3*11*17;  2|560, 10|560, 16|560

1105=5*13*17;  4|1104, 12|1104, 16|1104
• (6k+1)*(12k+1)*(18k+1) is a Carmichael 

smallest 
Carmichael

number • (6k+1)*(12k+1)*(18k+1) is a Carmichael 
number if its three factors are all prime

Distribution of Carmichael numbers Distribution of Carmichael numbers 
• Carmichael numbers are substantially rarer

than prime numbers
• C(X): number of Carmichael numbers ≤ X

n 3 4 5 6 7 8 9 10 11

C(10n) 1 7 16 43 105 255 646 1547 3605

12 13 14 15 16 17 18 19 20
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8241 19279 44706 105212 246683 585355 1401644 3381806 8220777



MillerMiller--Rabin TestRabin Test
B i   f i bBasic property of prime number
Let n be an odd prime, and n−1=2sr where r is 
odd   Let a be any integer gcd(a  n)=1  thenodd.  Let a be any integer gcd(a, n)=1, then
• a(r*2s)≡1 (mod n), or n | a(r*2s)-1

a(r*2s)≡1 (mod n) due to Fermat’s Th.( )
so n|a(r*2s)-1                     x2-1=(x+1)*(x-1)

n|(a(r*2s-1)+1)*(a(r*2s-1)-1)
1 2n|(a(r*2s-1)+1)*(a(r*2s-2)+1)*…*(ar+1)*(ar-1)

Therefore, 
1 ( d )  d   |( 1)   • ar ≡ 1 (mod n)  due to n|(ar-1)  or 

• a(r*2j) ≡ −1 (mod n) for some j, 0≤j≤s-1 
due to n|(a(r*2j)+1) 
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due to n|(a( )+1) 



P b bili  f liProbability of liar
• if n is an odd composite integer, but the 

above two properties are satisfied above two properties are satisfied 

→ n is a pseudoprime and a is a liar
• less than 1/4 of a in 1<a<n-1 are liars for n• less than 1/4 of a in 1<a<n 1 are liars for n

Ppp < 1/4
more precisely: at most φ(n)/4 liars 

• Ex. of pseudoprime n=21 
Miller-Rabin test on next page: 
with only 2 liars (a 1  1) with only 2 liars (a=1, -1) 
cf. Fermat’s test on p.46: 
with 4 liars (a=1, 8, 13, -1) 
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1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

ai mod 21; 21=3*7; ø(3*7)/4=3; a5=±1 or a10=-1

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 
2 2 4 8 16 11 1 2 4 8 16 11 1 2 4 8 16 11 1 2 4 
3 3 9 6 18 12 15 3 9 6 18 12 15 3 9 6 18 12 15 3 9 
4 4 16 1 4 16 1 4 16 1 4 16 1 4 16 1 4 16 1 4 16 

only 
2 liars 

5 5 4 20 16 17 1 5 4 20 16 17 1 5 4 20 16 17 1 5 4 
6 6 15 6 15 6 15 6 15 6 15 6 15 6 15 6 15 6 15 6 15 
7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 
8 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 18 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 
9 9 18 15 9 18 15 9 18 15 9 18 15 9 18 15 9 18 15 9 18 

10 10 16 13 4 19 1 10 16 13 4 19 1 10 16 13 4 19 1 10 16 
11 11 16 8 4 2 1 11 16 8 4 2 1 11 16 8 4 2 1 11 16 a
12 12 18 6 9 3 15 12 18 6 9 3 15 12 18 6 9 3 15 12 18 
13 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 
14 14 7 14 7 14 7 14 7 14 7 14 7 14 7 14 7 14 7 14 7 
15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15

a

15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 
16 16 4 1 16 4 1 16 4 1 16 4 1 16 4 1 16 4 1 16 4 
17 17 16 20 4 5 1 17 16 20 4 5 1 17 16 20 4 5 1 17 16 
18 18 9 15 18 9 15 18 9 15 18 9 15 18 9 15 18 9 15 18 9 
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19 19 4 13 16 10 1 19 4 13 16 10 1 19 4 13 16 10 1 19 4 
20 20 1 20 1 20 1 20 1 20 1 20 1 20 1 20 1 20 1 20 1 



B i   f i b  Basic property of composite number 
(optional: because of extremely low probability)
Let n be an odd integer  if Let n be an odd integer, if 

a ≠ ±1 (mod n) 
but a2 = 1 (mod n)   but a2 = 1 (mod n).  

