
Size-Independent Self-Stabilizing Asynchronous Phase
Synchronization in General Graphs∗

Chi-Hung Tzeng†, Jehn-Ruey Jiang‡ AND Shing-Tsaan Huang‡
†Department of Computer Science

National Tsing Hua University, Hsinchu, Taiwan, 30013
‡Department of Computer Science and Information Engineering

National Central University, Chungli, Taiwan 32054.

Abstract

In this paper, we design a self-stabilizing phase synchronizer for distributed sys-

tems. The synchronizer enables a node transfer from one phase to the next one, subject

to the condition that at most two consecutive phases can appear among all nodes. It

does not rely on any system parameter like the number of nodes, and is thus fit for

the system with dynamically changing number of nodes. Each node just maintains a

few variables that are related to its neighborhood; all operations are decided based on

local information rather than global information. The memory usage of the proposed

algorithm is low; each node has onlyO(∆K) states, where∆ is the maximum degree

of nodes andK > 1 is the number of phases. To the best of our knowledge, there are

no other such size-independent self-stabilizing algorithms for systems of general graph

topology.

Keywords: General connected graph, Fault tolerance, Phase synchronization, Self-

stabilization, Spanning tree

1. Introduction

A distributed system may become disordered due to unexpected transient faults, such

as the corruptions of node states or joining/leaving of nodes. We can make it resilient to

such faults by the concept ofself-stabilization, which has two criteria: (1)Convergence:

Starting from any initial configuration (possibly illegal), the system can converge to a legal

one in finite time. (2)Closure: Once the system is in a legal configuration, it remains so

henceforth [6]. When a self-stabilizing system encounterstransient faults, it can be thought

as in an arbitrary initial configuration. With the convergence property, it can reach a legal

configuration; with the closure property, it can then function correctly henceforth.

The problems of synchronizing phases of nodes in self-stabilizing distributed systems

are important. Such problems can be classified into three categories: clock synchroniza-

tion, neighborhoodsynchronization, and phase synchronization. Theclock synchronization

∗This is an extended version of the paper entitled “Self-Stabilizing Asynchronous Phase Synchronization in
General Graphs,” presented in the 8th International Symposium on Stabilization, Safety, and Security of Dis-
tributed Systems (SSS 2006), 2006.

2 Size-Independent Self-Stabilizing Asynchronous Phase Synchronization in General Graphs

requires that all nodes eventually have the same phase (or clock) value and concurrently

advance the value by one per execution step [2, 7, 11, 12]. Clearly, clock synchronization

algorithms work only under the fully synchronous executionmodel, in which every node

makes a move in an execution step. Theneighborhood synchronizationrequires that the

phases of two neighboring nodes be different by at most one [4, 5, 10]. In this paper, we

focus onphase synchronizationas defined in [16–18] and is also known asbarrier syn-

chronization. A system node is assumed to be in one of circularly arranged phases: phase

0, phase 1,. . . , phaseK −1, whereK is the number of phases. The relation between any

two nodes’ phases must satisfy the following criteria:

Definition 1. (Phase Synchronization)

• No node can proceed to phase k+1 (mod K) until all nodes are in phase k.

• When all nodes are in phase k, each node eventually proceeds to phase k+ 1 (mod

K).

One of the application of phase synchronization is to build asynchronous environment

out of an asynchronous one. For example, algorithms such asalternator[10] require nodes

to take its move concurrently and coherently. Yet some nodesmay have more computing

power; over time, they may take much more tasks than requiredif they run in an asyn-

chronous environment. That would cause the algorithm to fail to meet its design purpose

but such a problem can be avoided by introducing a phase synchronizer that synchronizes

nodes.

There are many self-stabilizing phase synchronization algorithms proposed in the liter-

ature [1,13,14,16,17]. The algorithm in [17] isuniform; that is, it assumes that all system

nodes have no distinguishable identification and have the same behavior. It is designed for

uniform complete graphs and it demands a node to proceed to a proper phase by examine

all others’ phases. The algorithm in [16] is based on the ideaof token circulation. It is

designed for non-uniform rings, in which a node is identifiedas a special node. When

receiving a token, the unique special node increments the phase number and forwards the

token; on receiving the token, any other node proceeds to thenew phase and then forwards

the token. The algorithm in [1] is for rooted trees. It classifies nodes into the root node,

internal nodes and leaf nodes. The root starts a new phase whenever it detects the end of

the last phase, whereas any other node just copies that phase. The algorithm in [13] is for

uniform rings of odd size. It also uses token circulation to carry out the synchronizer: a

node receiving a token copies the sender’s phase and increments the token’s counter by

one. When the counter value is equal to the number of nodes in the system, the token

owner resets the counter, then proceeds to the next phase andsends out the token. The

