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Abstract 

This paper proposes a self-stabilizing edge coloring algorithm using (Δ + 4) 
colors for distributed systems of a planar graph topology, where Δ ≥ 5 is the maximum 
degree of the graph. The algorithm can be applied to anonymous uniform systems and 
its time complexity is O(n2) moves under the central daemon model. 

1. Introduction 
A distributed system can be modeled by a simple connected undirected graph G 

= (V, E), where V is the set of nodes and E is the set of edges representing 
intercommunication links. Its states are divided into two categories: legitimate states 
and illegitimate states. Ideally, it should remain in legitimate states to work properly, 
but unexpected transient faults may bring it into an illegitimate state. Therefore, it 
needs to deal with such situations by some sort of fault-tolerant mechanisms, one of 
which is called self-stabilization [5]. A system is said to be self-stabilizing if (1) it can 
converge to a legitimate state regardless of any initial (possibly illegitimate) state, and 
(2) when it is in a legitimate state, it remains so henceforth.  

In this paper, we focus on the edge-coloring problem in a self-stabilizing system. 
We want to assign each edge a color such that adjacent edges (i.e., edges incident to a 
node) get distinct colors. The system is then said to be in a legitimate state if and only 
if it has a proper edge coloring. Edge coloring has many applications. For example, it 
can be used to schedule nodes so that each node can communicate with at most one 
node at a time. This can be achieved by demanding two neighboring nodes to 
communicate with each other only at a time slot corresponding to the color of the 
edge connecting them. 
 Usually, one would want to edge color G with as few colors as possible. The 
minimum number of colors sufficient to edge color G is called the edge chromatic 
index, denoted by χ′(G). Let Δ be the maximum degree of G. It is easy to see that χ′(G) 
≥ Δ. Another trivial bound is χ′(G) ≤ 2Δ - 1 because each edge has at most 2Δ - 2 
adjacent edges. In 1964, Vizing proved a remarkable result that χ′(G) ≤ Δ + 1 for 
simple graphs [14]. By Vizing’s theorem, χ′(G) is either Δ or Δ + 1 for simple graphs. 
For general graphs, deciding whether χ′(G) is Δ has been proven to be an 
NP-complete problem [9]. For bipartite graphs, they have χ′(G) = Δ, while cycles of 
odd number of nodes have χ′(G) = Δ + 1. For planar graphs, there are instances such 
that χ′(G) =Δ or Δ + 1 for Δ = 2, 3, 4, 5. But for the case Δ ≥ 6, Vizing proved that 
χ′(G) = Δ if Δ ≥ 8; he also made the following conjecture: For a planar graph G, χ′(G) 
= Δ if Δ = 6 or Δ = 7 [15]. This conjecture has been confirmed for the case Δ = 7 in 
[16] and [13], but it still remains open for the case Δ = 6.  

There are many algorithms [2, 3, 4, 6, 8, 11, 12, 14] proposed to solve the edge 
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coloring problem for different kinds of graphs (such as planar, bipartite, and general 
graphs, etc.) under different computing models (such as sequential, parallel, and 
distributed models). In this paper, we propose an edge-coloring algorithm for a planar 
graph under self-stabilizing computing model. The algorithm can be applied to 
anonymous uniform systems since it does not rely on node IDs and each node 
executes the same code. By labeling nodes, it assigns each edge a priority such that 
each edge has at most Δ + 3 adjacent edges with equal or higher coloring priorities, 
where Δ ≥ 5 is the maximal degree of the graph. When two adjacent edges are of the 
same color, the lower-priority one is forced to change its color. The coloring hence 
settles from the highest-priority edges to the lowest-priority ones. Eventually the 
graph has a proper edge coloring and no edge can change its color henceforth. And the 
number of colors used is thus at most Δ + 4. As we will show, the time complexity of 
the algorithm is O(n2) moves under the central daemon model. 
 The rest of the paper is organized as follows. Section 2 presents the algorithm. Its 
correctness proof and time complexity analyses are given in Section 3. And Section 4 
concludes this paper. 

