Size-Independent Self-Stabilizing Asynchronous Phase
Synchronization in General Graphs'

Chi-Hung Tzeng, Jehn-Ruey JiarfgAND Shing-Tsaan Huarly
TDepartment of Computer Science
National Tsing Hua University, Hsinchu, Taiwan, 30013
*Department of Computer Science and Information Enginegerin
National Central University, Chungli, Taiwan 32054.

Abstract

In this paper, we design a self-stabilizing phase synchesror distributed sys-
tems. The synchronizer enables a node transfer from one phiétse next one, subject
to the condition that at most two consecutive phases caraagmeong all nodes. It
does not rely on any system parameter like the number of naaesis thus fit for
the system with dynamically changing number of nodes. Eacte just maintains a
few variables that are related to its neighborhood; all apens are decided based on
local information rather than global information. The meynasage of the proposed
algorithm is low; each node has or)(AK) states, wherd is the maximum degree
of nodes anK > 1 is the number of phases. To the best of our knowledge, thiere a
no other such size-independent self-stabilizing algorittior systems of general graph
topology.

Keywords: General connected graph, Fault tolerance, Phase synzhtiom, Self-
stabilization, Spanning tree

1. Introduction

A distributed system may become disordered due to unexghéetesient faults, such
as the corruptions of node states or joining/leaving of sod&e can make it resilient to
such faults by the concept sElf-stabilization which has two criteria: (1L onvergence
Starting from any initial configuration (possibly illegathe system can converge to a legal
one in finite time. (2)Closure Once the system is in a legal configuration, it remains so
henceforth [6]. When a self-stabilizing system encournttarssient faults, it can be thought
as in an arbitrary initial configuration. With the convergeiproperty, it can reach a legal
configuration; with the closure property, it can then fuocttorrectly henceforth.

The problems of synchronizing phases of nodes in selfisady distributed systems
are important. Such problems can be classified into thresyoges: clock synchroniza-
tion, neighborhood synchronization, and phase synchatioiz. Theclock synchronization

*This is an extended version of the paper entitled “Self-8zatg Asynchronous Phase Synchronization in
General Graphs,” presented in the 8th International Symaposn Stabilization, Safety, and Security of Dis-
tributed Systems (SSS 2006), 2006.

2 Size-Independent Self-Stabilizing Asynchronous Phasel8wnization in General Graphs

requires that all nodes eventually have the same phaseddt)clalue and concurrently
advance the value by one per execution step [2, 7,11, 12&ri@lelock synchronization
algorithms work only under the fully synchronous executioendel, in which every node
makes a move in an execution step. Treéghborhood synchronizatiaequires that the
phases of two neighboring nodes be different by at most oyfe |4]. In this paper, we
focus onphase synchronizatioas defined in [16—18] and is also known zerier syn-
chronization A system node is assumed to be in one of circularly arranbedes: phase

0, phase 1,..., phase— 1, whereK is the number of phases. The relation between any
two nodes’ phases must satisfy the following criteria:

Definition 1. (Phase Synchronization
¢ No node can proceed to phase-K (mod K) until all nodes are in phase k.

e When all nodes are in phase k, each node eventually procequisase k-1 (mod
K).

One of the application of phase synchronization is to busgirechronous environment
out of an asynchronous one. For example, algorithms suahexsator[10] require nodes
to take its move concurrently and coherently. Yet some nat®shave more computing
power; over time, they may take much more tasks than reqifithéy run in an asyn-
chronous environment. That would cause the algorithm tddaneet its design purpose
but such a problem can be avoided by introducing a phase symigkr that synchronizes
nodes.

There are many self-stabilizing phase synchronizatioorélyms proposed in the liter-
ature [1,13,14,16,17]. The algorithm in [17]usiforny that is, it assumes that all system
nodes have no distinguishable identification and have time $gehavior. It is designed for
uniform complete graphs and it demands a node to proceednmpapphase by examine
all others’ phases. The algorithm in [16] is based on the mfetken circulation. It is
designed for non-uniform rings, in which a node is identifeeda special nhode. When
receiving a token, the unique special node increments tasgphumber and forwards the
token; on receiving the token, any other node proceeds todivgphase and then forwards
the token. The algorithm in [1] is for rooted trees. It cléissi nodes into the root node,
internal nodes and leaf nodes. The root starts a new phasgewdreit detects the end of
the last phase, whereas any other node just copies that. pHasalgorithm in [13] is for
uniform rings of odd size. It also uses token circulation aorg out the synchronizer: a
node receiving a token copies the sender’'s phase and inotere token’s counter by
one. When the counter value is equal to the number of noddsisytstem, the token
owner resets the counter, then proceeds to the next phasseadd out the token. The

C. H. Tzeng, J. R. Jiang AND S. T Huang 3

algorithm in [14] is for uniform rings of any size. It views g as a set of segments of
different phases and tries to make the number of segmentsaterto one to achieve phase
synchronization.

