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©h The Model of PKC

m The model
e m: plaintext C: ciphertext
e E,.z(): encryption using B’s encryption key
e Dy4s(): decryption using B’s decryption key

computationally “infeasible” to find
Kgg KNnowing only algorithm & K
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Information can be enciphered by encoding
it through a very hard problem such that
breaking the cipher would require solving
the hard problem in a usual way.

e with the deciphering key, however, a
short cut solution would be possible.

Example: Knapsack problem
» given (ry, ..., ry, rg) & (M, ..., my, my) where r,
are random integers & m; € {0, 1}

> it is easy to compute C = Z txm, but it is hard
to recover all m, from C.

» if ;= 2"K mod p, then knowing K it becomes

very easy to recover all m, from C*K-1 mod p
where p 2 2t+1,
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m Classification of security
e Computational security: exhaustive
search attack exploiting some math.
properties of the cryptosystem is
theoretically possible however it is
computationally infeasible
with bounded storage & computing power
e Information Theoretical security
m Post-quantum cryptography
e Some hard problems (e.g., factorization)
become much easier under a quantum
computer
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=0 Why Public-Key Cryptography?
- e developed to address two issues:

key distribution - how to have secure
communication?

Q set up secure communication between
any two parties

Q without having to trust a KDC
digital signature - how to verify?

d message comes from claimed sender
Q signature generated by claimed sender

m The first PKC is due to Diffie & Hellman at
Stanford University in 1976

e known earlier in classified community
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Diffie-Hellman Public Key-Exchange
 Alice “Diffie-Hellman” Bob

Y ,A=0g"A rTlO&p\A / g*e mod p

exchange

Yg Attacker can obtain \Yﬁ
Y,and Yg but not
X, and Xg

Z=Yg*~ mod p Z=Y,"s mod p
=(QgX8* XA =Qg* A" X8



m Security of Diffie-Hellman scheme
e passive adversary is impossible

given g, g2, and g®, no efficient algorithm
exists to compute gab

e however, no protection against active attack

authentication on g2 and gP is necessary to
avoid/detect active attack

0 man-in-the-middle attack
a to impersonate a user
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Definition of One-way Function

m [t is easy to compute y =f(x) for Vv x

m For almost ally, it is computationally
infeasible to compute x =f-I(y) even iff is
known. For example,

e computing discrete logarithm
=log,y modP (org*=y (modP))

¥ _€asynn X
hard || | y
- ‘uff

%H*the trapdoor
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Definition of Trapdoor One-way
™ Function

m Same as one-way function, but it is easy
to compute f-l(y) given some additional
information, e.qg.,

e knowing how to factorize an integer n=p*q

then we know how to compute y”3 mod n
(e.g., RSA) or y"2mod n (e.g., Rabin)

e knowing how to transform Knapsack
problem to an easy Knapsack problem
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; 2 Operation Models of PKC
m Secrecy in PKC

» B Dg(C)=Dg(Eg(m))=m

C=Eg(m)
Authenticity in PKC ,
P A e E(S)=E\(Da(m))=m
{S—DA(m) Checks m’ 2 m
m

m Both secrecy and authenticity in PKC
A > B EA(Dg(X))

X=Eg(DAa(m))
=EA(Dg(Eg(Da(m)))) =m

e RSA can perform both secrecy and authenticity
e Signcryption (by Yuliang Zheng)
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1O Issues of RSA Cryptosystem

m Basics of RSA
m Security of RSA

m Large parameters generation (prime
testing)

m Implementation of RSA
o Efficient implementation of RSA
e Secure implementation against physical attack
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2 The RSA Cryptosystem

m System parameters: each user computes
n=pxq (two large primes)
e: public key (encryption key)
d: private key > exd=1 mod ¢(n)

where ¢@(n)=(p-1)+(q-1)
and gcd(e,p(n))=1 for d to exist
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; 2 RSA En/Decryption

‘m Encryption:
C=m°® mod n
m Decryption:
m = C% = med (mod n)

Why not just let
ed=1+¢(n):

