
Chapter 4Chapter 4Chapter 4Chapter 4
Introduction to PublicIntroduction to Public--Key Key

CryptographyCryptography
顏嵩銘 (Sung-Ming Yen)

中央大學 資訊工程系所中央大學 資訊工程系所
密碼與資訊安全實驗室

Laboratory of Cryptography and Information Security (LCISLCIS)
http://www csie ncu edu tw/~yensm/lcis htmlhttp://www.csie.ncu.edu.tw/~yensm/lcis.html

Tel： (03) 4227151 Ext- 35316
Fax： (03) 4222681

1

Fax： (03) 4222681
E-Mail：yensm@csie.ncu.edu.tw

The Model of PKC
The model
• m: plaintext C: ciphertext
• EKeB(): encryptionencryption using B’s encryption key
• DKdB(): decryptiondecryption using B’s decryption key

computationally “infeasible” to find
KdB knowing only algorithm & KeB

DE
m mC=EKeB(m)

Key
KdB

encryption key

2 中央大學資工系 密碼與資訊安全實驗室 (LCIS)

y
Generation

encryption key
KeB

Information can be enciphered by encoding Information can be enciphered by encoding
it through a very hard problemhard problem such that
breaking the cipher would require solving g p q g
the hard problem in a usual way.

with the deciphering keydeciphering key, however, a
h l i ld b iblshort cut solution would be possible.

Example: Knapsack problem
given (r r r) & (m m m) where rgiven (rt, …, r1, r0) & (mt, …, m1, m0) where ri
are random integers & mi ∈ {0, 1}
it is easyeasy to compute but it is hardhardC = ri ×mii 0

t∑
to recover all mi from C.
if ri = 2i*KK mod p, then knowing K it becomes
very easy to recover all m from C*KK--11 mod p

i ii=0∑

3 中央大學資工系 密碼與資訊安全實驗室 (LCIS)

very easy to recover all mi from C*KK 11 mod p
where p ≥ 2t+1.

Classification of security
•• ComputationalComputational security: exhaustive

h k l i i h search attack exploiting some math.
properties of the cryptosystem is
theoretically possible however it is theoretically possible however it is
computationally infeasible

with bounded storage & computing power
I f ti Th ti lI f ti Th ti l it•• Information TheoreticalInformation Theoretical security

PostPost--quantumquantum cryptography
• Some hard problems (e.g., factorization) Some hard problems (e.g., factorization)

become much easier under a quantum
computer

4 中央大學資工系 密碼與資訊安全實驗室 (LCIS)

Why Public-Key Cryptography?
d l d dd i• developed to address two issues:

key distribution – how to have secure
communication? communication?

set up secure communication between
any two parties y p
without having to trust a KDC

digital signature – how to verify?
message comes from claimed sender
signature generated by claimed sender

The first PKC is due to Diffie & Hellman at
Stanford University in 1976

5 中央大學資工系 密碼與資訊安全實驗室 (LCIS)

• known earlier in classified community
(I will show you the documents later)

DiffieDiffie--Hellman Public KeyHellman Public Key--ExchangeExchange

Alice “Diffie-Hellman” Bob

YA=gXA mod p YB=gXB mod p
YA YB

A exchange B

YB YAAttacker can obtain
YA and YB but not

X d X

Z=YB
XA mod p Z=YA

XB mod p

XA and XB

6 中央大學資工系 密碼與資訊安全實驗室 (LCIS)

B p A p
=gXB*XA =gXA*XB

Security of Diffie-Hellman scheme
• passive adversary is impossible

given g ga and gb no efficient algorithm given g, ga, and gb, no efficient algorithm
exists to compute gab

• however, no protection against active attack
authentication on ga and gb is necessary to

avoid/detect active attack
man-in-the-middle attack man in the middle attack
to impersonate a user

7 中央大學資工系 密碼與資訊安全實驗室 (LCIS)

Definition of OneDefinition of One--way Functionway Function
It is easy to compute y = f (x) for ∀ x
For almost all y, it is computationallycomputationally
infeasibleinfeasible to compute x =f -1(y) even if f is
known. For example,

ti di t l ith • computing discrete logarithm
x = logg y mod P (or gx ≡ y (mod P))

x y

8 中央大學資工系 密碼與資訊安全實驗室 (LCIS)

Definition of Trapdoor OneDefinition of Trapdoor One--way way
FunctionFunctionFunctionFunction

Same as one-way function, but it is easy y , y
to compute f -1(y) given some additional
information, e.g.,
• knowing how to factorize an integer n=p*q

then we know how to compute y1/3 mod n
(e g RSA) or y1/2 mod n (e g Rabin)(e.g., RSA) or y1/2 mod n (e.g., Rabin)

• knowing how to transform Knapsack
problem to an easy Knapsack problem problem to an easy Knapsack problem

9 中央大學資工系 密碼與資訊安全實驗室 (LCIS)

Operation Models of PKC
S i PKCSecrecy in PKC

A B
C=EB(m)

DB(C)=DB(EB(m))=m

Authenticity in PKC
A B

B()

S D ()
EA(S)=EA(DA(m))=m’

A BS=DA(m)

m
Checks m’ = m?

Both secrecy and authenticity in PKC
A B EA(DB(X))

X=EB(DA(m))

• RSA can perform both secrecy and authenticity

=EA(DB(EB(DA(m)))) =m
B(A())

10 中央大學資工系 密碼與資訊安全實驗室 (LCIS)

p y y
• Signcryption (by Yuliang Zheng)

Issues of RSA CryptosystemIssues of RSA Cryptosystem

Basics of RSA
Security of RSA Security of RSA
Large parameters generation (prime
testing)testing)
Implementation of RSA
• Efficient implementation of RSAEfficient implementation of RSA
• Secure implementation against physical attack

11 中央大學資工系 密碼與資訊安全實驗室 (LCIS)

The RSA CryptosystemThe RSA Cryptosystem

System parameters: each user computes
n=p*q (two large primes)n=p*q (two large primes)
e: public key (encryption key)
d i t k d≡1 d ()d: private key ∋ e*d≡1 mod φ(n)

where φ(n)=(p-1)*(q-1)
d d(()) f dand gcd(e,φ(n))=1 for d to exist

12 中央大學資工系 密碼與資訊安全實驗室 (LCIS)

RSA En/DecryptionRSA En/Decryption
Why not just let

Encryption:
C=me mod n

ed=1+φ(n):
C=me mod n
Cd ≡ med (mod n)