2. The proposed algorithm 
 In this section, we propose a self-stabilizing (Δ + 4)-edge-coloring algorithm for 
a distributed system of a simple planar graph topology G = (V, E), where Δ is the 
maximum degree of G. We assume that Δ ≥ 5; otherwise the condition Δ + 4 > 2Δ - 1 
holds and we can develop a trivial solution using 2Δ - 1 colors. Moreover, we assume 
that the system is uniform; i.e., all nodes are logically equivalent and run the same 
program. In other words, we assume anonymous networks; i.e., the algorithm does not 
rely on node IDs. 

We express our algorithm by a set of rules in the form: guard → action, where 
guard is a Boolean formula and action is a set of program statements. Each node can 
read its own and its neighbors’ states to evaluate the guards. When the guard of a 
certain rule of a node is evaluated to be true, the node is said to be privileged and can 
take a move to execute the action part of the rule. The central daemon model is 
assumed. The central daemon always selects one privileged node to take a move at a 
time. After the selected node finishes the move, the daemon again chooses a 
privileged node to take another move, and so on. The selection by the central daemon 
is unpredictable, so the execution sequence can be in any order.  

To edge color G, our first step is to assign each edge a coloring priority. We give 
each node a label such that any node has at most five neighbors of equal or larger 
labels. An edge’s coloring priority is then defined to be the sum of its endpoints' labels. 
As will be shown later, any edge has at most Δ + 3 adjacent edges of equal or higher 
priorities. The colors are assigned to edges according to their priorities, so Δ + 4 
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colors are sufficient to edge color G properly. 
 Below, we explain how to assign labels for nodes. The idea is the same as those 
in [7] and [10]. Let n = |V| be the number of nodes in the system. It is well known that 
|E| ≤ 3n - 6 for simple planar graphs. The inequality implies that G contains at least 
one node of degree at most 5. This is because if all nodes are of degree at least 6, then 
we have |E| ≥ 3n, which is a contradiction. We search for such nodes and let them 
form the set V0. We then remove from G the nodes in V0 as well as the edges incident 
to them to get a planar subgraph G - V0. In a similar manner, we search for the nodes 
of degree at most 5 in G - V0 and let them form the set V1. By repeating this procedure, 
the node set V is partitioned into non-empty, mutually disjoint sets V0, V1,…. We 
define a node’s label to be k if and only if it belongs to Vk. Each node u maintains a 
variable L.u to denote its label, where L.u ∈ {0, 1…, n}.  
 The above labeling procedure can be realized in a distributed way. Let N.u 
denote the set of node u’s neighbors and let Nk.u = {v | v ∈ N.u, k ≤ L.v} denote the 
subset of u’s neighbors whose labels are equal to or larger than k. Node u always sets 
L.u to be the minimum k such that |Nk.u| ≤ 5. In this way, any node u in V0 has L.u = 0 
because the condition |Nk.u| ≤ 5 holds for any k ≥ 0. Based on the similar reason, any 
node u in V1 has L.u = 1,…, and so forth. Hence the label assignment rule R0 for any 
node u is: 
 

(R0) L.u ≠ min{k | 0 ≤ k ≤ n, |Nk.u| ≤ 5} → L.u = min{k | 0 ≤ k ≤ n, |Nk.u| ≤ 5}; 
 
In our design, a node needs to know the labels of all neighbors’ neighbors, so 

each node u maintains a variable L(v).u for each of its neighbors v and sets L(v).u = 
L.v whenever L(v).u ≠ L.v. We have the following rule R1: 

 
(R1) ∃v: L(v).u ≠ L.v → L(v).u = L.v; 
 
With the help of the labels, we define the coloring priority for an edge (u, v) to be 