C. H. Tzeng, J. R. Jiang AND S. T Huang 3

algorithm in [14] is for uniform rings of any size. It views a ring as a set of segments of

different phases and tries to make the number of segments decrease to one to achieve phase

synchronization.

The proposed algorithm is designed for general connected graphs. It is semi-uniform;

i.e., all system nodes, except a special node, have identical behavior. It does not rely on

any system parameter like the number of nodes, and is thus fit for the systems with dynam-

ically changing number of nodes. Its basic idea is to use the token circulation concept to

achieve spanning tree construction and phase synchronization simultaneously. It is not just

a combination [3] of a tree construction algorithm, such as those in [9], and a phase syn-

chronization algorithm for trees, such as that in [1]. Unlike the algorithms in [13,14,16,17]

relying the knowledge of the number of system nodes, the proposed algorithm is indepen-

dent of any system parameters. It is thus fit for the systems with dynamically changing

number of nodes. It is more flexible than (or as flexible as) related ones. The numberK of

phases can be any value larger than one for the proposed algorithm. However, it holds that

K = n≥ 3,K ≥ n, K = 2,K is even andK ≥ n−1, wheren is the number of system nodes,

for the algorithms in [17], [16], [1], [13], and [14], respectively. It is also memory-efficient;

its space complexity isO(∆K) states, where∆ is the maximum degree of nodes. Its space

complexity is the same as that of the algorithm in [1] and is better thanO(nK) of the algo-

rithms in [13, 14]. To the best of our knowledge, there are no other such size-independent

self-stabilizing algorithms for systems of general connected graph topologies.

We use a set of rules to describe our algorithm. The proposed algorithm can operate

correctly in the parallel execution model, in which a distributed daemon selects an arbitrary

subset of nodes to execute the rules in each execution step. That is a more general model

than the serial execution model adopted by the algorithm in [13], in which a central daemon

[6] randomly selects a node to execute exactly one rule in each execution step.

The rest of the paper is organized as follows. Section 2 presents the system model

and some terms used throughout this paper. Section 3 shows the proposed algorithm.

Its correctness proofs and time complexity are analyzed in section 4. Finally, section 5

concludes this paper, extending the idea proposed in this paper and showing some future

work.

2. The System Model

We model the system by a connected undirected graphG = (V,E), whereV is the set

of nodes andE is the set of edges representing the communication links. Two nodesi and

j are said to be neighbors if(i, j) ∈ E. Each node keeps a set of variables, to which it can

write its own state and from which it can read the neighbors’ states. Throughout this paper,

we use the notationVAR.i to denote the variableVARmaintained by nodei.

4 Size-Independent Self-Stabilizing Asynchronous Phase Synchronization in General Graphs

The behavior of a node is defined by a set of rules of the form “guard→ action”, where

guard is a boolean formula andactionis a set of program statements about how to update

the values of the variables. Once the guard of one rule is truefor a node, we say that the

node isprivileged and the rule isenabled. The privileged node can execute the action

of the enabled rule; we say that it executes a rule. A rule is executed in an atomic way:

evaluating the guard and executing the corresponding action are done uninterruptedly. In

this paper, we assume that the system issemi-uniform: each node except the special node

r has the same set of rules.

We use the termcon f igurationto refer to a vector of all nodes’ states for representing

the system status. Given a configurationc and its successorc′, the transition fromc to c′

is called acomputation step, denoted byc → c′. During c → c′, one or more privileged

nodes in the configurationc concurrently execute rules and each of them executes exactly

one rule. After that, the system enters the configurationc′ and the next computation step

begins. In this paper, we assume aparallel execution model: There is adaemonselecting an

arbitrary non-empty subset of privileged nodes to execute rules during every computation

step.