Decryption:
m ≡ Cd ≡ med (mod n)

()
≡ m1+φ(n) (mod n)
≡ m

≡ m1+kφ(n) (mod n)
≡ m

where e*d≡1 (mod φ(n))
e*d=1+kφ(n) for some integer ke d φ() o so e tege
and
mφ(n)≡1 (mod n)

13 中央大學資工系 密碼與資訊安全實驗室 (LCIS)

m ≡1 (mod n)

Two cases of m: (1≦m≦n-1)
m=0 is a trivial case m=0 is a trivial case

(1) For all m (i.e., gcd(m, n)=1)

mφ(n)≡1 (mod n) Euler’s generalization

*
nZ

m ≡1 (mod n) Euler s generalization

Therefore, m1+kφ(n) mod n
=m1

*(mφ(n))k mod n()

=m*1 =m
(2) For all m \ { , 0}*

nZnZ() \ { , }
Probability of such m= =n-1-φ(n)

n-1
pq-1-(p-1)(q-1)

pq-1

nn

= (large or small?)
Let |p| ≈ |q|=512 bit,
th

p+q-2
pq-1

p+q-2 1

14 中央大學資工系 密碼與資訊安全實驗室 (LCIS)

then ≈ p+q 2
pq-1

1
2511

If this indeed occurs, can RSA decrypt correctly? If this indeed occurs, can RSA decrypt correctly?
gcd(m,n)=p or q The user’s RSA key has been broken

Let m=ap where 1≦a≦q-1 gcd(a,q)=1
(i) m (m mod p, m mod q)

=(0, ap mod q)

CRT

(ii) C=me mod n
C (0e mod p , (ap)e mod q)
when decryption:

CRT

when decryption:
Cd mod n (0d mod p , (ap)ed mod q)

=(0 (ap)1+k(p-1)(q-1) mod q)
CRT

(0 , (ap) mod q)
=(0 , (ap)*[(ap)q-1]k(p-1) mod q)
=(0 , ap mod q)

∵gcd(ap, q)=1
∴(ap)q-1≡1 mod q
from Fermat’s theorem

15 中央大學資工系 密碼與資訊安全實驗室 (LCIS)

(, p q)from Fermat s theorem
this is m

RSA SignatureRSA Signature
RSA used as digital signature
signer A → → receiver B (Verifier)
{m, S} m’=SeA (mod nA){m, S} m S (mod nA)
S=mdA (mod nA) checks if m’ = m

R bl ki h d f b th & th ti it

?

Reblocking: when used for both secrecy & authenticity:
(i) When nA<nB: X=(mdA mod nA)eB mod nB (meB mod nB)

→ m = (XdB mod nB)eA mod nA(B) A

Probability of reblocking problem=(nA−nB)/nA if nA>nB
Encryption first then signature, is used when nA>nB
(but preferred order of operations is to sign first!) (but preferred order of operations is to sign first!)

(ii) Two moduli per entity: smaller one for signature &
larger one for encryption; always sign then encrypt.

(iii) Prescribing the form of modulus n & always sign then

16 中央大學資工系 密碼與資訊安全實驗室 (LCIS)

(iii) Prescribing the form of modulus n & always sign then
encrypt: refer to Handbook of Applied Cryptography,
pp.435-436.

Usually, cryptographic one-way hash h()
is required to compute the digest of m

S = h(m)dA mod nA

• given h(m) it’s hard (?) to find m
• for 3 purposes: • for 3 purposes:

to improve performance
to improve data integrity of large messagep g y g g
to avoid signature forgery (to discuss later)

Known RSA & D-H in classified community
(Government Communications Headquarters in UK)

17 中央大學資工系 密碼與資訊安全實驗室 (LCIS)

• before Diffie & Hellman (in 1976)

An Early RSA in 1973An Early RSA in 1973

Public key: n=p*q where gcd(p q-1)=1 & gcd(q p-1)=1Public key: n p*q where gcd(p, q 1) 1 & gcd(q, p 1) 1

Encryption: C = mn mod n
or represented by CRT: C≡mq (mod p) & C≡mp (mod q)

Private key: q’*q≡1 (mod φ(n)) & p’*p≡1 (mod φ(n))
or just q’*q≡1 (mod p-1) & p’*p≡1 (mod q-1)

’ * ’ * ’ * ’Decryption: m = Cp’ *q’ = (mp*q)p’ *q’ mod n
Cocks cleverly proposed to speed up by using CRT:

m ≡ Cq’ (mod p) & m ≡ Cp’ (mod q) CRT equation is??

18 中央大學資工系 密碼與資訊安全實驗室 (LCIS)

m ≡ Cq (mod p) & m ≡ Cp (mod q), CRT equation is??

SignatureSignature scheme?

Encryption by Encryption by Public Public
Discussion (like DDiscussion (like D--H)H) in 1974in 1974Discussion (like DDiscussion (like D--H)H) in 1974in 1974

Public parameter: a prime pPublic parameter: a prime p

Sender A encrypts m to Receiver B: C1 = mx mod p
where x is A’s private parameter

Receiver B replies: C2 = C1
y = mx*y mod p

where y is B’s private parameter
X’Sender A computes and returns: C3 = C2
X’ = my mod p

where X’*x≡1 (mod p-1)

Receiver B decrypts m: m = C Y’ mod p

19 中央大學資工系 密碼與資訊安全實驗室 (LCIS)

Receiver B decrypts m: m = C3 mod p
where Y’*y≡1 (mod p-1)

Security Consideration of RSASecurity Consideration of RSA

Three important/fundamental issues of Three important/fundamental issues of
system parameterssystem parameters

(1) How many primes in [2, x]?() y p [,]
• Is it easy to get the same p or q in RSA?
• Problem of “primes distribution” (next page)

(2) Is it easy to factorize p*q?
(3) Some precautions for RSA usage

20 中央大學資工系 密碼與資訊安全實驗室 (LCIS)

Distribution of PrimesDistribution of Primes
The number of primes ≦ x: denoted as π(x)
• Asymptotically, π(x)=x/ln xy p y ()

x x/ln x

2256 1074

Density of prime: 1/ln x

2 10
2512 10151

• consider only odd integer, density → 2/ln x
• Ex: for x near 2512

2/ln x=2/(512*ln 2)=1/177

21 中央大學資工系 密碼與資訊安全實驗室 (LCIS)