L.u + L.v. When the labeling settles, this definition makes (u, v) have at most Δ + 3 
adjacent edges with equal or higher priorities for the following reasoning. We first 
focus on the case L.u ≠ L.v. Without loss of generality, we further assume that L.u < 
L.v. For node u, it has at most 4 neighbors in N.u – {v} having equal or larger labels 
than L.u, so at most 4 edges incident to u have equal or higher coloring priorities than 
that of (u, v). For node v, it has at most Δ - 1 neighbors in N.v – {u} with equal or 
larger labels than L.u, so at most Δ - 1 edges incident to v have equal or higher 
coloring priority than that of (u, v). On the whole, (u, v) has at most 4 + (Δ-1) = Δ + 3 
adjacent edges with equal or higher coloring priorities than itself. Now, focus on the 
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case L.u = L.v. Based on the similar reasoning shown above, at most 4 edges incident 
to u and at most 4 edges incident to v have equal or higher coloring priorities than that 
of (u, v). Hence (u, v) has at most 8 (or Δ + 3; this is because Δ + 3 ≥ 8 under the 
assumption of Δ ≥ 5) adjacent edges of the same or higher priorities than itself.  

Now we begin discussing the coloring. To express an edge (u, v)’s color in a 
distributed way, node u (resp., node v) maintains a variable C(v).u (resp., C(u).v) to be 
the color associated with this edge. Since each edge has two color variables associated 
with it, we let the endpoint with the smaller label decide the edge’s color and let the 
other endpoint copy that color. That is, for an edge (u, v) such that L.u < L.v, node u 
selects a proper color for C(v).u, and node v just sets C(u).v = C(v).u. For the case of 
L.u = L.v, if node u is the first one chosen by the central daemon to take a move, it 
selects a proper color for C(v).u and then v just copies this color for C(u).v, and vice 
versa. It is noted that the coloring priority of an edge has nothing to do with the order 
of the endpoints deciding the edge color. 

For an edge (u, v) such that L.u ≤ L.v, let Z(u*, v) = {z | z∈N.u, L.u ≤ L(z).u}-{v} 
be the set of u’s neighbors, except v, whose labels are larger than or equal to u’s label. 
On the other hand, let Z(u, v*) = {z | z∈N.v, L.u ≤ L(z).v} – {u} be the set of v’s 
neighbors, except u, whose labels are larger than or equal to u’s label. We also let 
Used(u, v) = {C(z).u | z ∈ Z(u*, v)} ∪ {C(z).v | z ∈ Z(u, v*)} be a set of colors. It 
contains the colors used by (u, v)’s adjacent edges that have equal or higher priorities 
than (u, v). By the definition, we have |Used(u, v)| ≤ |Z(u*, v)| + |Z(u, v*)| ≤ 4 + (Δ - 1)  
= Δ + 3. If we set C(v).u to be an element not in Used(u, v), we then get a proper edge 
coloring. Below, we further define two functions Incorrect(C(v).u) and Decide(C(v).u) 
to help node u decide C(v).u. For the sake of presentation, we use Correct(C(v).u) to 
denote the complement of Incorrect(C(v).u). 

 

⎩
⎨
⎧ ∈

≡
otherwisefalse

vuUsedkiftrue
kIncorrect

,
),(,

)(  

 
Decide(C(v).u) ≡ to set C(v).u = min({0,1,…, Δ+3}- Used(u, v)); 
 
With these functions, we have the rules R2 to R4 for a node u to edge color the 

graph. By the rules, an edge cannot choose the color used by its adjacent edges with 
equal or higher priorities. On the other hand, an edge may or may not choose the color 
used by a lower-priority adjacent edge. This is because the set Used(u, v) may contain 
the colors used by lower-priority adjacent edges when node u decides the color for (u, 
v). However, since |Used(u, v)| ≤ Δ + 3, there is always a color for node u to choose to 
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edge color the graph properly. 
(R2) ∃v: L.u < L.v ∧ Incorrect(C(v).u) → Decide(C(v).u);  
(R3) ∃v: L.u > L.v ∧ C(v).u ≠ C(u).v ∧ (Correct(C(u).v) by v) → C(v).u = C(u).v; 
(R4) ∃v: L.u = L.v ∧ Incorrect(C(v).u) ∧ Incorrect(C(u).v) → Decide(C(v).u); 
(R5) ∃v: L.u = L.v ∧ C(v).u ≠ C(u).v ∧ Correct(C(u).v) → C(v).u = C(u).v; 
It is noted that in rule R3, “Correct(C(u).v) by v” stands for the result of 