Then, n is an odd composite number. 

gcd(a±1, n) is a nontrivial factor of n. 
Ex: See last page, let n=3*7, a2 = 1 (mod n) 
has two nontrivial square roots 8 & 13   gcd(8has two nontrivial square roots 8 & 13.  gcd(8-
1, 21)=7 & gcd(8+1, 21)=3 & 
gcd(13-1, 21)=3 & gcd(13+1, 21)=7. 
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The Miller-Rabin algorithm
I t  & it  t  t ≥ 1Input: n & security parameter t ≥ 1
let n−1=2sr where r is odd
For i=1 to t do

property of composite
number

* NOTE: most implementation 

For i=1 to t do
randomly select base a
y=ar mod n  NOTE: most implementation 

does not consider this.
* Let y’ be previous y, then 
gcd(y’-1,n) is a nontrivial 

factor of n.

y
If (y≠1 and y≠-1) then

j=1  it’s not “0”
factor of n.

While (j ≤ s-1 and y≠-1) do 
y=y2 mod n
if ( 1) th    t  “ IS it ”

property of 
prime

if (y==1) then   return “n IS composite”
j=j+1

If (y≠-1) then   Return “n IS composite”

p
number
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If (y≠-1) then   Return n IS composite
Return “MAYBE n is prime”



Probability ConsiderationProbability Consideration
In Miller Rabin test (with t iterations)In Miller-Rabin test (with t iterations)
• if return “n IS composite” 

→ n is 100% not prime by Fermat’s Theorem p y
or the property of composite number

• if return “MAYBE n is prime”
→ n can be a prime or a pseudoprime by → n can be a prime or a pseudoprime by 

property of prime number & existence of liars 
probability of n to be a prime 
P t  (1/4)t 1 P t  1 (1/4)tPpp

t < (1/4)t 1-Ppp
t > 1 − (1/4)t

t = probability of n to be a prime
10 0.999999 = 1-10-6

20 0.999999999999 = 1-10-12

30 0.999999999999999999 = 1-10-18
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30 0.999999999999999999  1 10
40 0.999999999999999999999999 = 1-10-24



Trial Division SieveTrial Division Sieve
Mill R bi  Useful pre-sieve skill before Miller-Rabin test

The probability Q(x)=
h  i  th  t f ll i  

∏
∈

−
Pxp

p )1( 1

where px is the set of all primes ≦ x
• Q(x): the probability for n to 
b  l ti l  i  ith Q( )be relatively prime with 
all primes in px when n » x
let T be product of all 

x Q(x)

10 0.229

102 0.120• let T be product of all 
elements in px

T is about 9KB for x=103

10 0.120

103 0.081

104 0.061T is about 9KB for x=10
Pre-sieve: test gcd(T, n) = 1? 105 0.049

106 0.041
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0.081-1=12.35



RSA Speedup with CRTRSA Speedup with CRT

RSA speedup based on CRT:
Given p, q, (n=p*q), d, and m, p q ( p q)
S=md mod n can be sped up by  

s =(m mod p)d mod (p-1) mod psp=(m mod p) mod p

sq=(m mod q)d mod (q-1) mod q

sp

S
sq

CRT S
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Exponentiation algorithm

Why RSA with CRT?
Let |p|=|q|=512 and |n|=1024 
Also, |m|≈1024 and |d|≈1024
• Now, |mp|≈|mq|≈512 and |dp|≈|dq|≈512
• Half the number of “multiplication” for • Half the number of multiplication  for 

mp
dp mod p

• Half the number of “addition” for mp*mpp p

• Half the “ripple carry” length of each addition

Totally, (23)/2 = 4 times improvement can be achieved.
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CRT recombination algorithms:
Gauss’s CRT recombination Gauss s CRT recombination 
• a standard representation but it takes 

more memory space & timemore memory space & time
S=CRT(sp, sq) 

=[sp×q×(q-1 mod p)+sq×p×(p-1 mod q)] mod n[ p q (q p) q p (p q)]
= [sp × Xp + sq × Xq] mod n

Garner’s CRT recombination 
• widely used because it takes fewer 

memory space (=1/4) & time (<1/2)memory space (=1/4) & time (<1/2)
S=CRT(sp, sq) 