The proposed algorithm is designed for general connectgahgr It is semi-uniform;
i.e., all system nodes, except a special node, have idébgtavior. It does not rely on
any system parameter like the number of nodes, and is thas fité systems with dynam-
ically changing number of nodes. Its basic idea is to usedkert circulation concept to
achieve spanning tree construction and phase synchrmmizatultaneously. It is not just
a combination [3] of a tree construction algorithm, suchresé in [9], and a phase syn-
chronization algorithm for trees, such as that in [1]. Ualike algorithmsin [13,14,16,17]
relying the knowledge of the number of system nodes, theqeegh algorithm is indepen-
dent of any system parameters. It is thus fit for the systentis ayinamically changing
number of nodes. It is more flexible than (or as flexible agjtesl ones. The numbkrof
phases can be any value larger than one for the proposedlailgokHowever, it holds that
K=n>3,K>nK=2KisevenanK >n—1, wherenis the number of system nodes,
for the algorithms in [17], [16], [1], [13], and [14], respely. It is also memory-efficient;
its space complexity iI©(AK) states, wherd is the maximum degree of nodes. Its space
complexity is the same as that of the algorithm in [1] and itdvehanO(nK) of the algo-
rithms in [13, 14]. To the best of our knowledge, there are th@osuch size-independent
self-stabilizing algorithms for systems of general coedgraph topologies.

We use a set of rules to describe our algorithm. The propdgeditam can operate
correctly in the parallel execution model, in which a diatited daemon selects an arbitrary
subset of nodes to execute the rules in each execution skep.isTa more general model
than the serial execution model adopted by the algorithh3ih jn which a central daemon
[6] randomly selects a node to execute exactly one rule ih egecution step.

The rest of the paper is organized as follows. Section 2 ptedhe system model
and some terms used throughout this paper. Section 3 shawmsrdposed algorithm.
Its correctness proofs and time complexity are analyzeeatian 4. Finally, section 5
concludes this paper, extending the idea proposed in tipisrpend showing some future
work.

2. The System Model

We model the system by a connected undirected g&aph(V,E), whereV is the set
of nodes andE is the set of edges representing the communication links. Ae@des and
j are said to be neighborsi(if, j) € E. Each node keeps a set of variables, to which it can
write its own state and from which it can read the neighbdeges. Throughout this paper,
we use the notatio ARi to denote the variabARmaintained by node

4 Size-Independent Self-Stabilizing Asynchronous Phasel8pnization in General Graphs

The behavior of a node is defined by a set of rules of the fguatd — actior’, where
guardis a boolean formula anakctionis a set of program statements about how to update
the values of the variables. Once the guard of one rule isftnua node, we say that the
node isprivileged and the rule issnabled The privileged node can execute the action
of the enabled rule; we say that it executes a rule. A rule égted in an atomic way:
evaluating the guard and executing the correspondingraati® done uninterruptedly. In
this paper, we assume that the systerseii-uniform each node except the special node
r has the same set of rules.

We use the ternaon figurationto refer to a vector of all nodes’ states for representing
the system status. Given a configuratioand its successar, the transition front to ¢/
is called acomputation stepdenoted byc — ¢’. Duringc — ¢/, one or more privileged
nodes in the configuratiomconcurrently execute rules and each of them executes gxactl
one rule. After that, the system enters the configuratiand the next computation step
begins. In this paper, we assumgaaallel execution modelThere is alaemorselecting an
arbitrary non-empty subset of privileged nodes to exeautsrduring every computation
step.

The computation of the system can be expressed by a seriesfgfurationgcy, ¢, .. .),
wherecy is an arbitrary initial configuration and eagh— ¢y 1 is a computation step. We
usec ~ Ck.m to denotam consecutive computation steps, where- 0 andk > 0. Given
a configuration, its successor may not be unique, dependirtgpey the daemon selects
privileged nodes. A self-stabilizing system must guararibat it eventually reaches a le-
gal configuratiorc, from any possible initial configuratiocy; that is, co ~ ¢, where/
is a finite integer. This requirement is callednvergence Another requirement of self-
stabilization is calle¢tlosure Given a legal configuration, its successor is also legal.

For the sake of simplicity, we ugeund instead of computation step to explain how
the system converges to a legal configuration. Starting Bi@onfiguratiorey, a round is
the least sequence of consecutive computation sfepscy . m such that every privileged
node incy has executed one or more rules when the system reaghgsThe first round
starts fromcp, and its ending configuration is the beginning of the secondd, ..., and
so on. In this paper, the time complexity is the number of dsuconverging to the first
legal configuration in the worst case.

3. The Phase Synchronization Algorithm

In this section, we develop a phase synchronization algorfor semi-uniform sys-
tems under the parallel execution model. Our idea is to coctsa spanning tree rooted at
the special node. The node is responsible for starting a new phase when it detects the
end of the last phase. Any other node simply copies the pHateparent; thus the new

C. H. Tzeng, J. R. Jiang AND S. T Huang 5

Variables:

P: Parent pointer
D¢ {F,B}
Ce{0,1,2}

For the root node, Pr =r andD.r = F.
RO: (Vj €Child.r:D.j=BAC.j=C.r) - C.r=Cir+1;

Fori #r:
R1: (D.i=F)A(VjeChild.i:D.j=BAC.j=C.i)— D.i=B;
R2: (D.i =B) A (D.Pi=F)A(C.i#C.Pi) - D.i = F; C.i = C.Pi;

Figure 1: The token circulation for a static tree rooted at

phase is propagated in a top-to-down manner and eventulatigdes proceed to the new
phase.