Correct(C(u).v) evaluated by node v. Since Used(u, v) may be different from Used(v, 
u) in the case of L.u ≠ L.v, nodes u and v may get different results of Correct(C(u).v). 
By reading the variables maintained by both u and v, node u can determine the result 
of Correct(C(u).v) evaluated by v, so it can evaluate the predicate of R3 correctly. 

3. Correctness and Analysis 
 According to the definition of edge coloring, the conditions C(v).u = C(u).v and 
C(v).u ≠ C(v).w should hold in a legitimate state for any adjacent edges (u, v) and (v, 
w). Below, we verify that in O(n2) moves, the system reaches a legitimate state from 
any initial state. We first show that in O(n2) moves the labeling stabilizes; i.e., no node 
can execute R0 and R1. Afterward, we show that in O(n2) moves the system is in a 
legitimate state.  

To show that in O(n2) moves no node can execute R0, we introduce the terms: 
decreasing move and increasing move [1]. An execution of R0 is said to be a 
decreasing (resp., increasing) move if and only if it makes L decrease (resp., increase). 
We say that a move m1 triggers another move m2 if and only if the node to take m2 is 
privileged only after m1 moves. Below, we show that a node’s decreasing move 
cannot trigger increasing moves for its neighbors.  

 
Lemma 1. For an edge (u, v), let m1 be u’s move of R0 and m2 be v’s move of R0 such 
that m1 triggers m2. If m1 is a decreasing move, then m2 is not an increasing move.  
Proof: To ensure that v gets a privilege of R0 by u’s move, we assume that v cannot 
take the move m2 before u takes the decreasing move m1. According to R0, this 
assumption implies that |NL.v

.v| ≤ 5. And after u takes the decreasing move, the 
condition |NL.v

.v| ≤ 5 still holds. Because the necessary condition for v to increase L.v 
is |NL.v

.v| > 5, m2 cannot be an increasing move. □ 
 
Lemma 2. The labeling stabilizes in O(n2) moves of R0 and R1.  
Proof: To prove this lemma, we show that no node can execute R0 in O(n2) moves 
from the start and no node can execute R1 in O(n2) moves. We first show that each 
node takes at most n increasing moves and then at most n decreasing moves. By 
lemma 1, a node’s increasing move (of R0) can only be triggered by its neighbors’ 
increasing move (of R0). Since 0 ≤ L ≤ n, a node can take at most n increasing moves. 
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After no node can execute an increasing move, a node executes at most n decreasing 
moves for the same reason that 0 ≤ L ≤ n. To sum up, each node takes O(n) moves of 
R0. Hence no node can execute R0 after n*O(n) = O(n2) moves. 

Now, let’s focus on R1. Since any node u executes R1 as long as L(v).u ≠ L.v and 
each a node v changes its label L.v at most O(n) times, the total number of moves for 
R1 is O(|E|)*O(n) = O(n2), for G is a planar graph. That is, no node can execute R0 
and R1 after O(n2) + O(n2) = O(n2) moves. □ 
 
 Below, we define a bounded function F which maps a system state to an integer 
value:  

∑∑
∈∈

=
uNvVu

vufF
.
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It is noted that the predicate Incorrect(C(v).u) in f(u, v) is evaluated by node u. 
The function F maps a system state to an integer value. Below, we first justify that the 
edge coloring is proper if and only if F = 0. We then show that F eventually decreases 
to 0. 