C=m°® mod n

med (mod n)
m**®™ (mod n)
m

@)
o

= m ke (mod n)

=m

where e-~d=1 (mod ¢(n))
exd=1+kp(n) for some integer k

and
m®M =1 (mod n)

13

FIRAREE T 5 BB ER L 2 E =

(LCIS)




o= /he Two cases of m: (1=m=n-1)

m=0 is a trivial case
(1) For all m e Z’; (i.e., gcd(m, n)=1)
m%®{M =
Therefore, mi*k®(") mod n

=mi«(m®(M)X mod n

1 (mod n)—Euler’s generalization

=mx1 =m
(2) Forallme Z\{Z,, 0}
Probability of such m= n-1-¢(n) = pg-1-(p-1)(9-1)

n-1 pqg-1
= ppJ;EIiZ (large or small?)
Let |p| = |q|=512 bit,
then P*Ta-2 1
-1 2511
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. If this indeed occurs, can RSA decrypt correctly?
gcd(m,n)=p or g The user’s RSA key has been broken
Let m=ap where 1=a=qg-1 -> gcd(a,q)=1
(i) M-SR, (m mod p, m mod q)
=(0, ap mod q)
(ii) C=m® mod n
C _CRT, (0°* mod p, (ap)® mod q)
when decryption:
C% mod n CRT (0% mod p , (ap)®® mod q)
=(0, (ap)1+k(p-1)(q-1) mod q)

."gcd(ap, q)=1 — * a-17k(p-1)
e oNimt mod o (0, (ap)*[(ap)T*]*¢*")) mod q)

from Fermat’s theorem =(O r ap mod q
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RSA Signature
m RSA used as digital signature

signer A - - receiver B  (Verifier)
{m, S} =SeA (mod n,)
S=mdA (mod n,) checks if m” £ m

Reblocking: when used for both secrecy & authenticity:
(i) When n,<ng: X=(m% mod n,)®® mod n; (M®® mod ng)
— m = (X“8 mod ngz)®* mod n,
Probability of reblocking problem=(n,—ng)/n, if n,>ng
Encryption first then signature, is used when n,>ng

(but preferred order of operations is to sign first!)

(ii) Two moduli per entity: smaller one for signature &
larger one for encryption; always sign then encrypt.
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. Usually, cryptographic one-way hash h()
Is required to compute the digest of m

S = h(m)% mod n,
e given h(m) it's hard (?) to find m
e for 3 purposes:
to improve performance
to improve data integrity of large message
to avoid signature forgery (to discuss later)

m Known RSA & D-H in classified community
(Government Communications Headquarters in UK)

e before Diffie & Hellman (in 1976)
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An Early RSA in 1973

20 November 1973

A NOTE ON 'NON-SECRET ENCRYPTION'

by C C Cocks

A possible implementation is suggested of J H Ellis's proposed method of encryption involving no sharing
of secret information (key lists, machine set-ups, pluggings etc) between sender and receiver.

m Public key: n=p~q where gcd(p, g-1)=1 & gcd(qg, p-1)=1

m Encryption: C = m" mod n
or represented by CRT: C=m" (mod p) & C=m" (mod q)

m Private key: gq’~g=1 (mod ¢(n)) & p’~sp=1 (mod ¢(n))
or just q’~g=1 (mod p-1) & p’~p=1 (mod g-1)

m Decryption: m=C°? "9 = (mP 9" "9 mod n
Cocks cleverly proposed to speed up by using CRT:
m = C% (mod p) & m = C° (mod q), CRT equation is??

m Signature scheme?
13 A T % R4 E S (LCIS)




Encryption by Public
Discussion (like D-H) in 1974

NON-SECRET ENCRYPTION USING A FINITE FIELD
by M J Williamson, 21 January 1974

A possible implementation is suggested of J H Ellis's proposed method ofencryption involving no sharing of secret
information (key lists, machine set-ups, pluggings etc) between sender and receiver.