Th k RSA (i d)

Factorization ProblemFactorization Problem
The ways to attack RSA (given e and n)
• factorize n=p*q and hence obtain φ(n) and d
• determine φ(n) directly and obtain d• determine φ(n) directly and obtain d

this also reveals the factorization of n
• find d directlyfind d directly

this usually also reveals the factorization
• special cryptanalytic hardware

TWIRL (Shamir & Tromer): to cryptanalyze
RSA-1024 in 6 weeks on a US$10M budget

F t i ti i till h d blFactorization is still a hard problem
• there is still small progress

quadratic sieve (old technique)

22 中央大學資工系 密碼與資訊安全實驗室 (LCIS)

quadratic sieve (old technique)
generalized number field (GNF) sieve

Some precautions of system parameters: Some precautions of system parameters:
Security Precautions for RSASecurity Precautions for RSA
Some precautions of system parameters: Some precautions of system parameters:

(1) strong prime: optional(1) strong prime: optional

(2) p & q had better differ in length by a few digits

(p & q should not be too close to each other)

∵ n=pq, 2 2() ()p q p qpq+ −
− =

23 中央大學資工系 密碼與資訊安全實驗室 (LCIS)

∵ n pq, () ()
2 2

pq =

Ex: Let p=13 and q=11 n=11*13=143 Ex: Let p=13 and q=11, n=11 13=143
√n = √143 = 11.958+ ≈ 12 (an easy problem!)
(X/2)2−143=(Y/2)2(/) (/)
Suppose X=2*12=24

∴(24)2 143 = 144 143 = 12 = (2)2

p + q=24
 2

∴(
2

) −143 = 144 −143 = 1 = (
2
)

→ p=13 and q=11p − q=2
Ex: Let p=3 and q=29, n=3*29=87
Since then we have to try (p+q)/2

→ p=13 and q=11

87=9 33Since , then we have to try (p+q)/2
from 10 until 16 (=(3+29)/2) to factorize n.

87=9.33

(32)2 87 256 87 169 132 (29 −3)2

24 中央大學資工系 密碼與資訊安全實驗室 (LCIS)

(32
2

)2 − 87 = 256 − 87 = 169 = 132 = (29 3
2

)2

(3) Of course, p and q should be large enough
against factoring

(4) d can not be too small
(h ll f)(why small? For performance)
Some attacks exist for d < n1/4

25 中央大學資工系 密碼與資訊安全實驗室 (LCIS)

Some precautions of using RSA: Some precautions of using RSA: Some precautions of using RSA: Some precautions of using RSA:

(1) Guessable message attack when encryption:(1) Guessable message attack when encryption:
If a small set of possible message will be

encrypted and sent to the receiver, the attacker yp ,
cannot decrypt the ciphertext but he can just
encrypt the possible message and compare it with
the received ciphertext the received ciphertext.

Note: The countermeasure
Deterministic encryption probabilistic encryption
(to concatenate the message with a large

26 中央大學資工系 密碼與資訊安全實驗室 (LCIS)

random number (e.g. 64 bits long))

(2) Encrypting message that is of much less
the bit length of n where e=3

3Ex: Let |n|=512 and |m|=160 then |m3|=480

∴ C= m3 mod n= m3 → (an easy problem!)mC =3

Note: The countermeasure: random padding
To force |m’|>|n|/3To force |m |>|n|/3
where

m’ : m :

27 中央大學資工系 密碼與資訊安全實驗室 (LCIS)

Note: given gcd(x,y)=1, x-1 (mod y) can be found

(3) Send the same message m to more than 3
recipients and all with e=3

3Ex: C1=m3 mod n1

C2=m3 mod n2 vs. C=m3 mod (n1×n2×n3)
C =m3 mod n

m
C3=m mod n3

where n1, n2, and n3 are pairwise relatively prime.
(i)Based on CRT, a number C in [0, n1×n2×n3-1] can be [1 2 3]

found ∋ C mod n1=C1; C mod n2=C2;
C mod n3=C3
In fact, C is m3. Note that m < n1, m< n2, and In fact, C is m . Note that m < n1, m< n2, and
m< n3, therefore m3 < n1×n2×n3.

(ii)From m3, (it is an easy problem).mm =3 3

28 中央大學資工系 密碼與資訊安全實驗室 (LCIS)

(iii)Countermeasure: random padding

(4) Common-modulus attack (Why common?)(4) Common modulus attack (Why common?)
• Alice and Bob are assigned the same

modulus n, but assigned different ei & di.
S d i t d i t fSuppose di is stored in a tamper proof
device provided by the system manager.

(ea, n): Alice’s public key(ea, n): Alice s public key
(eb, n): Bob’s public key
suppose gcd(ea, eb)=1a b

• If Sunny sends ciphers ci=mei mod n to
Alice and Bob

& b il f d 1r & s can be easily found ∋ rea + seb = 1
by using extended Euclid’s algorithm
then (ca)r×(cb)s ≡ mrea+seb ≡ m (mod n) 1

29 中央大學資工系 密碼與資訊安全實驗室 (LCIS)

then (ca) ×(cb) m m (mod n) 1
• Countermeasure: random padding

(5) Bli d i i tt k (bli d d ti)(5) Blind-signing attack (→ blind decryption)
• Bob’s signing/decryption key: d

ti k () encryption key: (e, n)
• Alice sends c = me mod n to Bob

How to decrypt c by the assistance of Bob• How to decrypt c by the assistance of Bob
attacker sends x=rec mod n to Bob
(r: selected by attacker so he knows r-1) (r: selected by attacker, so he knows r)
gets signature: (re*c)d = r*cd = r*m
decrypts m by: m = (r*m)* r-1decrypts m by: m (r*m)* r
r-1 (mod n): by extended Euclid’s algorithm
do NOT sign blindly if possible

30 中央大學資工系 密碼與資訊安全實驗室 (LCIS)

g y p
• RSA blind signature as anonymous payment

(6) RSA i t f(6) RSA signature forgery
• (a) Existential signature forgery:

 X i i t any X is a signature on message m
m=Xe mod n

∵ md ≡ (Xe)d≡ X (mod n)∵ m ≡ (X) ≡ X (mod n)
however, m=Xe mod n will not be a

meaningful message (or with extremely low
probability)
countermeasure: use of one-way hash

will improve security since it is hard (?) to will improve security since it is hard (?) to
find pre-image of m

say, given m to find M ∋ m=h(M)