 
Lemma 3. The edge coloring is proper if and only if F = 0. 
Proof: (Necessity) In a proper edge coloring, C(u).v = C(v).u and C(v).u ≠ C(v).w for 
any pair of adjacent edges (u, v) and (v, w). It is easy to check f(u, v) = f(v, u) = 0 for 
such a condition. Hence F = 0. 
 (Sufficiency) When F = 0, the condition C(u).v = C(v).u obviously holds. Hence 
we use contradiction to prove C(v).u ≠ C(v).w to complete this lemma. Suppose that 
C(v).u = C(v).w holds for some pair of adjacent edges (u, v) and (v, w). Without loss of 
generality, we assume L.u ≤ L.w. Because L.u ≤ L.w = L(w).v, we have w ∈ Z(u, v*) 
and C(w).v ∈ {C(z).v | z ∈ Z(u, v*)} ⊆ Used(u, v). Since C(v).u= C(v).w = C(w).v ∈ 
Used(u, v), node u evaluates Incorrect(C(v).u) true. It implies that f(u, v) > 0 if L.u ≤ 
L.v, or that f(v, u) > 0 if L.u ≥ L.v. For either case, we have F > 0, which is a 
contradiction. □ 
 
Lemma 4. Suppose that the labeling has stabilized. Let (u, v) be an edge such that L.u 
≤ L.v. After node u executes R2 or R4 to change C(v).u, F increases by at most 3L.u+L.x, 
where x ∈ N.u and L.x < L.u. 
Proof: Since the labeling has stabilized, nodes’ labels are fixed and each edge (x, y) 
has only two possible values for f(x, y), either 3L.x+L.y or 0. Thus, if F increases after 
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node u executes R2 or R4, then we have that f(u, x) or f(x, u) alters to be 3L.u+L.x from 
0 for some u’s neighboring node x. Below, we show that there is at most one such 
node x to increase F and L.x < L.u. The condition L.x < L.u makes f(u, x) = 0 
permanently, and thus we have F increases by at most 3L.u+L.x. 

First, we use contradiction to prove that there is at most one node to increase F. 
Assume that there is more than one node to increase F. We pick up any two such 
nodes and denote them by x0 and x1. Without lose of generality, we assume L.x0 ≤ L.x1. 
Because f(xi, u) = f(u, xi) = 0 before C(v).u is altered, node xi has C(xi).u = C(u).xi and 
Incorrect(C(u).xi) = false, where i = 0 or 1. Altering C(v).u does not change C(xi).u = 
C(u).xi. Thus, the only way to increase f(xi, u) (or f(u, xi)) is by altering 
Incorrect(C(u).xi) (or Incorrect(C(xi).u)) to be true from false; it means that the new 
C(v).u is same as C(u).xi (or C(xi).u). We thus have C(u).x0 = C(u).x1. Since x1 ∈ Z(x0, 
u*), we have C(u).x0 = C(u).x1 = C(x1).u ∈ {C(z).u | z ∈ Z(x0, u*)} ⊆ Used(x0, u*). 
That is, Incorrect(C(u).x0) = true (or Incorrect(C(x0).u) = true) before node u changes 
its color. It is a contradiction.  

Next, we use contradiction to prove L.x < L.u for a node x to increase F. Assume 
L.x ≥ L.u. We have L(x).u = L.x ≥ L.u, so x ∈ Z(u*, v) and C(x).u ∈ {C(z).u | z ∈ Z(u*, 
v)}. Because node u executes R2 or R4 to assign C(v).u a value not in the set Used(u, 
v), the new C(v).u must be different from C(x).u. Since f(u, x) = f(x, u) = 0 before 
node u executes R2 or R4, we have C(x).u = C(u).x. Hence, C(v).u ≠ C(u).x and 
Incorrect(C(u).x)=false after the change of C(v).u. To sum up, C(x).u = C(u).x and 
Incorrect(C(u).x) = false before and after the change of C(v).u; i.e., f(u, x) and f(x, u) 
remains the same and F does not increase. Contradiction occurs. □ 
 