m Public parameter: a prime p

m Sender A encrypts m to Receiver B: C; = m* mod p
where x is A’s private parameter

m Receiver B replies: C, = C;Y = m*” mod p
where y is B’s private parameter

m Sender A computes and returns: C3=C,” = m’ mod p
where X’~xx=1 (mod p-1)

m Receiver B decrypts m: m = C;' mod p
where Y’~sy=1 (mod p-1)
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O} Security Consideration of RSA

m Three important/fundamental issues of
system parameters

(1) How many primes in [2, X]?
e Is it easy to get the same p or g in RSA?
e Problem of “primes distribution” (next page)

(2) Is it easy to factorize p*q?
(3) Some precautions for RSA usage
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©) Distribution of Primes

m The number of primes = x: denoted as n(x)

e Asymptotically, n(x)=x/In x

X x/In x
2256 1074
2512 10151

m Density of prime: 1/In X

e consider only odd integer, density — 2/In x

e Ex: for x near 2°12
2/In x=2/(512*In 2)=1/177
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Factorization Problem

m The ways to attack RSA (given e and n)
e factorize n=p+q and hence obtain ¢(n) and d
o determine ¢(n) directly and obtain d
this also reveals the factorization of n
e find d directly
this usually also reveals the factorization
e special cryptanalytic hardware

TWIRL (Shamir & Tromer): to cryptanalyze
RSA-1024 in 6 weeks on a US$10M budget

m Factorization is still a hard problem
e there is still small progress
quadratic sieve (old technique)
generalized number field (GNF) sieve
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9 Security Precautions for RSA
m Some precautions of system parameters:

(1) strong prime: optional

P+1_—~P~_P-1
e TP
p** P’ prx
(2) p & g had better differ in length by a few digits

(p & q should not be too close to each other)

- n=pa, ( - o 1y 2
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¥ ., Ex: Letp=13 and q=11, n=11%13=143
vn = V143 = 11.958+ = 12 (an easy problem!)
(X/2)2—143=(Y/2)?
Suppose X=2*12=24
(274)2 143-144-143=1? - (%)2

{p + q=24

p__q=2 '—)p=13andq=11

o EX: Let p=3 and q=29, n=3*29=87
Since/87=9.33, then we have to try (p+q)/2
from 10 until 16 (=(3+29)/2) to factorize n.

(3_22)2 87-256-87-169 =132 = (?)2
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'(3) Of course, p and q should be large enough
against factoring

(4) d can not be too small

(why small? For performance)
Some attacks exist for d < nl/4

25 FORREE T 5 B A 2 E = (LCIS)



~ m Some precautions of using RSA:

(1) Guessable message attack when encryption:

If a small set of possible message will be
encrypted and sent to the receiver, the attacker
cannot decrypt the ciphertext but he can just
encrypt the possible message and compare it with
the received ciphertext.

Note: The countermeasure
Deterministic encryption—> probabilistic encryption

(to concatenate the message with a large
random number (e.g. 64 bits long) )
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'(2) Encrypting message that is of much less
the bit length of n where e=3

Ex: Let |[n|=512 and |m|=160 then |[m3|=480
S.C=m3mod n=m3 —3/C =m (an easy problem!)

Note: The countermeasure: random padding
To force |[m’|>|n|/3
where

m’ : /// y

I I
padding=0  |M| can still <|n|/3
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Note: given gcd(x,y)=1, x! (mod y) can be found

'(3) Send the same message m to more than 3
recipients and all with e=3

f Cl—m mod n;
n3
Cz—m mod n, Vvs. C=m~mod (n{xn,xns)
C3—m mod ns
where ny, n,, and n5 are pairwise relatively prime.

(i)Based on CRT, a number C in [0, nyxn,xn3-1] can be
found > C mod n;=Cy; C mod n,=C,;
C mod N3= C3
In fact, C is m> Note that m < n,;, m< n,, and
m< ns, therefore m> < nyxn,xns.

(ilFrom m3, 3/m? =m (it is an easy problem).
(iii)Countermeasure: random padding
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- . (4) Common-modulus attack (Why common?)

29

Alice and Bob are assigned the same
modulus n, but assigned different e; & d..
Suppose d; is stored in a tamper proof
device provided by the system manager.