31 中央大學資工系 密碼與資訊安全實驗室 (LCIS)

y, g ()
to sign by computing S=(h(m))d mod n

(6) RSA signature forgery (cont)(6) RSA signature forgery (cont.)
• (b) Smooth number and multiplicative attack

smooth number: product of reasonably p y
small primes, Ex:81345=3×5×11×17×29
multiplicative attack:

given {m1; s1=m1
d mod n} {m2; s2=m2

d mod n}
→ {(m1×m2 mod n); (s1×s2 mod n)}

{ 1 d 1 d }→ {m1
-1 mod n; s1

-1 mod n}
*m1

-1 & s1
-1 mod n can be computed easily

→ {m j mod n; s j mod n} → {m1
j mod n; s1

j mod n}
→ {(m1

j×m2
k mod n); (s1

j×s2
k mod n)}

countermeasure: to sign by computing

32 中央大學資工系 密碼與資訊安全實驗室 (LCIS)

countermeasure: to sign by computing
S=(h(m))d mod n since h(m1)×h(m2)=h(?)

Rabin’s Encryption & Signature Rabin’s Encryption & Signature
S hS hSchemesSchemes

Rabin’s Rabin’s encryptionencryption schemescheme
• The ciphertextciphertext C for message m is

 ,* wheremod 2 qpnnmC ==)4(mod 3& ≡qp
the plaintextplaintext is one of the 4 (or 2 if
gcd(m,n)≠1) solutions of

f t d d i d t fi d
)mod(nC

format or redundancy is used to find m
A try but fails (why?)

2 bit header is sent with C: (a b)2-bit header is sent with C: (a,b)
a: Jacobian symbol J(m,n)
b: sign bit of m b 0 if 0≤m<n/2 b 1

33 中央大學資工系 密碼與資訊安全實驗室 (LCIS)

b: sign bit of m, b=0 if 0≤m<n/2, b=1
otherwise.

Rabin’s encryption scheme (cont.)Rabin s encryption scheme (cont.)
If u=CRT(x1,x2), -u=CRT(-x1,-x2),

v=CRT(x1,-x2), and -v=CRT(-x1,x2) are the (1 2) (1 2)
4 square roots of C, then a = J(m,n) is
used to distinguish u & v. (or -u & -v)

J(u,n)=J(u,p)*J(u,q)
J(u,q)=-J(v,q) if q≡3 (mod 4) [same for p]
Th L t b dd iTheorem: Let q be an odd prime
L(-1,q)=(-1)(q-1)/2 = +1 if q≡1 (mod 4)

= 1 if q≡3 (mod 4)= -1 if q≡3 (mod 4)

sign bit b is used to distinguish u and -u.
Exactly one of u v -u -v is in QR

34 中央大學資工系 密碼與資訊安全實驗室 (LCIS)

Exactly one of u, v, u, v is in QRn
(to discuss later, see Blum integer)

Rabin’s encryption scheme (cont.)
A valid method to select m from 4 square

roots of C is to use replication (part) of m
itself or with a fixed format itself or with a fixed format.

C=(m||[last 64 bits of m])2 mod n
C=(m||[64 bits of “0”])2 mod n
C=(m||[64 bits of “1”])2 mod n
any better solutions?

C=([64 bits of “1”]||m)2 mod n
Why padding on MSB & with leading “1”?
Si il RSA ith ll (27) Similar case as RSA with small e (page 27).
C=([32 bits 1]||[32-bit random]||m)2 mod n
Why random? For probabilistic encryption.

35 中央大學資工系 密碼與資訊安全實驗室 (LCIS)

y p yp
Why not just 64-bit random with leading “1”?

Rabin’s encryption scheme (cont.)
• Security of Rabin’s encryption scheme (i)

It’s a “provably secure” cryptosystem
“breaking Rabin’s scheme” & “factoring n”
are computationally computationally equivalentequivalent

“factoring breaking Rabin’s” is trivial
If an attacker can break Rabin’s scheme
(i.e., he can compute SQRTn(C)), then we
can use him to factorize n can use him to factorize n.

We randomly compute C=m1
2 mod n, then

send C to the attacker and we receive one
m2= SQRTn(C). Then, gcd(m1±m2, n) gives p
or q with probability of 0.5.

36 中央大學資工系 密碼與資訊安全實驗室 (LCIS)

Since factoring n is infeasible now, then
Rabin’s scheme is secure (unbreakable).

Rabin’s encryption scheme (cont.)
S i f R bi ’ i h (ii) • Security of Rabin’s encryption scheme (ii)

C=m2 mod n is secure against passive
(ciphertext only) attack(ciphertext-only) attack.
But, simple version C=m2 mod n might be

vulnerable to “chosen-ciphertext” attackvulnerable to chosen-ciphertext attack.
Attacker selects x, computes C=x2 mod n,
then asks “decryption oracle” the plaintext y.
Attacker computes gcd(x±y, n) which gives p
or q with probability of 0.5.

C (m||[last 64 bits of m])2 mod n is C=(m||[last 64 bits of m])2 mod n is
secure against the above attack. Why?

How about other padding schemes?

37 中央大學資工系 密碼與資訊安全實驗室 (LCIS)

How about other padding schemes?

Rabin’s Rabin’s signaturesignature schemescheme
Th ii f i (S)• The signaturesignature for message m is (S, x)

 mod),(= nxmhS

x is a random integer selected to make
h(m x) be in QR

)4(mod3 & ,*where ≡= qpqpn

h(m,x) be in QRn.

• Security of Rabin’s signature scheme

Existential forgery (as RSA): randomly select s,
related message is m=s2 mod n. If with h()?

N i i d d l b Never sign on received random value because
of the factorization attack if without hash.

Blind signing for RSA will NOTNOT lead to

38 中央大學資工系 密碼與資訊安全實驗室 (LCIS)

Blind signing for RSA will NOTNOT lead to
factorization attack even without hash.

Rabin’s schemes: Why Rabin’s schemes: Why p p & & qq ≡≡33 (mod 4)?(mod 4)?Rabin s schemes: Why Rabin s schemes: Why p p & & qq 33 (mod 4)?(mod 4)?
• Let a ∈ QRp and p≡3 (mod 4), then square

roots of a are
± a(p+1)/4 mod p

don’t need algorithm in Handbook (p.100)g (p)

Proof: Since a ∈ QRp, then a(p-1)/2≡1 mod p
and a*a(p-1)/2≡a(p+1)/2≡a ((mod p)).
p≡3 (mod 4), so p+1≡0 (mod 4) and (p+1)/4 is
an integer. We can have a(p+1)/4 mod p as a
square root. square root.