To realize the above idea, we define a conceptual objectdalken circulating along
only tree edges. (An edge is called tree edge if one of its Enthe other’s parent.) There
are two types of tokendorward tokensandbackward tokensForward tokens travel the
tree from the root to leaf nodes, while backward tokens trfieen leaf nodes to the root.
During traveling, forward tokens help (1) propagate theentrphase, and (2) construct the
spanning tree. On the other hand, backward tokens simppythelroot node know when
to start a new phase; they are irrelevant to tree construdticshort, phase synchronization
is done in tandem with spanning tree construction. In thiaindonfiguration, the phase
values may violate the requirements of Definition 1 and tee &dges may induce a forest
rather than a spanning tree. As the algorithm runs over tthee system converges to
legitimate configurations and we have consistent phaseesahgether with a spanning
tree

The proposed algorithm is developed on the basisk#n circulatiormechanism [15].
In [15], the number of tokens can be more than one, but adjaxetes never hold tokens
at the same time. That is, nodes holding tokens fornndependent seand thus [15]
solveslocal mutual exclusion problemHere we extend idea of [15] and design a phase
synchronizer for general connected graphs. For the sake=eéptation, we rephrase [15]
into three rules shown in Fig. 1. In the figufi is the parent of nodeandChild.i =
{j|P.j =i} stands for the set dfs children nodes. In addition to the pointer variaBle
every node keeps two scalar variab@sandC. The variableD stands for the token’s
direction and its value is eithd® (Backward) o (Forward). The variabl€ stands for
the node’s color and its value is 0, 1, or 2. Throughout thigpahe arithmetic operations
on C are assumed to be under modulo 3 and such predicatésjasChild.i : D.j =
BAC.j =C.i) are assumed to be true@hild.i = 0. A token is assumed to have the
same color with its owner. A nonnodei is said to hold a forward token {D.i = B) A
(D.Pi=F)A(C.i #C.Pi), and it is said to hold a backward token from its chjldf

6 Size-Independent Self-Stabilizing Asynchronous Phasel8wnization in General Graphs

P
A\ e >

N —

(@) (b) (©)

Figure 2: An example of connected components: (a) R-trgeg{tvee, and (c) Nil-tree.

(D.i=F)A(D.j =B)A(C.i =C.j). For the root node, the definition of holding a
backward token is the same as that of a morede. However, the nodeis assumed to
hold a forward token once it holds backward tokens from altitildren.

Consider the followingperfect state Vi #r : (C.i =C.r) A(D.i =B)A(D.r = F),
in which onlyr has a forward token. From the perfect state, tokens cireuled tree as
follows: By executingRO, the root node changes its color t€.r + 1, and propagates a
forward token with this color to each of its children. Whencaa node receives a forward
token, it execute®2 to copy the parent’s color and passes one forward token thith
new color to each of its children. If this node is a leaf, itritexecutes R1. The forward
token thus becomes a backward token and travels back to ¢the Véhen a non-node
receives backward tokens from all its children, it merges¢htokens into one and passes
the backward token to its parent by executiRgl. Once the node receives backward
tokens from all its children, a period of token circulatianassumed to be finished and
the system enters another perfect state. Afterwards, thtenaxde will start a new token
circulation. Please note that during the time of the tokeoutation, the colors of nodes
are eithelC.r or C.r — 1. Therefore, the color variab{&can be viewed as a kind of phase
variable and Fig. 1 is actually a 3-phase synchronizer ficstree networks.

Because the network topology that we consider is a genenalemied graph instead of
a tree, we have to further improve the algorithm in Fig. 1stithe parent pointers are no
longer constant variables. Therefore, we define that thermoder always points to itself
and that any other node points to one of its neighbors or pithis setting, the system has
three kinds of connected components induced by tree edRj¢ie O-tree andNil-tree.
The R-tree is the tree rooted at the nogdan O-tree contains a cycle and branches pointing
to the cycle; a Nil-tree is a tree rooted at a node pointingltoANil-tree of single node
is called anisolated nodeFig. 2 gives an example of the three components,

C. H. Tzeng, J. R. Jiang AND S. T Huang 7

When we apply the algorithm in Fig. 1 to a tree network, suctha®R-tree, the system
eventually reaches the perfect state from any arbitratialsitate and then tokens circulate
the system infinitely often. However, when we apply the medra to an O-tree or a Nil-
tree, there will be no token eventually. This is becauseeti®no root node generating
and propagating tokens in O-trees/Nil-trees. In terms afspl, nodes in the R-tree keep
changing their phases, whereas no node in O-trees/N8-t@e change its phase. As will
be shown later, this asymmetric property is useful to deiternwhether a node is in the
R-tree.

Below, we start to develop the rules for our phase synchesnikhe basic idea is to
break O-trees to be Nil-trees and then to be isolated noddssalated nodes then join the
R-tree and calibrate its phase value. Our solution reqairezde to know whether each of
its neighbors has a forward token or not, so the range of thablaD is extended to be
{FT,F} for the root node and to be{FT,F,B} for every nonr node. WherD.i =FT
holds, it means thatholds a token of the direction “Forward”. A node receivingpasard
token first setd = FT and renews its color. Afterwards, the node d@ts- F and the
token is sent out. Due to this settirigQ is divided into two rules (a) and (b):

(@) (Dor=F)A(VjecChildr:D.j=BAC.j=Cuor) - Dr=FT;Cr=Cr+1,
(b)(D.r =FT) - D.r =F;

Since the variabl® of a nont nodei may point to nil, ruleR1 becomes rule (c) by
adding the conditioiP.i # nil) to the guard. On the other hariR2 becomes two rules (d)
and (e) a0 does.