={s + [(s − s )×(q-1 mod p)]×q}  mod n
max=n-1, 
don’t need 
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{sq + [(sp  sq)×(q mod p)]×q}  mod n
= sq + [(sp − sq)×(q-1 mod p) mod p] × q

mod n



Basic Exponentiation Basic Exponentiation 
l hl hAlgorithmsAlgorithms
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Exponentiation AlgorithmsExponentiation Algorithms

Efficient method to compute gd

Exponentiation algorithms are basically 
classified into two categories:

1. Left-to-Right (MSB-to-LSB) 
l ithalgorithms

2. Right-to-Left (LSB-to-MSB)
algorithmsalgorithms
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LL--toto--R Binary ExponentiationR Binary Exponentiation
Example: g26Example: g26

d=26: ( 1 1 0 1 0 )2

1 g g3 g6 g13 g26

Main idea Horner's rule: Given d

1 g2 g6 g12 g26

square multiply

Main idea -- Horner's rule: Given d

0121
1

0
2)2))2((()2( dddddd kk

k

i
i

i +×++×+×=×= −−
−

=∑ KK

gd can be computed as
0121 222 )))((( ddddd ggggg kk ××××= −−
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)))((( ggggg ××××= KK



LL--toto--R Binary ExponentiationR Binary Exponentiation
Algorithm:

01:  01:  RR = 1= 1
02:  for 02:  for ii = (= (kk−−1) downto 01) downto 0
03:      03:      RR = = RR22

04:      if (04:      if (dd == 1) then == 1) then RR = = RR ×× gg04:      if (04:      if (ddii == 1) then == 1) then RR = = RR ×× gg
05:  return 05:  return RR

● Performance: k squarings + on average (k/2) 
multiplications
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RR--toto--L Binary ExponentiationL Binary Exponentiation
Example: g26

d = 26: ( 1 1 0 1 0 )

g16 g8 g4 g2 g 

26 16 8 2g26 = g16× g8 × g2 

Main idea: Given exponent                   , 
gd can be computed as

∑ −

=
×=

1

0
)2(k

i
i

idd

∏ −

=
∑ × ==

−
=

1

0
2)2( )(

1
0

k

i
ddd i

ik
i

i
i ggg
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RR--toto--L Binary ExponentiationL Binary Exponentiation
Algorithm:

01:  01:  RR = 1, = 1, TT == gg00 ,, gg
02:  for 02:  for ii = 0 to (= 0 to (kk−1) −1) 
03:      if (03:      if (ddii == 1) then == 1) then RR = = RR××TT
04       04       TT   TT2204:      04:      TT = = TT22

05:  return 05:  return RR

• Performance: k squarings + on average (k/2) 
multiplications
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Back to RSA+CRT



LL--toto--R Windowing Method R Windowing Method ––
Performance EnhancementPerformance EnhancementPerformance EnhancementPerformance Enhancement

2w-ary method:  scan w bits in each 
iterationiteration
• to reduce the number of multiplications
The algorithm: (w=2)g ( )

01: 01: RR == 1;1; precompute: precompute: gg22, , gg33 (look(look--up table)up table)
02:  for 02:  for ii = 2 = 2 ×× ⎣⎣((kk--1)/21)/2⎦⎦ downto 0 step downto 0 step --2202:  for 02:  for ii = 2 = 2 ×× ⎣⎣((kk 1)/21)/2⎦⎦ downto 0 step downto 0 step 22
03:      03:      RR = = RR44

04:      if ((04:      if ((ddii+1+1ddii))22 ≠ 0) then ≠ 0) then RR = = RR××gg((ddii+1+1ddii))22

• Performance: k squarings + on average 

05:  return 05:  return RR
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q g g
(3/4)*(k/2) multiplications



Example of 2w-ary method (w=2), 4-ary:
(1   2  3   0   2   1)4( )4

d = 1737:  (1 10 11 00 10 01)2

g-g4-g6-g24-g27-g108-g432-g434-g1736-g1737
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RR--toto--L Windowing Method L Windowing Method ––
Approach 1 (not good)Approach 1 (not good)Approach 1 (not good)Approach 1 (not good)