• After finding square roots mod p & mod q,
CRT is used to compute message or

39 中央大學資工系 密碼與資訊安全實驗室 (LCIS)

signature.

Blum integer: n=p*q where p&q≡3 (mod 4)
Blum Integer & Its ApplicationBlum Integer & Its Application

Blum integer: n=p q where p&q≡3 (mod 4)
• If n is a Blum integer, then

SQ : y=x2 mod n (x QR ; QR >QR ; permutation)SQn: y=x2 mod n (x∈QRn; QRn-->QRn; permutation)

SQn
-1 is a trapdoortrapdoor permutation (hard)

l l t √ QR (i i l t) only select √y ∈ QRn (principal square root)
Why SQn is a bijective function?

If x1≠x2 then x1
2≠x2

2 (mod n) for p&q≡3 (mod 4)If x1≠x2, then x1 ≠x2 (mod n) for p&q≡3 (mod 4)
Proof by contradiction x1

2 - x2
2≡0 (mod n)

(1) x1=x2 (contradiction!)
(2) x1=-x2: if x2∈QRn, then -x2 is NOT! (p.34)

Theorem: Let p & q be distinct odd primes
and n=p*q Then |QR |=(p-1)*(q-1)/4

40 中央大學資工系 密碼與資訊安全實驗室 (LCIS)

and n p q. Then, |QRn| (p 1) (q 1)/4.

• Application for one-time password (How?)

• Given the trapdoor p & q: SQn
-1 is easy

SQ -1(y)=y[(p-1)(q-1)+4]/8 mod nSQn
1(y)=y[(p 1)(q 1)+4]/8 mod n

Can SQn
-1(y) be used in Rabin’s signature?

Do we need it? (suppose y ∈ QRn) (pp y Q n)
Answer:
YES. We can define the signature to be a
QR and use SQ -1(y) to sign QRn and use SQn

1(y) to sign.
However, we can just use
± y(p+1)/4 mod p (& mod q) & CRT to have
more efficient solution (2 times efficient; more efficient solution (2 times efficient;
need to check y(p+1)/4 ∈ QRp or NQRp).
But, if we apply CRT on SQn

-1(y) directly
then 4 times of speedup is possible (p 55 59)

Can SQn
-1(y) be used in Rabin’s decryption?

Answer: NO. Because SQn
-1(y) cannot

then 4 times of speedup is possible. (p.55, 59)

41 中央大學資工系 密碼與資訊安全實驗室 (LCIS)

Qn (y)
always reach the solution with format
(m||[last 64 bits of m])

Primality Test Primality Test –– Algorithm Algorithm
& Skill& Skill& Skill& Skill

42 中央大學資工系 密碼與資訊安全實驗室 (LCIS)

Types of Primality TestTypes of Primality Test
T diti l t i l di i i hTraditional trial division approach
• divided by all primes less than n1/2

• time complexity → O(n1/2)• time complexity → O(n /)
• infeasible for very large n

Probabilistic approach
• based on number theoretic properties of

prime number
composite number (optional)

• but pseudo-primes (composite number) • but pseudo-primes (composite number)
sometimes pass the test

43 中央大學資工系 密碼與資訊安全實驗室 (LCIS)

A First Try A First Try ---- FermatFermat’’s Tests Test
B d F t th if i i Based on Fermat’s theorem, if n is prime,
then always an-1 mod n = 1 (a<n)
O th th h d On the other hand,

• if an-1 mod n ≠ 1 (1<a<n-1), n is composite
• but for some a an-1 mod n = 1 n might be prime • but for some a, an 1 mod n = 1, n might be prime

or pseudoprime
if pseudoprime, the random number a is p p ,
called a liar

Why Fermat’s test is not popular?
• 1st disadvantage: at most 1/2 of a in 1<a<n-1

are liars (cf. 1/4 of Miller-Rabin test on p.49)
• 2nd disadvantage: Carmichael numbers (most a

44 中央大學資工系 密碼與資訊安全實驗室 (LCIS)

• 2nd disadvantage: Carmichael numbers (most a
are liars, but Carmichael number is of rare case)

Carmichael numbers (smallest one is 561)
http://en wikipedia org/wiki/Carmichael numberhttp://en.wikipedia.org/wiki/Carmichael_number

• Definition 1: composite integer n, but
an-1 mod n = 1 for all gcd(a, n)=1g (,)

for n with most prime factors large, φ(n) is
a large value → most a are liars!

D fi iti 2 it b i • Definition 2: composite number n is a
Carmichael number iff it is square-free and
pi−1|n−1 for all prime divisors pi of npi | p pi

Relationship between Def. 1 & 2:
• For any composite n & gcd(a, n)=1, the order

of a always divides lcm(all pi -1);
refer to next page (also notice: lcm vs. φ(n))

• For Carmichael number lcm(all p 1)|n 1

45 中央大學資工系 密碼與資訊安全實驗室 (LCIS)

• For Carmichael number, lcm(all pi -1)|n−1
So an-1 mod n = 1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
1 1

ai mod 21; 21=3*7; lcm(ø(3),ø(7))=lcm(2,6)=6

1
2 2 4 8 16 11 1 2 4 8 16 11 1 2 4 8 16 11 1 2 4
3 3 9 6 18 12 15 3 9 6 18 12 15 3 9 6 18 12 15 3 9
4 4 16 1 4 16 1 4 16 1 4 16 1 4 16 1 4 16 1 4 16

has
4 liars

5 5 4 20 16 17 1 5 4 20 16 17 1 5 4 20 16 17 1 5 4
6 6 15 6 15 6 15 6 15 6 15 6 15 6 15 6 15 6 15 6 15
7
8 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 18 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1
9 9 18 15 9 18 15 9 18 15 9 18 15 9 18 15 9 18 15 9 18