(©) (Pi #nil) A (D.i=F)A(¥j €Child.i : D.j = BAC.j =C.i) — D.i = B;
(d) (Pi # nil) A (D.i = B) A (D.Pi = F) A (C.i #C.Pi) — D.i = FT;C.i = C.Pi;
(€)(D.i=FT) > D.i=F;

Now, we explain how to use forward tokens to break O-treesvédsentioned above,
during the token circulation with cold®.r in the R-tree, the colors of nodes should be
eitherC.r orC.r — 1. Leti be a node in an O-tree or Nil-tree. Once nadketects that
one of its neighborg holds a forward token of coldE.i + 2, it is aware thaf is in the
R-tree but it is not. Rather than pointing jairectly, nodei points to nil first in order
not to disturb the token circulation in the R-tree becauseQkiree/Nil-tree where lies
may contain inconsistent colors with respect to the cuni@n circulation, After setting
Pi = nil, the O-tree/Nil-tree is broken. Thus we have the followinter(f), in which
N.i = {j|(i,j) € E} is the set of’s neighbors.

(f) (Pi#ni)A(3j €Ni:D.j=FTAC.j=C.i+2) — Pi =nil;

By rule (f), an O-tree is broken to be a Nil-tree. The next $tep break the Nil-tree to

8 Size-Independent Self-Stabilizing Asynchronous Phasel8pnization in General Graphs

be isolated nodes. The idea is to make Nil-tree collapse apdd-down manner, as rule
(g) shows.

(@) (Pi #nil) A (PPRi=nil) — Pi=nil;
The last step is to make isolated nodes join the R-tree withéip of forward tokens:
(h) (PRi=nil)A(Child.i=0)A(FjeN.i:D.j=FT AP #nil) —» Pi=j;

Below, we discuss the issues caused by an adversary daeetgre N.r be a node not
in the R-tree. When evaluates the guard of rule (f) truemust also evaluate the guard of
rule (b) true at the same time. dftakes a move earlier thgndoes,j’s privilege vanishes.
An adversary daemon can make this always happen to prévemtn executing rule (f)
and thus from joining the R-tree. Therefore, we must modifjyt¢ demand nodeto wait
until j takes a move.

(b*) (D.r=FT)A(VjeNr:C.j#Cr+1) - Dr=F;
Similarly, rule (e) should be modified to be (e*):
(e®) (Di=FT)A(VjeN.i:C.j#C.i+1) —D.i=F;

A Nil-tree root node with (D.i = FT) should reseD.i unconditionally. Thus rule (e*)
is modified to be rule (e**):

(€) (D.i=FT)A((¥j €N.i:C.j#Ci+1)V (Pi=nil)) - D.i=F;

The last issue is to guarantee no disturbance in token ationl even when isolated
nodes join the R-tree. To do so, a nddeettingP.i = j has to seD.i = B andC.i =C.]j
as well, as ifi has already received a token of co@jj. Based on this reason, rule (h) is
further modified into (h*) as follows.

(h*) (Ri=nil)A(Child.i=0)A(Fj eN.i:D.j=FTAPj#nil) - Pi=j;D.i=B;C.i=
C.J;

The above rules are sufficient to build a spanning tree asasell3-phase synchronizer
by the variableC. To extend the rules to bel&-phase synchronizeK > 1, each node
maintain another variabld € {0,1,...,K — 1} to denote its phase. We aédr =H.r+1
modK to the action of rule (a) and addl.i = H.P.i to that of rules (d) and (h*). The guards
of all the rules remain unchanged. That is, a node updatphétse variablel whenever it
changes its color. Therefore, the system satisfies definltinght after the spanning tree
is constructed.

All the rules mentioned above constitute our algorithm,chiis listed in Fig. 3. The
root noder has two rules (a) and (b*), corresponding to RO and R1 res@éctFor nons
nodes, the rules (f) and (g) are combined into one rule R5,tsasifive rules: R2 to R6.

C. H. Tzeng, J. R. Jiang AND S. T Huang 9

Variables:

P: parent pointer

C €{0,1,2} // for denoting the color

D € {FT,F,B} // for denoting the direction
H € {0,1,..,K — 1} // for denoting the phase

For the root node: Pr =r andD.r € {FT,F}
RO: (D.r=F)A(VjeChildr:D.j=BAC.j=Cr) = D.r=FT;Cr=Cr+1;Hr=Hr+1;
RL:(Dr=FT)A(VjeNr:C.j#Cr+1) —Dr =F;

For|7ér
2:(Pi#nil)A(Di=F)A(VjeChildi:D.j=BAC.j=C.i) » D.i=B;
3: (Pi#nil)A(D.i=B)A(D.Pi=F)A(C.i#C.Pi) - D.i=FT;C.i=C.Pi;H.i=H.Pij;
4:(D.i=FT)A((Vje N| C.j#C.i+1)Vv(Pi=nil)) - Di=F;
5. (Pi#n)A((3jeN.i:D.j=FTAC.j=C.i+2)V(PPi=nil)) — Pi=nil;
6: (Pi=nil)A(Childi=0)A(3jeN.i:D.j=FTAPj#nil) - Pi=j;D.i=B;C.i=C.j;H.i=H.j;

Figure 3: The proposed algorithm.

We assume that each rule has a priority and a rule with a snmalfaber has a higher
priority: When a privileged node is selected by the daemomade a move, it executes
the highest-priority enabled rule. As readers can cheakmbmory usage is low and is
independent of any system parameter. Each node keeps oalgtampvariableP, a phase
variableH, and two scalar variables of totally 6 (resp., 9) statestfentode (resp., for a
non+ node.) LetA denote the maximum degree of the graph; the space comptehite
variableP is O(A). When taking all the variablegd, D, C, andP into consideration, the
space complexity per node@(AK) states.