(e,, n): Alice’s public key
(e,, n): Bob’s public key
suppose gcd(e,, e,)=1

If Sunny sends ciphers c¢,=m¢ mod n to
Alice and Bob

r & s can be easily found > re, + se, = 1
by using extended Euclid’s algorithm

then (c_)™x(c,)® = m™atse = m (mod n) 1
Countermeasure: random padding
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30

(5) Blind-signing attack (— blind decryption)

e Bob’s signing/decryption key: d
encryption key: (e, n)

e Alice sends ¢c = m® mod n to Bob

e How to decrypt ¢ by the assistance of Bob

attacker sends x=réc mod n to Bob
(r: selected by attacker, so he knows r1)

gets signature: (ré«c)d = r«~cd = r-m
decrypts m by: m = (r-m)~ rt

r1 (mod n): by extended Euclid’s algorithm
do NOT sign blindly if possible

KB T % IR 2 Bk (LCIS)



(6) RSA signature forgery
e (a) Existential signature forgery:
any X is a signature on message m
m=X° mod n
m = (X®)? = X (mod n)
however, m=X® mod n will not be a

meaningful message (or with extremely low
probability)

countermeasure: use of one-way hash
will improve security since it is hard to
find pre-image of m

> say, given m to find M > m=h(M)

» to sign by computing S=(h(m))* mod n
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(6) RSA signature forgery (cont.)

e (b) Smooth number and multiplicative attack
smooth number: product of reasonably
small primes, Ex:81345=3x5x11x17x29
multiplicative attack:

given {my; s;=m;9mod n} {m,; s,=m,9mod n}

— {(m;xm, mod n); (syxs, mod n)}

— {my;1mod n; s;"1mod n}

*m; ! & s, mod n can be computed easily

— {m{ mod n; sy mod n}

— {(myxm->¥ mod n); (s{xs,X mod n)}
countermeasure to sign by computing

S=(h(m))*mod n since h(m,)xh(m,)=h(?)
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Rabin’s Encryption & Signature

‘Schemes
m Rabin’s encryption scheme

e The ciphertext C for message m is

C=m’modn wheren=p*q, p&q=3(mod4)
the plaintext is one of the 4 (or 2 if
gcd(m,n)#1) solutions of /C (modn)

format or redundancy is used to find m
A try but fails (why?)
2-bit header is sent with C: (a,b)

a: Jacobian symbol J(m,n)
b: sign bit of m, b=0 if 0<m<n/2, b=1

otherwise.
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= . Rabin’s encryption scheme (cont.)

34

If u=CRT(Xy,X,), -u=CRT(-X{,-X5),
v=CRT(x4,-X5), and -v=CRT(-x4,X,) are the
4 square roots of C, then a = J(m,n) is
used to distinguish u & v. (or -u & -v)

a J(u,n)=J(u,p)*I(u,q)

Q J(u,q)==-1(v,q) if g=3 (mod 4) [same for p]

Q Theorem: Let g be an odd prime

L(-1,9)=(-1)@1/72 = +1 if g=1 (mod 4)
= -1if g=3 (mod 4)
sign bit b is used to distinguish u and -u.

Exactly one of u, v, -u, -visin QR
(to discuss later, see Blum mteger)
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=5 m Rabin’s encryption scheme (cont.)

A valid method to select m from 4 square
roots of C is to use replication (part) of m
itself or with a fixed format.

QA C=(m]][last 64 bits of m])2 mod n

aQ C=(m]||[64 bits of “"0”])2 mod n

Q C=(m]|[64 bits of "1”])2 mod n
any better solutions?

O C=([64 bits of "1”]]|m)?2 mod n
Why padding on MSB & with leading “1"?
Similar case as RSA with small e (page 27).