10 10 16 13 4 19 1 10 16 13 4 19 1 10 16 13 4 19 1 10 16
11 11 16 8 4 2 1 11 16 8 4 2 1 11 16 8 4 2 1 11 16 a
12 12 18 6 9 3 15 12 18 6 9 3 15 12 18 6 9 3 15 12 18
13 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1
14 14 7 14 7 14 7 14 7 14 7 14 7 14 7 14 7 14 7 14 7
15 15

a

15
16 16 4 1 16 4 1 16 4 1 16 4 1 16 4 1 16 4 1 16 4
17 17 16 20 4 5 1 17 16 20 4 5 1 17 16 20 4 5 1 17 16
18 18 9 15 18 9 15 18 9 15 18 9 15 18 9 15 18 9 15 18 9

46 中央大學資工系 密碼與資訊安全實驗室 (LCIS)

19 19 4 13 16 10 1 19 4 13 16 10 1 19 4 13 16 10 1 19 4
20 20 1 20 1 20 1 20 1 20 1 20 1 20 1 20 1 20 1 20 1

Example of Carmichael numbers
• 561=3*11*17; 2|560, 10|560, 16|560

1105=5*13*17; 4|1104, 12|1104, 16|1104
• (6k+1)*(12k+1)*(18k+1) is a Carmichael

smallest
Carmichael

number • (6k+1)*(12k+1)*(18k+1) is a Carmichael
number if its three factors are all prime

Distribution of Carmichael numbers Distribution of Carmichael numbers
• Carmichael numbers are substantially rarer

than prime numbers
• C(X): number of Carmichael numbers ≤ X

n 3 4 5 6 7 8 9 10 11

C(10n) 1 7 16 43 105 255 646 1547 3605

12 13 14 15 16 17 18 19 20

47 中央大學資工系 密碼與資訊安全實驗室 (LCIS)

8241 19279 44706 105212 246683 585355 1401644 3381806 8220777

MillerMiller--Rabin TestRabin Test
B i f i bBasic property of prime number
Let n be an odd prime, and n−1=2sr where r is
odd Let a be any integer gcd(a n)=1 thenodd. Let a be any integer gcd(a, n)=1, then
• a(r*2s)≡1 (mod n), or n | a(r*2s)-1

a(r*2s)≡1 (mod n) due to Fermat’s Th.()
so n|a(r*2s)-1 x2-1=(x+1)*(x-1)

n|(a(r*2s-1)+1)*(a(r*2s-1)-1)
1 2n|(a(r*2s-1)+1)*(a(r*2s-2)+1)*…*(ar+1)*(ar-1)

Therefore,
1 (d) d |(1) • ar ≡ 1 (mod n) due to n|(ar-1) or

• a(r*2j) ≡ −1 (mod n) for some j, 0≤j≤s-1
due to n|(a(r*2j)+1)

48 中央大學資工系 密碼與資訊安全實驗室 (LCIS)

due to n|(a()+1)

P b bili f liProbability of liar
• if n is an odd composite integer, but the

above two properties are satisfied above two properties are satisfied

→ n is a pseudoprime and a is a liar
• less than 1/4 of a in 1<a<n-1 are liars for n• less than 1/4 of a in 1<a<n 1 are liars for n

Ppp < 1/4
more precisely: at most φ(n)/4 liars

• Ex. of pseudoprime n=21
Miller-Rabin test on next page:
with only 2 liars (a 1 1) with only 2 liars (a=1, -1)
cf. Fermat’s test on p.46:
with 4 liars (a=1, 8, 13, -1)

49 中央大學資工系 密碼與資訊安全實驗室 (LCIS)

(, , ,)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
1 1

ai mod 21; 21=3*7; ø(3*7)/4=3; a5=±1 or a10=-1

1
2 2 4 8 16 11 1 2 4 8 16 11 1 2 4 8 16 11 1 2 4
3 3 9 6 18 12 15 3 9 6 18 12 15 3 9 6 18 12 15 3 9
4 4 16 1 4 16 1 4 16 1 4 16 1 4 16 1 4 16 1 4 16

only
2 liars

5 5 4 20 16 17 1 5 4 20 16 17 1 5 4 20 16 17 1 5 4
6 6 15 6 15 6 15 6 15 6 15 6 15 6 15 6 15 6 15 6 15
7
8 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 18 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1 8 1
9 9 18 15 9 18 15 9 18 15 9 18 15 9 18 15 9 18 15 9 18

10 10 16 13 4 19 1 10 16 13 4 19 1 10 16 13 4 19 1 10 16
11 11 16 8 4 2 1 11 16 8 4 2 1 11 16 8 4 2 1 11 16 a
12 12 18 6 9 3 15 12 18 6 9 3 15 12 18 6 9 3 15 12 18
13 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1 13 1
14 14 7 14 7 14 7 14 7 14 7 14 7 14 7 14 7 14 7 14 7
15 15

a

15
16 16 4 1 16 4 1 16 4 1 16 4 1 16 4 1 16 4 1 16 4
17 17 16 20 4 5 1 17 16 20 4 5 1 17 16 20 4 5 1 17 16
18 18 9 15 18 9 15 18 9 15 18 9 15 18 9 15 18 9 15 18 9

50 中央大學資工系 密碼與資訊安全實驗室 (LCIS)

19 19 4 13 16 10 1 19 4 13 16 10 1 19 4 13 16 10 1 19 4
20 20 1 20 1 20 1 20 1 20 1 20 1 20 1 20 1 20 1 20 1

B i f i b Basic property of composite number
(optional: because of extremely low probability)
Let n be an odd integer if Let n be an odd integer, if

a ≠ ±1 (mod n)
but a2 = 1 (mod n) but a2 = 1 (mod n).

Then, n is an odd composite number.

gcd(a±1, n) is a nontrivial factor of n.
Ex: See last page, let n=3*7, a2 = 1 (mod n)
has two nontrivial square roots 8 & 13 gcd(8has two nontrivial square roots 8 & 13. gcd(8-
1, 21)=7 & gcd(8+1, 21)=3 &
gcd(13-1, 21)=3 & gcd(13+1, 21)=7.

51 中央大學資工系 密碼與資訊安全實驗室 (LCIS)

The Miller-Rabin algorithm
I t & it t t ≥ 1Input: n & security parameter t ≥ 1
let n−1=2sr where r is odd
For i=1 to t do

property of composite
number

* NOTE: most implementation

For i=1 to t do
randomly select base a
y=ar mod n NOTE: most implementation

does not consider this.
* Let y’ be previous y, then
gcd(y’-1,n) is a nontrivial

factor of n.

y
If (y≠1 and y≠-1) then

j=1 it’s not “0”
factor of n.