Example (w=2)
1×45 + 2×44 + 3×43 + 2×41 + 1×401×4 + 2×4 + 3×4 + 2×4 + 1×4
(1       2       3        0       2      1)4

d = (1 10 11 00 10 01)2 = 1737( )2
g1024 g256 g64 g16 g4 g for x(01)

g2048 g512 g128 g32 g8 g2 for y(10)

3072 768 192 48 12 3 f (11)g3072 g768 g192 g48 g12 g3 for z(11)

g1024 × g512 × g192 × g8 × g = g1737g1024 × g512 × g192 × g8 × g = g1737

• Performance: extremely inefficient
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RR--toto--L Windowing Method L Windowing Method ––
Approach 2Approach 2Approach 2Approach 2

Example (w=2)
(1 2 3 0 2 1)(1       2       3       0       2      1)4

d = (1 10 11 00 10 01)2 = 1737
g1024 g256 g64 g16 g4 g for x(01)g g g g g g o

(g1024 × g )1 = g1025

(        g256 × g4 )2 = g520

( 64 )3 192( g64 )3 = g192

g1025 × g520 × g192 = g1737

• Performance: 
much better than approach 1
asymptotically similar to L-to-R version
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asymptotically similar to L to R version
however, a little worse than L-to-R version 



Sliding Window Method Sliding Window Method (L(L--toto--R)R)
M i  id   ( d  b h & i )Main ideas:  (reduce both space & time)
• Reduce size of look-up table (space)

Example (window size=2):Example (window size=2):
only pre-compute g3

d = (1 1 0 1 1 0 0 1 0 0 1)2 (fixed window)Key point: 
mix of 

(((1×4)+2)×4+3)×4 …. 

d = (1 1 0 1 1 0 0 1 0 0 1)2 (sliding window)

• Reduce # of multiplications (time)

mix of 
binary & 

4-ary ((((3×2)×4+3)×2)×2)×2)+1 …. 
• Reduce # of multiplications (time)

Example (window size=2): 
bypassing unnecessary multiplicationyp g y p

~~ 0 1 1 0 ~~ (fixed window)
~~ 0 1 1 0 ~~ (sliding window) 

Performance (w bit window): k squarings + 
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• Performance (w-bit window): k squarings + 
on average k/(w+1) multiplications



Performance ComparisonPerformance Comparison
Performance of exponentiation algorithms 

K/(2×4/3)
= K/(2+2/3)

Performance of exponentiation algorithms 

Algorithm Table Size Squaring
Multiplication

go ab e S e Squa g
Average Worse

Right-to-Left 1 k k/2 k
L ft t Ri ht 1 (  N ) k k/2 kLeft-to-Right 1 (or No) k k/2 k
L-to-R (2-bit) 3 (or 2) k ¾×k/2=3k/8 k/2

2w 1 ( )/L-to-R (w-bit)
2w-1

(or 2w-2)
k (2w-1)/2w

× k/w k/w

k or (kSliding (2-bit) 2 (or 1) k or (k-
2) k/(2+1) k/2

2w–1 or k or 
k/( ) k/
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Sliding (w-bit)
2 or
(2w–1-1)

k or 
(k-w)

k/(w+1) k/w



Multiple Exponentiation Multiple Exponentiation 
How to compute gahb efficiently? How to compute gahb efficiently? 
• useful to implement many important 

cryptosystems: e g  DSA  ElGamal  Schnorrcryptosystems: e.g., DSA, ElGamal, Schnorr
• not to compute ga and hb individually
• square together & multiply together; • square together & multiply together; 

pre-compute g×h (if window size w=1)
• key point: Horner’s rule in vector form y p
Example: (for w=1)
a = (1   0   1   0   1)2 = 21( )2

b = (1   1   1   0   0)2 = 28
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gh - g2h2 - g2h3 - g4h6 - g5h7 - g10h14 - g20h28 - g21h28



Sliding Window Multiple Sliding Window Multiple 
ExponentiationExponentiationExponentiationExponentiation
How to compute gahb even more efficiently? 
• reduce size of look up table (if window size • reduce size of look-up table (if window size 

w>1)
• reduce number of multiplicationsp
Performance 
• k-bit exponents; w-bit window size; 

t-exponentiations (e.g., gahb has t=2)
• it takes:   k squarings + on average

k/(w+1/(2t-1)) multiplications [from Yen94]
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