4. Correctness and time complexity analysis

In this subsection, we show that the system stabilizeS(in?) rounds, regardless of
any arbitrary initial configuration, where= |V|. We first define the legal configuration as
below.

Definition 2. (Legal Configuration

A configuration is legal if it satisfies the following threendiitions:

(1) Vi#r:(Ci=Cr)A(D.i=B).

(2) D.r =F.

(3) the number of nodes in the R-tree is n.

Furthermore, any configuration that arises from the onessgiing (1), (2) and(3) by the
completion of one or more moves is also a legal configuration.

Before showing that the system eventually reaches a legéibrwation, we must guar-
antee that at least one node is privileged for any arbitranfiguration. In other words,
the system is never deadlocked.

Lemma 1. For any configuration, at least one node is privileged.

10 Size-Independent Self-Stabilizing Asynchronous Phasel8pnization in General Graphs

Proof. We prove this lemma by contradiction. We shall focus on ohé/R-tree. Assume
that no node is privileged. According to the value of theabieD, there are two cases to
be considered:

Case (1) every node has eiti2e=BorD = F:

Let h(i) > 1 be the height of a nodein the R-tree. We first use induction dufi)
to show that every non-nodei in the R-tree ha®.i = B. (Basis) Since a leaf node
(h(i) = 1) cannot execute R2, we haldei = B. (Hypothesisp.j = B for any nont node
j with h(j) < A. (Induction) Leti be a nonr node withh(i) = A and | be a child ofi.
We haveD. | = B by the hypothesis. Assume thati = F. If C.j # C.i for some nodqg,
thenj can execute R3. IE.j = C.i for any nodej, nodei can execute R2. Since no rule is
enabled, the case &f.i = F does not occur and we hafzei = B, as desired.

For the root node, D.r = F holds because the rangeDfr doesn’t contairB. Since
r cannot execute RO, it has a childuch thatC.j # C.r, by which the nodg can execute
R3 duetoP.j #nil)A(D.j =B)A(D.P.j=F)A(C.j # C.P.j). Contradiction occurs.
Case (2) some nodédasD.i=FT:

Because nodé cannot execute R4, we haW # nil andi has a neighboj with
C.j =C.i+1 (nodej may not be in the R-tree). We have two sub-cases to consiger: (
P.j # nil: j can execute R5 becaud®.i=FT)A(C.i=C.j—1=C.j+2). (ii) Pj=nil:
Sincej cannot execute R6, we ha@hild.j # 0. Nodej’s child k can execute R5 because
(Pk#nil) A (PPk=P.j =nil). We get a contradiction for each sub-case. O

Below, we begin to prove the convergence property. We firfBhddéokens as follows.
In a legitimate state, there is exactly one token in everli fraim the node to the leaves.

Definition 3. (Forward Token
The root node r is said to own a forward token iff
(D.r=FA(¥j eChild.r:D.j=BAC.r =C.j))V(D.r =FT),
whereas a non-r node is said to hold a forward token iff
(Pi#nil)A((D.i=BAD.Pi=FAC.i #C.Pi)vD.i=FT).

In the above definition, the conditid®.i = BAD.Pi = F AC.i # C.P.) for a non¢
nodei means thab.i has passed a forward tokenitfby executing R4) buit has not yet
executed R3.

Definition 4. (Backward Token

A non-leaf node i is said to receive and hold a backward tokam & child j iff
(D.i=F)A(D.j=B)A(C.i=C.]),

whereas a non-isolated leaf node i is said to hold a backwake iff
(D.i=F).

C. H. Tzeng, J. R. Jiang AND S. T Huang 11

Our ultimate goal is to show that eventually there is a fixezhsiing tree. To do this,
we first prove some properties of tokens in lemmas 2, 3, 4, arByZhese lemmas, we
can infer the property of tokens in O-trees, Nil-trees, dr@R-tree, as shown in lemmas
6, 7 and 8, respectively. Finally, lemmas 9 and 10 show howstesy converges to the
legal configuration.

Lemma 2. In fixed components(R-tree, O-trees, or Nil-trees), a nowde does not re-
ceive consecutive forward and consecutive backward tokens

Proof. We first show that a non-nodei never receives consecutive forward tokens. By
definition, when nodéowns a forward token, eith@&.i = B or D.i = FT holds and it can
execute R3 and then R4 (if.i = B), or simply execute R4 (iD.i = FT) to pass the token
to its children. After the token passing, its statu®is = F. Before owning a forward
token again, nodehas to execute R2 so that the valueDof becomesB from F. Since
the guard of R2 implies the possession of (at least) a backieen, it means that node
must own (at least) a backward token before getting a fontedeen again. That is, node
never receives consecutive forward tokens.

Based on the same strategy, we can also prove thatinogler receives consecutive
backward tokens, so this proof is skipped. O

Lemma 3. Once a forward token meets a backward token, one of thempubsap.

Proof. Consider two nodesand j, P.j =i andP. # nil, such thatj can execute R2 and
i can execute RO (if =r) or R3 (if i £ r). By definition, nodej has a backward token,
whereas nodehas a forward token. We prove this lemma by checking how malksrts
are left after the node pass the tokens.

Because the tokens meet by nade nodej or both executing the rules, we have the
following three cases to consider:

Case (1) Onlyj passes the backward token by executing R2:

For this case, nod¢is of D.j = B so the backward token disappears. On the other
hand, node still holds the forward token.