While (j ≤ s-1 and y≠-1) do
y=y2 mod n
if (1) th t “ IS it ”

property of
prime

if (y==1) then return “n IS composite”
j=j+1

If (y≠-1) then Return “n IS composite”

p
number

52 中央大學資工系 密碼與資訊安全實驗室 (LCIS)

If (y≠-1) then Return n IS composite
Return “MAYBE n is prime”

Probability ConsiderationProbability Consideration
In Miller Rabin test (with t iterations)In Miller-Rabin test (with t iterations)
• if return “n IS composite”

→ n is 100% not prime by Fermat’s Theorem p y
or the property of composite number

• if return “MAYBE n is prime”
→ n can be a prime or a pseudoprime by → n can be a prime or a pseudoprime by

property of prime number & existence of liars
probability of n to be a prime
P t (1/4)t 1 P t 1 (1/4)tPpp

t < (1/4)t 1-Ppp
t > 1 − (1/4)t

t = probability of n to be a prime
10 0.999999 = 1-10-6

20 0.999999999999 = 1-10-12

30 0.999999999999999999 = 1-10-18

53 中央大學資工系 密碼與資訊安全實驗室 (LCIS)

30 0.999999999999999999 1 10
40 0.999999999999999999999999 = 1-10-24

Trial Division SieveTrial Division Sieve
Mill R bi Useful pre-sieve skill before Miller-Rabin test

The probability Q(x)=
h i th t f ll i

∏
∈

−
Pxp

p)1(1

where px is the set of all primes ≦ x
• Q(x): the probability for n to
b l ti l i ith Q()be relatively prime with
all primes in px when n » x
let T be product of all

x Q(x)

10 0.229

102 0.120• let T be product of all
elements in px

T is about 9KB for x=103

10 0.120

103 0.081

104 0.061T is about 9KB for x=10
Pre-sieve: test gcd(T, n) = 1? 105 0.049

106 0.041

54 中央大學資工系 密碼與資訊安全實驗室 (LCIS)

0.081-1=12.35

RSA Speedup with CRTRSA Speedup with CRT

RSA speedup based on CRT:
Given p, q, (n=p*q), d, and m, p q (p q)
S=md mod n can be sped up by

s =(m mod p)d mod (p-1) mod psp=(m mod p) mod p

sq=(m mod q)d mod (q-1) mod q

sp

S
sq

CRT S

55 中央大學資工系 密碼與資訊安全實驗室 (LCIS)

Exponentiation algorithm

Why RSA with CRT?
Let |p|=|q|=512 and |n|=1024
Also, |m|≈1024 and |d|≈1024
• Now, |mp|≈|mq|≈512 and |dp|≈|dq|≈512
• Half the number of “multiplication” for • Half the number of multiplication for

mp
dp mod p

• Half the number of “addition” for mp*mpp p

• Half the “ripple carry” length of each addition

Totally, (23)/2 = 4 times improvement can be achieved.

56 中央大學資工系 密碼與資訊安全實驗室 (LCIS)

CRT recombination algorithms:
Gauss’s CRT recombination Gauss s CRT recombination
• a standard representation but it takes

more memory space & timemore memory space & time
S=CRT(sp, sq)

=[sp×q×(q-1 mod p)+sq×p×(p-1 mod q)] mod n[p q (q p) q p (p q)]
= [sp × Xp + sq × Xq] mod n

Garner’s CRT recombination
• widely used because it takes fewer

memory space (=1/4) & time (<1/2)memory space (=1/4) & time (<1/2)
S=CRT(sp, sq)

={s + [(s − s)×(q-1 mod p)]×q} mod n
max=n-1,
don’t need

57 中央大學資工系 密碼與資訊安全實驗室 (LCIS)

{sq + [(sp sq)×(q mod p)]×q} mod n
= sq + [(sp − sq)×(q-1 mod p) mod p] × q

mod n

Basic Exponentiation Basic Exponentiation
l hl hAlgorithmsAlgorithms

58 中央大學資工系 密碼與資訊安全實驗室 (LCIS)

Exponentiation AlgorithmsExponentiation Algorithms

Efficient method to compute gd

Exponentiation algorithms are basically
classified into two categories:

1. Left-to-Right (MSB-to-LSB)
l ithalgorithms

2. Right-to-Left (LSB-to-MSB)
algorithmsalgorithms

59 中央大學資工系 密碼與資訊安全實驗室 (LCIS)

LL--toto--R Binary ExponentiationR Binary Exponentiation
Example: g26Example: g26

d=26: (1 1 0 1 0)2

1 g g3 g6 g13 g26

Main idea Horner's rule: Given d

1 g2 g6 g12 g26

square multiply

Main idea -- Horner's rule: Given d

0121
1

0
2)2))2((()2(dddddd kk

k

i
i

i +×++×+×=×= −−
−

=∑ KK

gd can be computed as
0121 222)))(((ddddd ggggg kk ××××= −−

60 中央大學資工系 密碼與資訊安全實驗室 (LCIS)

)))(((ggggg ××××= KK

LL--toto--R Binary ExponentiationR Binary Exponentiation
Algorithm:

01: 01: RR = 1= 1
02: for 02: for ii = (= (kk−−1) downto 01) downto 0
03: 03: RR = = RR22

04: if (04: if (dd == 1) then == 1) then RR = = RR ×× gg04: if (04: if (ddii == 1) then == 1) then RR = = RR ×× gg
05: return 05: return RR

● Performance: k squarings + on average (k/2)
multiplications

61 中央大學資工系 密碼與資訊安全實驗室 (LCIS)

RR--toto--L Binary ExponentiationL Binary Exponentiation
Example: g26

d = 26: (1 1 0 1 0)

g16 g8 g4 g2 g

26 16 8 2g26 = g16× g8 × g2

Main idea: Given exponent ,
gd can be computed as

∑ −

=
×=

1

0
)2(k

i
i

idd

∏ −

=
∑ × ==

−
=

1

0
2)2()(

1
0

k

i
ddd i

ik
i

i
i ggg

62 中央大學資工系 密碼與資訊安全實驗室 (LCIS)

RR--toto--L Binary ExponentiationL Binary Exponentiation
Algorithm:

01: 01: RR = 1, = 1, TT == gg00 ,, gg
02: for 02: for ii = 0 to (= 0 to (kk−1) −1)
03: if (03: if (ddii == 1) then == 1) then RR = = RR××TT
04 04 TT TT2204: 04: TT = = TT22