Q C=([32 bits 1]]][32-bit random]||m)2 mod n
Why random? For probabilistic encryption.
Why not just 64-bit random with leading "1"7?
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J}h = Rabin’s encryption scheme (cont.)
s e Security of Rabin’s encryption scheme (i)

It's a “provably secure” cryptosystem

d “breaking Rabin’s scheme” & “factoring n”
are computationally equivalent

“factoring - breaking Rabin’s” is trivial

If an attacker can
(i.e., he can compute SQRT,(C)), then we
can use him to

Q We randomly compute C=m;? mod n, then
send C to the attacker and we receive one
m,= SQRT,(C). Then, gcd(m;tm,, n) gives p
or g with probability of 0.5.

Since now, then

16 Rabin’s scheme is secure ( ).
KB T % B 2 EEHE (LCIS)



Rabin’s encryption scheme (cont.)
e Security of Rabin’s encryption scheme (ii)

C=m<Z mod n is secure against passive
(ciphertext-only) attack.

But, simple version C=m<2 mod n might be
vulnerable to “"chosen-ciphertext” attack.

O Attacker selects x, computes C=x2 mod n,
then asks “"decryption oracle” the plaintext vy.
Attacker computes gcd(xty, n) which gives p
or g with probability of 0.5.

C=(m]|[last 64 bits of m])2 mod n is

secure against the above attack. Why?

d How about other padding schemes?
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38

Rabin’s signature scheme
e The signature for message m is (S, x)

S =,/h(m,x) modn

where n=p*qg, p& g=3(mod4)
X is @ random integer selected to make
h(m,x) be in QR,.

e Security of Rabin’s signature scheme

Existential forgery (as RSA): randomly select s,
related message is m=s2 mod n. If with h()?

Never sign on received random value because
of the factorization attack if without hash.

d Blind signing for RSA will NOT lead to
factorization attack even without hash.




' m Rabin’s schemes: Why p & g =3 (mod 4)?
e Leta e QR,and p=3 (mod 4), then square
roots of a are
+ a(P+1)/4 mod p

don’t need algorithm in Handbook (p.100)
Proof: Since a € QR,, then aP-1)/2=1 mod p
and a*alpr-1)/2=g(p+1)/2=g \(mod P).
p=3 (mod 4), so p+1=0 (mod 4) and (p+1)/4 is
an integer. We can have alP*1)/4 mod p as a
square root.

o After finding square roots mod p & mod q,
CRT is used to compute message or
signature.
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Blum Integer & Its Application

% .. Blum integer: n=p*q where p&qg=3 (mod 4)

e If nis a Blum integer, then
SQ,: y=x%2 mod n (xeQR,; QR,-->QR,; permutation)

SQ,tis a trapdoor permutation (hard)

only select Vy € QR (principal square root)
Why SQ, is a bijective function?

If X;#X,, then x;2#x,2 (mod n) for p&g=3 (mod 4)

Proof by contradiction X422 - X5,2=0 (mod n)

(1) Xy=X, (contradiction!)

(2) X;=-%X5: if X;eQR,, then -x, is NOT! (p.34)
Theorem: Let p & g be distinct odd primes
and n=p*q. Then, |[QR,|=(p-1)*(g-1)/4.

e Application for one-time password (How?)
40 RS T % BB R 2 BB (LCIS)



41

Given the trapdoor p & q: SQ, ! is easy
SQ, M (y)=

Can SQ,!(y) be used in Rabin’s signature?
Q Do we need it? (supposey € QR,)

m  Answer:
YES. We can define the signature to be a
QR and use SQ,(y) to sign.
However, we can just use
t+ y(P+1)/4 mod p (& mod q) & CRT to have
more efficient solution (2 times efficient;
need to check yP*1/4 ¢ QR or NQR)).
But, if we apply CRT on SQ,1(y) directly
then 4 times of speedup is possible. (p.55, 59)

Can SQ,!(y) be used in Rabin’s decryption?

m Answer: NO. Because SQ,!(y) cannot
always reach the solution with format
(m]][last 64 bits of m])
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2) Primality Test — Algorithm
& Skill
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O\ Types of Primality Test

'm Traditional trial division approach
e divided by all primes less than ni/2
e time complexity — O(n/2)
e infeasible for very large n

m Probabilistic approach
e based on number theoretic properties of
prime number

e but pseudo-primes (composite number)
sometimes pass the test
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Q) A First Try -- Fermat’s Test

44

Based on Fermat’s theorem, if n is prime,
then always a! mod n =1 (a<n)

On the other hand,
if al mod n # 1 (1<a<n-1), n is composite

but for some a, a"™! mod n = 1, n might be prime
or pseudoprime

if pseudoprime, the random number a is
called a liar
Why Fermat’s test is not popular?