Case (2) Only passes the forward token by executing RO and R1 (or R3 and R4):

For this case, nodes of D.i = F so the forward token disappears. On the other hand,
nodej still holds the backward token.
Case (3) Both andj pass tokens:

After j executes R2 andexecutes RO and then R1 (or R3 and then R4), we have
D.j =B, D.i =F andC.i = C.P.i. According to the relation betwe&hi andC.j, we have
two sub-cases to consider: @)i = C.j: Nodei has(D.j =B)A (D.i=F)A(C.i =C.j),
so it has a backward token coming from On the other hand, nodiedoes not own the

12 Size-Independent Self-Stabilizing Asynchronous Phasel8pnization in General Graphs

forward token. (ii)C.i #C.j: Here, nodg has(D.j =B)A (D.P.j=F)A(C.j #C.Pj)
so it has a forward token. On the other hand, niodees not receive the backward token
coming fromj.

Because either the forward token or the backward token pésa in each case, this
lemma holds. O

For normal token circulation, tokens bounce between themoder and leaf nodes.
That is, a backward token should become a forward token whamives at the node,
whereas a forward token should become a backward token wherves at a leaf node.
However, in the beginning a token may change its directioanainternal node because
of the unpredictable initial configuration. And we say thatimternal node performs an
illegal forward (resp., backward) token revergéit receives a forward (resp., backward)
token but sends out a backward (resp., forward) token. mgef rules, if nodé perform
an illegal forward token reversal, it executes R3, R4, andcBasecutively. (Note that
nodei can execute R2 right after executing R4, but in normal ditaatit cannot do so.)
Similarly, if nodei perform an illegal backward token reversal, it executesf®and R4
consecutively.

Lemma 4. Eventually no internal node can perform illegal forward cadkward token
reversal.

Proof. To prove this lemma, we show that an internal no@an perform at most once
illegal reversal of a forward token and of a backward tokespeetively.

Consider the case that nodperforming an illegal forward token reversal. By defini-
tion, it executes R3, R4 and R2 consecutively. After execytine three rules, nodehas
(D.i=B)A(¥j € Child.i :C.j =C.iAD.j =B). Letj be a child ofi. The next time
receives a forward token, noddasC.i = C.P.i. Afteri executes R3 and R4 to pass the
forward token, the conditio@.j # C.i holds so it cannot execute R2 immediately. That is,
nodei cannot reverse the forward token.

Now, consider the case that nodeerforms an illegal backward token reversal. Simi-
larly, it means that nodieexecutes R2, R3 and R4 consecutively. After executing tlezth
rules, nodé has(D.i = F) A (D.P.i = F) A(C.i = C.Pi). The next tim& owns a backward
token and executes R2, it cannot execute R3 immediatelyuse€a = C.P.i holds. That
is, nodei cannot reverse the backward token. O

Informally speaking, after a node executes R2 (resp., RFRadits state is consistent
with its children (resp., parent). For a node that has exet®2, any of its children
never performs an illegal forward token reversal. Simylaal node that has executed R3
and R4 never performs an illegal backward token reversatesan illegal forward (resp.,

C. H. Tzeng, J. R. Jiang AND S. T Huang 13

backward) token reversal is caused by the executions of RAMI R2 (resp., R2, R3, R4),
we can infer that any nonnode performs at most one illegal forward (resp., backward)
token reversal.

Now, consider the longest waiting tinfTéd) for an internal nodeéto receive a forward
token, wherd is the depth of. Because forward tokens move along only tree edges and
because they transfer from a node to the next one in a cornstiamber of rounds, the
worst case happens when every'sfancestors, excepf executes an illegal forward token
reversal. Starting from the moment when the root holds adodvoken, we can deduce
T(2)=1andT(d)=T(d—1) + O(d), and thusT (d) = O(d?) = O(n?) rounds. Once node
i holds a forward token, it executes R3 and R4 and its childiémuat be able to perform
an illegal backward token traversal. In other words, evetgrnal node cannot execute an
illegal backward token traversal @(n?) rounds.

Based on a similar reason, we can infer that every interndé reannot execute an
illegal forward token reversal i®(n?) rounds. We have the following lemma:

Lemma 5. After O(n?) rounds, no internal node can perform illegal forward or baekd
token reversal.

In the following three lemmas, we show the behavior of tokien®-trees, Nil-trees,
and the R-tree, respectively.

Lemma 6. After O(n?) rounds, there will be no token in O-trees.

Proof. To prove this lemma, we show that, for any O-tree, tokenséntanches go into
the cycle inO(n) rounds and then disappear@{n?) rounds. With the help of lemma 5,
we assume that no illegal token reversal would occur.

First, focus on the tokens in the O-tree branches. In suctpooents, a forward token
becomes a backward when it arrives at a leaf node and the badkaken either goes
into the O-tree cycle or disappears. The time complexitytigrisO(n) rounds, including
O(n) rounds for a forward token to become a backward token andvan©tn) rounds for
the backward token to go into the cycle.

Now, consider the tokens in the O-tree cycle. According torfea 3, the number of
tokens decreases when two tokens of different directioret;rhence eventually the tokens
in the cycle are of the same direction, either forward or baoki. The time complexity for
this isO(n) x O(n) = O(n?) rounds because there may®@) tokens in the cycle and two
tokens of different types meet ®(n) rounds. Afterwards, these survival tokens disappear
in O(n) rounds, since a node never consecutively receives toketieafame direction,
according to lemma 2. In summary, all the tokens in the O-tyete disappear i©(n?)
rounds, as desired. O

14 Size-Independent Self-Stabilizing Asynchronous Phasel8pnization in General Graphs

Lemma 7. After O(n) rounds, there will be no token in Nil-trees.