The computation of the system can be expressed by a series of configurations(c0,c1, . . .),

wherec0 is an arbitrary initial configuration and eachck → ck+1 is a computation step. We

useck ; ck+m to denotem consecutive computation steps, wherem> 0 andk≥ 0. Given

a configuration, its successor may not be unique, depending on how the daemon selects

privileged nodes. A self-stabilizing system must guarantee that it eventually reaches a le-

gal configurationcℓ from any possible initial configurationc0; that is,c0 ; cℓ, whereℓ

is a finite integer. This requirement is calledconvergence. Another requirement of self-

stabilization is calledclosure: Given a legal configuration, its successor is also legal.

For the sake of simplicity, we useround instead of computation step to explain how

the system converges to a legal configuration. Starting froma configurationck, a round is

the least sequence of consecutive computation stepsck ; ck+m such that every privileged

node inck has executed one or more rules when the system reachesck+m. The first round

starts fromc0, and its ending configuration is the beginning of the second round, . . . , and

so on. In this paper, the time complexity is the number of rounds converging to the first

legal configuration in the worst case.

3. The Phase Synchronization Algorithm

In this section, we develop a phase synchronization algorithm for semi-uniform sys-

tems under the parallel execution model. Our idea is to construct a spanning tree rooted at

the special noder. The noder is responsible for starting a new phase when it detects the

end of the last phase. Any other node simply copies the phase of its parent; thus the new

C. H. Tzeng, J. R. Jiang AND S. T Huang 5

Variables:
P: Parent pointer
D ∈ {F,B}
C∈ {0,1,2}

For the root noder, P.r = r andD.r = F .
R0: (∀ j ∈Child.r : D. j = B∧C. j = C.r) → C.r = C.r +1;

For i 6= r:
R1: (D.i = F)∧(∀ j ∈Child.i : D. j = B∧C. j = C.i) → D.i = B;
R2: (D.i = B)∧ (D.P.i = F)∧ (C.i 6= C.P.i) → D.i = F ; C.i = C.P.i;

Figure 1: The token circulation for a static tree rooted atr

phase is propagated in a top-to-down manner and eventually all nodes proceed to the new

phase.

To realize the above idea, we define a conceptual object called token circulating along

only tree edges. (An edge is called tree edge if one of its endsis the other’s parent.) There

are two types of tokens:forward tokensandbackward tokens. Forward tokens travel the

tree from the root to leaf nodes, while backward tokens travel from leaf nodes to the root.

During traveling, forward tokens help (1) propagate the current phase, and (2) construct the

spanning tree. On the other hand, backward tokens simply help the root node know when

to start a new phase; they are irrelevant to tree construction. In short, phase synchronization

is done in tandem with spanning tree construction. In the initial configuration, the phase

values may violate the requirements of Definition 1 and the tree edges may induce a forest

rather than a spanning tree. As the algorithm runs over time,the system converges to

legitimate configurations and we have consistent phase values together with a spanning

tree

The proposed algorithm is developed on the basis oftoken circulationmechanism [15].

In [15], the number of tokens can be more than one, but adjacent nodes never hold tokens

at the same time. That is, nodes holding tokens form anindependent setand thus [15]

solveslocal mutual exclusion problem. Here we extend idea of [15] and design a phase

synchronizer for general connected graphs. For the sake of presentation, we rephrase [15]

into three rules shown in Fig. 1. In the figure,P.i is the parent of nodei andChild.i =

{ j|P. j = i} stands for the set ofi’s children nodes. In addition to the pointer variableP,

every node keeps two scalar variablesD andC. The variableD stands for the token’s

direction and its value is eitherB (Backward) orF (Forward). The variableC stands for

the node’s color and its value is 0, 1, or 2. Throughout this paper, the arithmetic operations

on C are assumed to be under modulo 3 and such predicates as(∀ j ∈ Child.i : D. j =

B∧C. j = C.i) are assumed to be true ifChild.i = /0. A token is assumed to have the

same color with its owner. A non-r nodei is said to hold a forward token if(D.i = B)∧

(D.P.i = F)∧ (C.i 6= C.P.i), and it is said to hold a backward token from its childj if

6 Size-Independent Self-Stabilizing Asynchronous Phase Synchronization in General Graphs

r

non-r node

(a) (b) (c)

Figure 2: An example of connected components: (a) R-tree, (b) O-tree, and (c) Nil-tree.

(D.i = F)∧ (D. j = B)∧ (C.i = C. j). For the root noder, the definition of holding a

backward token is the same as that of a non-r node. However, the noder is assumed to

hold a forward token once it holds backward tokens from all its children.