1st disadvantage: at most 1/2 of ain 1<a<n-1
are liars (cf. 1/4 of Miller-Rabin test on p.49)

2nd disadvantage: Carmichael numbers (most a
are liars, but Carmichael number is of rare case)
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=27 m Carmichael numbers (smallest one is 561)

e Definition 1: composite integer n, but
a1l mod n = 1 for all gcd(a, n)=1
for n with most prime factors large, ¢(n) is
a large value —» most a are liars!

e Definition 2: composite number n is a
Carmichael number iff it is square-free and
p,—1|n—1 for all prime divisors p; of n

m Relationship between Def. 1 & 2:

e For any composite n & gcd(a, n)=1, the order
of a always divides Icm(all p;-1);
refer to next page (also notice: Icm vs. ¢(n))

e For Carmichael number, Icm(all p;-1)|n—1
Soa™ ' modn=1
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46

Q

mod 21; 21=3*7; lcm(a(3),8(7))=Icm(2,6)=6
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=227 m Example of Carmichael numbers

| «B61=3*11*17: 2|560, 10|560, 16|560
smallest <~ 1105=5%13*17; 4]|1104, 12|1104, 16|1104
number o (6k+1)*(12k+1)*(18k+1) is a Carmichael

number if its three factors are all prime

m Distribution of Carmichael numbers

e Carmichael numbers are substantially rarer
than prime numbers

e C(X): number of Carmichael numbers < X

n 3 4 5 6 7 8 9 10 11
c(10m) 1 7 16 43 105 255 646 1547 3605
12 13 14 15 16 17 18 19 20

8241 19279 44706 105212 246683 585355 1401644 3381806 8220777

47 B T 2 BEEREZ2 2 885 (LCIS)



Miller-Rabin Test

m Basic property of prime number

Let n be an odd prime, and n—1=25r where r is
odd. Let a be any integer gcd(a, n)=1, then

e a(™2)=1 (mod n), or n | a(™2)-1
a(™2)=1 (mod n) due to Fermat’s Th.

SO N
n
n

a(2”)-1
(a(r*25‘1)+ 1)*(a(r*zs‘1)_ 1)
(a2 1) (a2 H41)* . *(a +1)*(ar-1)

Therefore,

e ol =

1 (mod n) due tonj|(a™-1) or

o ar?) = —1 (mod n) for some j, 0<j<s-1
due to n|(a™?)+1)

48
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m Probability of liar
e if nis an odd composite integer, but the
above two properties are satisfied
— n is a pseudoprime and a is a liar
e |less than 1/4 of ain 1<a<n-1 are liars for n
Pop < 1/4
more precisely: at most ¢(n)/4 liars
e Ex. of pseudoprime n=21
Miller-Rabin test on next page:
with only 2 liars (a=1, -1)
cf. Fermat’s test on p.46:
with 4 liars (a=1, 8, 13, -1)
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50

a' mod 21; 21=3*7; ¢(3*7)/4=3; a>=11 or al0=-1
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extremely low probability
Let n be an odd integer, if

a # ¥1 (mod n)
but a2 =1 (mod n).
Then, n is an odd composite number.