05: return 05: return RR

• Performance: k squarings + on average (k/2)
multiplications

63 中央大學資工系 密碼與資訊安全實驗室 (LCIS)

Back to RSA+CRT

LL--toto--R Windowing Method R Windowing Method ––
Performance EnhancementPerformance EnhancementPerformance EnhancementPerformance Enhancement

2w-ary method: scan w bits in each
iterationiteration
• to reduce the number of multiplications
The algorithm: (w=2)g ()

01: 01: RR == 1;1; precompute: precompute: gg22, , gg33 (look(look--up table)up table)
02: for 02: for ii = 2 = 2 ×× ⎣⎣((kk--1)/21)/2⎦⎦ downto 0 step downto 0 step --2202: for 02: for ii = 2 = 2 ×× ⎣⎣((kk 1)/21)/2⎦⎦ downto 0 step downto 0 step 22
03: 03: RR = = RR44

04: if ((04: if ((ddii+1+1ddii))22 ≠ 0) then ≠ 0) then RR = = RR××gg((ddii+1+1ddii))22

• Performance: k squarings + on average

05: return 05: return RR

64 中央大學資工系 密碼與資訊安全實驗室 (LCIS)

q g g
(3/4)*(k/2) multiplications

Example of 2w-ary method (w=2), 4-ary:
(1 2 3 0 2 1)4()4

d = 1737: (1 10 11 00 10 01)2

g-g4-g6-g24-g27-g108-g432-g434-g1736-g1737

65 中央大學資工系 密碼與資訊安全實驗室 (LCIS)

RR--toto--L Windowing Method L Windowing Method ––
Approach 1 (not good)Approach 1 (not good)Approach 1 (not good)Approach 1 (not good)

Example (w=2)
1×45 + 2×44 + 3×43 + 2×41 + 1×401×4 + 2×4 + 3×4 + 2×4 + 1×4
(1 2 3 0 2 1)4

d = (1 10 11 00 10 01)2 = 1737()2
g1024 g256 g64 g16 g4 g for x(01)

g2048 g512 g128 g32 g8 g2 for y(10)

3072 768 192 48 12 3 f (11)g3072 g768 g192 g48 g12 g3 for z(11)

g1024 × g512 × g192 × g8 × g = g1737g1024 × g512 × g192 × g8 × g = g1737

• Performance: extremely inefficient

66 中央大學資工系 密碼與資訊安全實驗室 (LCIS)

y

RR--toto--L Windowing Method L Windowing Method ––
Approach 2Approach 2Approach 2Approach 2

Example (w=2)
(1 2 3 0 2 1)(1 2 3 0 2 1)4

d = (1 10 11 00 10 01)2 = 1737
g1024 g256 g64 g16 g4 g for x(01)g g g g g g o

(g1024 × g)1 = g1025

(g256 × g4)2 = g520

(64)3 192(g64)3 = g192

g1025 × g520 × g192 = g1737

• Performance:
much better than approach 1
asymptotically similar to L-to-R version

67 中央大學資工系 密碼與資訊安全實驗室 (LCIS)

asymptotically similar to L to R version
however, a little worse than L-to-R version

Sliding Window Method Sliding Window Method (L(L--toto--R)R)
M i id (d b h & i)Main ideas: (reduce both space & time)
• Reduce size of look-up table (space)

Example (window size=2):Example (window size=2):
only pre-compute g3

d = (1 1 0 1 1 0 0 1 0 0 1)2 (fixed window)Key point:
mix of

(((1×4)+2)×4+3)×4 ….

d = (1 1 0 1 1 0 0 1 0 0 1)2 (sliding window)

• Reduce # of multiplications (time)

mix of
binary &

4-ary ((((3×2)×4+3)×2)×2)×2)+1 ….
• Reduce # of multiplications (time)

Example (window size=2):
bypassing unnecessary multiplicationyp g y p

~~ 0 1 1 0 ~~ (fixed window)
~~ 0 1 1 0 ~~ (sliding window)

Performance (w bit window): k squarings +

68 中央大學資工系 密碼與資訊安全實驗室 (LCIS)

• Performance (w-bit window): k squarings +
on average k/(w+1) multiplications

Performance ComparisonPerformance Comparison
Performance of exponentiation algorithms

K/(2×4/3)
= K/(2+2/3)

Performance of exponentiation algorithms

Algorithm Table Size Squaring
Multiplication

go ab e S e Squa g
Average Worse

Right-to-Left 1 k k/2 k
L ft t Ri ht 1 (N) k k/2 kLeft-to-Right 1 (or No) k k/2 k
L-to-R (2-bit) 3 (or 2) k ¾×k/2=3k/8 k/2

2w 1 ()/L-to-R (w-bit)
2w-1

(or 2w-2)
k (2w-1)/2w

× k/w k/w

k or (kSliding (2-bit) 2 (or 1) k or (k-
2) k/(2+1) k/2

2w–1 or k or
k/() k/

69 中央大學資工系 密碼與資訊安全實驗室 (LCIS)

Sliding (w-bit)
2 or
(2w–1-1)

k or
(k-w)

k/(w+1) k/w

Multiple Exponentiation Multiple Exponentiation
How to compute gahb efficiently? How to compute gahb efficiently?
• useful to implement many important

cryptosystems: e g DSA ElGamal Schnorrcryptosystems: e.g., DSA, ElGamal, Schnorr
• not to compute ga and hb individually
• square together & multiply together; • square together & multiply together;

pre-compute g×h (if window size w=1)
• key point: Horner’s rule in vector form y p
Example: (for w=1)
a = (1 0 1 0 1)2 = 21()2

b = (1 1 1 0 0)2 = 28

70 中央大學資工系 密碼與資訊安全實驗室 (LCIS)

gh - g2h2 - g2h3 - g4h6 - g5h7 - g10h14 - g20h28 - g21h28

Sliding Window Multiple Sliding Window Multiple
ExponentiationExponentiationExponentiationExponentiation
How to compute gahb even more efficiently?
• reduce size of look up table (if window size • reduce size of look-up table (if window size

w>1)
• reduce number of multiplicationsp
Performance
• k-bit exponents; w-bit window size;

t-exponentiations (e.g., gahb has t=2)
• it takes: k squarings + on average

k/(w+1/(2t-1)) multiplications [from Yen94]

71 中央大學資工系 密碼與資訊安全實驗室 (LCIS)