Consider the followingperfect state: ∀i 6= r : (C.i = C.r)∧ (D.i = B)∧ (D.r = F),

in which only r has a forward token. From the perfect state, tokens circulate the tree as

follows: By executingR0, the root noder changes its color toC.r + 1, and propagates a

forward token with this color to each of its children. When a non-r node receives a forward

token, it executesR2 to copy the parent’s color and passes one forward token withthe

new color to each of its children. If this node is a leaf, it then executes R1. The forward

token thus becomes a backward token and travels back to the root. When a non-r node

receives backward tokens from all its children, it merges those tokens into one and passes

the backward token to its parent by executingR1. Once the noder receives backward

tokens from all its children, a period of token circulation is assumed to be finished and

the system enters another perfect state. Afterwards, the root node will start a new token

circulation. Please note that during the time of the token circulation, the colors of nodes

are eitherC.r or C.r −1. Therefore, the color variableC can be viewed as a kind of phase

variable and Fig. 1 is actually a 3-phase synchronizer for static tree networks.

Because the network topology that we consider is a general connected graph instead of

a tree, we have to further improve the algorithm in Fig. 1. First, the parent pointers are no

longer constant variables. Therefore, we define that the root noder always points to itself

and that any other node points to one of its neighbors or nil. By this setting, the system has

three kinds of connected components induced by tree edges:R-tree, O-treeandNil-tree.

The R-tree is the tree rooted at the noder; an O-tree contains a cycle and branches pointing

to the cycle; a Nil-tree is a tree rooted at a node pointing to nil. A Nil-tree of single node

is called anisolated node. Fig. 2 gives an example of the three components,

C. H. Tzeng, J. R. Jiang AND S. T Huang 7

When we apply the algorithm in Fig. 1 to a tree network, such asthe R-tree, the system

eventually reaches the perfect state from any arbitrary initial state and then tokens circulate

the system infinitely often. However, when we apply the mechanism to an O-tree or a Nil-

tree, there will be no token eventually. This is because there is no root noder generating

and propagating tokens in O-trees/Nil-trees. In terms of phases, nodes in the R-tree keep

changing their phases, whereas no node in O-trees/Nil-trees can change its phase. As will

be shown later, this asymmetric property is useful to determine whether a node is in the

R-tree.

Below, we start to develop the rules for our phase synchronizer. The basic idea is to

break O-trees to be Nil-trees and then to be isolated nodes, and isolated nodes then join the

R-tree and calibrate its phase value. Our solution requiresa node to know whether each of

its neighbors has a forward token or not, so the range of the variableD is extended to be

{FT,F} for the root noder and to be{FT,F,B} for every non-r node. WhenD.i = FT

holds, it means thati holds a token of the direction “Forward”. A node receiving a forward

token first setsD = FT and renews its color. Afterwards, the node setsD = F and the

token is sent out. Due to this setting,R0 is divided into two rules (a) and (b):

(a) (D.r = F)∧ (∀ j ∈Child.r : D. j = B∧C. j = C.r) → D.r = FT;C.r = C.r +1;

(b) (D.r = FT) → D.r = F ;

Since the variableP of a non-r nodei may point to nil, ruleR1 becomes rule (c) by

adding the condition(P.i 6= nil) to the guard. On the other hand,R2 becomes two rules (d)

and (e) asR0 does.

(c) (P.i 6= nil)∧ (D.i = F)∧ (∀ j ∈Child.i : D. j = B∧C. j = C.i) → D.i = B;

(d) (P.i 6= nil)∧ (D.i = B)∧ (D.P.i = F)∧ (C.i 6= C.P.i) → D.i = FT;C.i = C.P.i;

(e) (D.i = FT) → D.i = F ;

Now, we explain how to use forward tokens to break O-trees. Aswe mentioned above,

during the token circulation with colorC.r in the R-tree, the colors of nodes should be

eitherC.r or C.r −1. Let i be a node in an O-tree or Nil-tree. Once nodei detects that

one of its neighborsj holds a forward token of colorC.i + 2, it is aware thatj is in the

R-tree but it is not. Rather than pointing toj directly, nodei points to nil first in order

not to disturb the token circulation in the R-tree because the O-tree/Nil-tree wherei lies

may contain inconsistent colors with respect to the currenttoken circulation, After setting

P.i = nil , the O-tree/Nil-tree is broken. Thus we have the following rule (f), in which

N.i = { j|(i, j) ∈ E} is the set ofi’s neighbors.