» gcd(atl, n) is a nontrivial factor of n.
Ex: See last page, let n=3*7, a2= 1 (mod n)
has two nontrivial square roots 8 & 13. gcd(8-
1, 21)=7 & gcd(8+1, 21)=3 &
gcd(13-1, 21)=3 & gcd(13+1, 21)=7.
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=+ m The Miller-Rabin algorithm

"Input: n & security parametert =2 1
let n—1=2%r where r is odd
Fori=1tot do

randomly select base a

y=a" mod n

If (y#1 and y#-1) then
J=1

While (j = s-1 and y#-1) do
[property of [y=y? mod n

prime
number

j=j+1
If (y#£-1) then Return “n IS composite”
Return "MAYBE n is prime”

FORREE T 5 B A 2 E = (LCIS)
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Probability Consideration

: 'm In Miller-Rabin test (with t iterations)

o if return “n IS composite”
— n is 100% not prime by Fermat’s Theorem

o if return "MAYBE n is prime”
— N can be a prime or a pseudoprime by
property of prime number & existence of liars

probability of n to be a prime .
Pt < (1/4) &> 1-P,,t>1 - (1/4)

t= probability of n to be a prime

10 0.999999 = 1-10°

20 0.999999999999 = 1-10-12

30 0.999999999999999999 = 1-10-18

40 0.999999999999999999999999 = 1-10-%4
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O\ Trial Division Sieve

m Useful pre-sieve skill before Miller-Rabin test
= The probability Q(x)= p[P[X(l—%>
where p, is the set of all primes = x
e Q(x): the probability for n to

be relatively prime with X Q(x)

all primes in p, when n » x 10 0.229

e let T be product of all 10°  |0.120
103 [0.081

elements in p,
T is about 9KB for x=103 [10® |0.061

5
m Pre-sieve: test gcd(T, n) = 17 10 0.049
106 |0.041

0.0811=12.35
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RSA Speedup with CRT

'RSA speedup based on CRT:
= Given p, q, (h=p*q), d, and m,
S=m"® mod n can be sped up by
d mod (p-1
s,=(m mod p)° ™ ® mod p

d mod (g-1)

sq=(m mod q) mod ¢

Sp

1 CRT [ S

Sq

55 A T % M2 2 B (LCIS)



Why RSA with CRT?
" et |p|=|g|=512 and |[n|=1024
Also, |m|=1024 and |d|x1024
e Now, |m,|=[m,|&512 and |d,|~|d,|~512
e Half the number of “"multiplication” for
m, P mod p
e Half the number of “addition” for m «m
e Half the “ripple carry” length of each addition

m Totally, (23)/2 = 4 times improvement can be achieved.
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~.-- 2 CRT recombination algorithms:
'®  Gauss’s CRT recombination

e a standard representation but it takes
more memory space & time

S=CRT(s,, sq)
=[sxax(q”" mod p)+sxpx(p* mod g)] mod n
= [s, x X, + 54 x X,] mod n

m Garner’s CRT recombination

e widely used because it takes fewer
memory space (=1/4) & time (<1/2)
S=CRT(s,, sq)
={sq+ [(sp — Sq)x(a"" mod p)Ixg} mod n
= s, + [(S, — s)x(@- mod p) mod p] x g
S7 PR EE T 4 BB % S B (LCIS)

max=n-1,
don’t need
mod n




Basic Exponentiation
“Algorithms
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©) Exponentiation Algorithms

m Efficient method to compute g¢
m Exponentiation algorithms are basically
classified into two categories:
1. Left-to-Right (MSB-t0-LSB)
algorithms
2. Right-to-Left (LSB-to-MSB)
algorithms
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‘O L-to-R Binary Exponentiation
¥ . Example: g2¢
d=26: {(—+

D

6—>),

(Y
(H Y

1 g g3 g 13 g2
NN TN A N

Nysquare 7 multiply
m Main idea -- Horner's rule: Given d

d=>""(dx2")=(..((d x2)+d, ) x2+...+d,)x2+d,
g¢ can be computed as

0% =(...((g™") xg%) x...xg) xg"
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: L-to-R Binary Exponentiation
m Algorithm:

O1: R=1

02: fori = (k—1) downto O

03: R = R?