Lemma 5. Suppose that the labeling has stabilized. Let (u, v) be an edge such that L.u 
≤ L.v. After node v executes R3 or R5, F decreases by at least 3L.u+L.v and increases by 
at most 3L.v+L.y, where y ∈ N.v and L.y < L.u. 
Proof: Let’s consider the decreasing of F first. After node v executes R3 or R5, the 
conditions C(v).u = C(u).v and Correct(C(v).u) = true for node u hold, or equivalently, 
f(u, v) = f(v, u) = 0. Therefore, F decreases by 3L.u+L.v if L.u < L.v or decreases by 
2×3L.u+L.v if L.u = L.v.  

Now, let’s consider the increasing of F. We first want to show that if F increases, 
then (1) there is exactly one node y, y ∈ N.v such that f(y, v) or f(v, y) increases and (2) 
L.y < L.u. The proof of (1) is similar to that in lemma 4, so we skip it. We next use 
contradiction to prove L.y < L.u. Suppose L.y ≥ L.u. For L(y).v = L.y ≥ L.u, we have y 
∈ Z(u, v*) and thus C(y).v ∈ Used(u, v). Because Correct(C(v).u) = true for node u, 
C(v).u ∉ Used(u, v) and we have C(v).u ≠ C(y).v = C(v).y. After node v executes R3 
or R5 to set C(u).v = C(v).u, the condition C(u).v ≠ C(v).y holds and hence 
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Incorrect(C(v).y) = false. That is, f(y, v) and f(v, y) remain intact and F does not 
increase; it is a contradiction. □ 
 
Lemma 6. Suppose that the labeling has stabilized. Let (u, v) be an edge such that L.u 
≤ L.v. After node u executes R2 or R4 and node v executes R3 or R5, F decreases by 
at least 3L.u+L.v-1. 
Proof: According to lemmas 4 and 5, F decreases by at least 3L.u+Lv and increases by 
at most 3L.u+L.x+ 3L.v+L.y, where L.x, L.y < L.u ≤ L.v. Therefore, the overall decrease is 
at least 
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□ 
Theorem 1. The system eventually enters a legitimate state. 
Proof: It is the direct consequence of lemmas 2, 3, 4, 5, and 6. □ 
Theorem 2. From any initial state, the system enters a legitimate state in O(n2) 
moves. 
Proof: Let T(G) be the number of moves for a system of topology G = (V, E) to enter 
a legitimate state since the labeling has stabilized. According to lemma 2, the labeling 
stabilizes in O(n2) moves from the start, so it suffices to prove this theorem by 
deducing T(G) = O(n2).  

Let (u, v) be an edge with the highest coloring priority. Each time (u, v) changes 
its color, in the worst case, all the other edges with lower priorities in G are forced to 
change their colors. On the other hand, (u, v) is never forced to change its color. 
Therefore, T(G) can be defined by a recursive formula: T(G) = T(G – (u, v)) + O(|E|), 
where T(G) = 0 if G = (V, φ). We have T(G) = O(|E|2) = O(n2) since G is planar. □ 
  
Theorem 3. When the system is in a legitimate state, it remains so henceforth. 
Proof: It is easy to check that no node can execute a rule to change the node labels or 
the edge colors when the system is in a legitimate state. Therefore, the theorem holds. 
□ 

4. Conclusion 
In this paper, we have proposed a self-stabilizing edge coloring algorithm for 

distributed systems of a planar graph topology. It utilizes the concept of node labeling 
to assign each edge a coloring priority. It can edge color the graph properly with Δ + 4 
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colors, where Δ ≥ 5 is the maximum degree of the graph. It is applicable to 
anonymous uniform systems since it does not rely on node IDs and each node 
executes the same code. The time complexity of the algorithm is O(n2) moves under 
the central daemon model. 
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