Proof. By definition, an isolated node has no token. Therefore, weegthis lemma by
showing that any Nil-tree becomes a set of isolated nod€grin rounds.

According to R5, a child of a Nil-tree root can point to nil, 8te Nil-tree’s height
decreases by one eve®(1) rounds. Combining the fact that the tree heighDig), the
Nil-tree becomes a set of isolated node®©im) rounds. O

Below, we show that the R-tree eventually reachegtréect stateviz. D.r = F and
any nonf nodei in the R-tree haéC.i = C.r) A (D.i = B).

Lemma 8. After O(n?) rounds, the R-tree reaches the perfect state.

Proof. To prove this lemma, we first show that@(n?) rounds only one token exists in
each tree path from a leaf node to the root nadéfterwards, the R-tree enters the perfect
state inO(n) rounds. Similar to lemma 6, we assume that no illegal tokeersal would
occur.

Consider a tree path from a leaf node to the root nodBy the proof of lemma 1,
there is at least one token in this path. Let the number ofrteke this path beD(n).
Because the tokens bounce between the root node and thetiafthey meet one another
in O(n) rounds. By lemma 3, it means that the number of tokens dezsdasone every
O(n) rounds, or, equivalently, decreases to on®{n) x O(n) = O(n?) rounds. If the last
survival token is forward, it reaches the leaf nod®im) rounds and becomes a backward
token traveling back to the root node.

Now we consider the configuration in which there is exactlg dackward token in
any tree path from a leaf node to the root node. For a mapdei receiving all the
backward tokens from its children, it executes R2 to passidrged backward token to its
parent. After the execution, nodéasD.i =BAC.j =C.iAD.j =B, wherej € Child.i.
Since everyO(1) rounds a backward token moves from the node of hdigbtthe node
of heightk + 1, the root node receives backward tokens from all the aildn O(n)
rounds. By that time, the root node isBfr = F and any non-nodei in the R-tree is of
D.i=BAC.i=C.Pi =C.r. Thatis, the R-tree is in the perfect state.

According to the above proof, the R-tree enters the perfate mO(n?) rounds. [

Lemma 9. Once the R-tree reaches the perfect state and there is no toke-trees/Nil-
trees, the number of nodes in the R-tree is monotonicaltg@sing.

Proof. To prove this lemma, we show that a ndde the R-tree does not execute R5 to
depart from the R-tree. Lgtbe a neighbor of. Our attempt is to show thé&t.j # C.i — 2
holds wherD.j = FT holds. This nod¢ must be in the R-tree; otherwifej = FT cannot

C. H. Tzeng, J. R. Jiang AND S. T Huang 15

hold since there is no token in O-trees/Nil-trees. Belowcaesider a token circulation in
the R-tree, observe how the coldchanges, and prove the desired propetty:# C.i — 2.
Let’s consider a token circulation starting from the petrfgate, in which every node
has the same col@.r = a — 1. During this token circulation, the root nodesxecutes
exactly two rules RO and R1, and any other R-tree node exeextctly three rules R2,
R3, and R4. Because a node changes its color ta bely when it executes RO or R3,
and because these two rules Bet FT as well, the conditior€.j = a must hold when
D.j = FT holds. For nodé, its color is eithelC.i = a or C.i = a — 1. It is easy to check
thatC.j £ C.i — 2, as desired. O

Lemma 10. Once the R-tree reaches the perfect state and there is np tol@-trees/Nil-
trees, the R-tree spans all the nodes ifn€) rounds.

Proof. Leti andj be two adjacent nodes such thas in the R-tree, whilé is not. We can
prove this lemma by showing that nodpins the R-tree irD(n) rounds.

Consider the token circulations in the R-tree. During a tokieculation propagating
color 0, nodgj is of D.j = FT andC.j = 0 at some time by executing RO (jif=r) or R3
(if j # r). Similarly, during the token circulations propagatindaral and color 2, node
jisof (D.j=FT)A(C.j=1) and(D.j = FT) A (C.j = 2) at some point, respectively.
Because nodiehas no token and thus cannot cha@gethe conditionD.j =FT)A(C.j =
C.i+2) holds at some time within three consecutive token circofeti Since each token
circulation finishes irD(n) rounds, this condition holds within-30(n) rounds. The next
step is to prove that nodepoints to nodg within O(1) rounds when this condition holds.

By the components whefdocates, there are three cases to consider:

Case (1) is an isolated node:

Nodei executes R6 to s&i = j to join the R-tree.

Case (2) is in an O-tree:

Nodei executes R5 to sé€ti = nil and becomes a Nil-tree root. Then its children, if any,
execute R5 so noddecomes an isolated node. The remaining proof of this casmikr

to that of Case (1).

Case (3) is in a Nil-tree containing more than one node:

The proof of this case is similar to that of Case (2).

The actions in all the three cases t&x@) rounds, so nodebecomes a part of the R-
tree inO(1) rounds wheriD.j =FT) A (C.j =C.i+2) holds. Because this condition holds
in O(n) rounds, the number of nodes in the R-tree increases by one@ue) rounds, until
the R-tree spans all the nodes. Thus the overall time coritpiexO(n) x O(n) = O(n?)
rounds. O

Theorem 1(convergence) The system enters legal configurations ifn€) rounds.