04: if (d == 1)thenR=Rxg
05: return R

e Performance: k squarings + on average (k/2)
multiplications
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R-to-L Binary Exponentiation

m Example: g26
d=20: (1 1 0 1 0 )

= Main idea: Given exponent d=3""(d,x2"),
g¢ can be computed as

gd _ gZH(d x2') H, O(g )

62 FORREE T 5 B A 2 E = (LCIS)



O} R-to-L Binary Exponentiation

- Algorithm:

01: R=1,T=g

02: fori=0to (k—1)

03: if (d. == 1) then R = RxT
04. T=T?

05: return R

e Performance: k squarings + on average (k/2)
multiplications

63
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L-to-R Windowing Method —
. Performance Enhancement

m 2V-ary method: scan w bits in each
iteration
e to reduce the number of multiplications
m The algorithm: (w=2)

01: R =1; precompute: g?, g3 (look-up table)
02: fori= 2 x|(k-1)/2]downto O step -2

03: R = R*

04 if ((di,;d)), # 0) then R = Rxg(di+1di)2
05: return R

e Performance: k squarings + on average
(3/4)*(k/2) multiplications

FORREE T 5 B A 2 E = (LCIS)
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m Example of 2W-ary method (w=2), 4-ary:

d:1}a 011001004)\2
o gt

%_94_{6_;24_ 27_M108_ 432_w1736_gl737
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@} R-to-L Windowing Method -
=~ Approach 1 (not good)

m Example (w=2)

d=(1 10 11 00 10 01),=1737
glo24 256 b4 gle g4 g for x(01)
g2048 512 128 @32 g8 g2 for y(10)
g3072 g768 l92 g4  gl2 g3 for z(11)

gl024 x 512 x 192 x g8 x g = g17%
e Performance: extremely inefficient

66
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p R-to-L Windowing Method -
. Approach 2

m Example (w=2)

d=(@ 10 11 00 10 O1),= 1737

glo24 256 64 gle g4 g for x(OD

(91024 X g )1 — 91025
( g256 X g4 )2 — g520
( g64 )3 — 9192

1025 \, 520 v, 192 — 1737
g X g xgrUt =49

e Performance:
much better than approach 1
asymptotically similar to L-to-R version
however, a little worse than L-to-R version
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1O Sliding Window Method (L-to-R)

m Main ideas: (reduce both space & time)
e Reduce size of look-up table (space)
Example (window size=2):
only pre-compute g3

i .
Key point: \ d=(11011001001), (fixed window)
binary & d=(11011001001), (sliding window)
. 4-ary

e Reduce # of multiplications (time)
Example (window size=2):
bypassing unnecessary multiplication
~rv (0110~~~ (fixed window)
~r~(0110~~ (sliding window)
o Performance (w-bit window): k squarings +

on average k/(w+1) multiplications
68 A T % HISR A2 B (LCIS)



2 Performance Comparison

'm Performance of exponentiation algorithms

. . _ Multiplication
Algorithm Table Size | Squaring
Average Worse
Right-to-Left 1 k k/2 k

Left-to-Right |1 (or No) k/2 k

K
L-to-R (2-bit) | 3 (or 2) K Yaxk/2=3k/8 | k/2
K

REE (2w-1)/2w

L-to-R (w-bit) (or 2w-2) X K/w k/w

Sliding (2-bit) | 2 (or 1) kozr)(k' K/(2+1) | Kk/2
w-1

Sliding (w-bity| 2 .OF | Kor kK/(w+1) | Kk/w

(2*1-1) | (k-w)
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1O\ Multiple Exponentiation

™ a How to compute g2h® efficiently?

e useful to implement many important
cryptosystems: e.g., DSA, ElGamal, Schnorr

e not to compute g2 and h? individually

e square together & multiply together;
pre-compute gxh (if window size w=1)

e key point: Horner’s rule in vector form
m Example: (for w=1)
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@) Sliding Window Multiple
= . Exponentiation

m How to compute g2hP even more efficiently?
e reduce size of look-up table (if window size
w>1)
e reduce number of multiplications

m Performance
e k-bit exponents; w-bit window size;
t-exponentiations (e.g., g2h? has t=2)

o it takes: Kk squarings + on average
k/(w+1/(2t-1)) multiplications [from Yen94]
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