16 Size-Independent Self-Stabilizing Asynchronous Phasel8pnization in General Graphs

Proof. This is a direct consequence of lemmas 5, 6, 7, 8, 9 and 10. O

Theorem 2(closure) Once the system is in a legal configuration, it remains so éfemth.

Proof. Note that the criteria (1) and (2) of definition 2 are the ctinds of perfect states.
By lemma 9, no node can depart from the R-tree so the numbesd#sin the R-tree is
alwaysn. O

5. Concluding Remarks

We propose a size-independent self-stabilizing algorfitnthe phase synchronization
problem in semi-uniform systems of general connected gtapblogies. The algorithm
runs under the parallel execution model and does not relyngisgstem parameter like the
number of nodes. It is thus fit for the systems with dynamyaatiianging number of nodes.
Another advantage of the algorithm is the low space complef(AK) states per node,
whereK is the number of phases afds the maximum degree of system nodes. Moreover,
the number of phases can be any number larger than one, whicbsthe proposed algo-
rithm very flexible. To the best of our knowledge, there ar@ti®@r such size-independent
self-stabilizing algorithms for systems of general coedgraph topologies.

In our algorithm, the scheduling daemon can be unfair forfthlewing reasoning.
Suppose that a nodeis continuously privileged but not selected by the daemarnis |
safe to say that the phage.i or H.i) of i dose not change. By definition 1, other nodes
cannot advance their phases eventually, or equivalemiy tannot execute RO or R3.
Those nodes can only execute R1, R2, R4, R5, or R6, and udtiynahd up withD =
B. Because they cannot execute R3, which is the only rule &t tbg variableD, the
conditionD = B remains and their privileges vanish. Therefore, ncgentually becomes
the only privileged one. The daemon then must seélecexecute.

We make an assumption that there is a unique root modehis node is responsible
for coordinating other nodes so that they know when to enteava phase. If the node
departs from the system (due to events such as power faithes) the proposed algorithm
no longer works. However, the assumption of the root nodeignaper is for constructing
a spanning tree deterministically during the convergeritkeophase synchronizer, and it
may be unnecessary for a phase synchronizer. Therefogeglitallengin task to remove
this assumption and develop another self-stabilizing @sgachronizer for general graphs.
We will take this as a future work.

10.

11.

12.

13.

C. H. Tzeng, J. R. Jiang AND S. T Huang 17

References

. L. O. Alima, J. Beauquier, A. K. Datta, and S. Tixeuil. Sstébilization with global
rooted synchronizers. IRroceedings of the 18th International Conference on Dis-
tributed Computing Systemsages 102-109, 1998.

. A. Arora, S. Dolev, and M. G. Gouda. Maintaining digitabcks in step.Parallel
Processing Lettersl:11-18, 1991.

. A. Arora and M. Gouda. Distributed resetlEEE Transactions on Computers
43(9):1026-1038, 1994.

. B. Awerbuch, S. Kutten, Y. Mansour, B. Patt-Shamir, and&/&ghese. Time optimal
self-stabilizing synchronization. IACM Symposium on Theory of Computipgges
652—661, 1993.

. C. Boulinier, F. Petit, and V. Villain. Synchronous vsy@ashronous unison. I&elf-
Stabilizing Systempages 18-32, 2005.

. E. W. Dijkstra. Self-stabilizing systems in spite of distited control. Communica-
tions of the ACM17(11):643-644,1974.

. S. Dolev. Possible and impossible self-stabilizing tdigclock synchronization in
general graphsReal-Time System$2(1):95-107, 1997.

. S. Dolev, A. Israeli, and S. Moran. Uniform dynamic sekslizing leader election.
IEEE transations on Parallel and Distributed Syste®@}):424-440, 1997.

. F. C. Gartner. A Survey of Self-Stabilizing SpanningdConstruction Algorithms.
Technical report, Swiss Federal Institution of Techno|@p03.

M. G. Gouda and F. F. Haddix. The alternato’\I§$ pages 48-53, 1999.

M. G. Gouda and T. Herman. Stabilizing unisoimformation Processing Letters
35:171-175, 1990.

S. T. Huang and T. J. Liu. Self-stabilizin§-2lock for unidirectional rings of odd
size. Distributed Computing12:41-46, 1999.

S. T. Huang and T. J. Liu. Phase synchronization on asgnolus uniform rings
with odd size.|[EEE Transactions on Parallel and Distributed Systér?(6):638—652,
2001.

18

14.

15.

16.

17.

18.

Size-Independent Self-Stabilizing Asynchronous Phasel8pnization in General Graphs

S. T. Huang, T. J. Liu, and S. S. Hung. Asynchronous phasehsonization in uni-
form unidirectional rings. IEEE Transactions on Parallel and Distributed System
15(4):378-384, 2004.

H. S. M. Kruijer. Self-stabilization(in spite of didtrited control) in tree-structured
systemsInformation Processing Letter§(2):91-95, 1979.

S. Kulkarni and A. Arora. Fine-grain multitolerant harrsynchronization. Technical
report, Technical Report OSU-CISRC TR34, Ohio State Usitgrl1997.

S. Kulkarni and A. Arora. Multitolerant barrier synchipation.Information Process-
ing Letters 64(1):29-36, 1997.

J. Misra. Phase synchronizatiotnformation Processing Letter88(2):101-105,
1991.