(f) (P.i 6= nil)∧ (∃ j ∈ N.i : D. j = FT ∧C. j = C.i +2) → P.i = nil ;

By rule (f), an O-tree is broken to be a Nil-tree. The next stepis to break the Nil-tree to

8 Size-Independent Self-Stabilizing Asynchronous Phase Synchronization in General Graphs

be isolated nodes. The idea is to make Nil-tree collapse in a top-to-down manner, as rule

(g) shows.

(g) (P.i 6= nil)∧ (P.P.i = nil) → P.i = nil ;

The last step is to make isolated nodes join the R-tree with the help of forward tokens:

(h) (P.i = nil)∧ (Child.i = /0)∧ (∃ j ∈ N.i : D. j = FT ∧P. j 6= nil) → P.i = j;

Below, we discuss the issues caused by an adversary daemon. Let j ∈N.r be a node not

in the R-tree. Whenj evaluates the guard of rule (f) true,r must also evaluate the guard of

rule (b) true at the same time. Ifr takes a move earlier thanj does,j ’s privilege vanishes.

An adversary daemon can make this always happen to preventj from executing rule (f)

and thus from joining the R-tree. Therefore, we must modify (b) to demand noder to wait

until j takes a move.

(b*) (D.r = FT)∧ (∀ j ∈ N.r : C. j 6= C.r +1) → D.r = F ;

Similarly, rule (e) should be modified to be (e*):

(e*) (D.i = FT)∧ (∀ j ∈ N.i : C. j 6= C.i +1) → D.i = F;

A Nil-tree root nodei with (D.i = FT) should resetD.i unconditionally. Thus rule (e*)

is modified to be rule (e**):

(e**) (D.i = FT)∧ ((∀ j ∈ N.i : C. j 6= C.i +1)∨ (P.i = nil)) → D.i = F ;

The last issue is to guarantee no disturbance in token circulation even when isolated

nodes join the R-tree. To do so, a nodei settingP.i = j has to setD.i = B andC.i = C. j

as well, as ifi has already received a token of colorC. j. Based on this reason, rule (h) is

further modified into (h*) as follows.

(h*) (P.i = nil)∧(Child.i = /0)∧(∃ j ∈N.i : D. j = FT∧P. j 6= nil)→ P.i = j;D.i = B;C.i =

C. j;

The above rules are sufficient to build a spanning tree as wellas a 3-phase synchronizer

by the variableC. To extend the rules to be aK-phase synchronizer,K > 1, each node

maintain another variableH ∈ {0,1, ...,K−1} to denote its phase. We addH.r = H.r +1

modK to the action of rule (a) and addH.i = H.P.i to that of rules (d) and (h*). The guards

of all the rules remain unchanged. That is, a node updates itsphase variableH whenever it

changes its color. Therefore, the system satisfies definition 1 right after the spanning tree

is constructed.

All the rules mentioned above constitute our algorithm, which is listed in Fig. 3. The

root noder has two rules (a) and (b*), corresponding to R0 and R1 respectively. For non-r

nodes, the rules (f) and (g) are combined into one rule R5, so it has five rules: R2 to R6.

C. H. Tzeng, J. R. Jiang AND S. T Huang 9

Variables:
P: parent pointer
C∈ {0,1,2} // for denoting the color
D ∈ {FT,F,B} // for denoting the direction
H ∈ {0,1, ..,K −1} // for denoting the phase

For the root noder: P.r = r andD.r ∈ {FT,F}
R0: (D.r = F)∧ (∀ j ∈Child.r : D. j = B∧C. j = C.r) → D.r = FT;C.r = C.r +1;H .r = H .r +1;
R1: (D.r = FT)∧ (∀ j ∈ N.r : C. j 6= C.r +1) → D.r = F ;

For i 6= r:
R2: (P.i 6= nil)∧ (D.i = F)∧ (∀ j ∈Child.i : D. j = B∧C. j = C.i) → D.i = B;
R3: (P.i 6= nil)∧ (D.i = B)∧ (D.P.i = F)∧ (C.i 6= C.P.i) → D.i = FT;C.i = C.P.i;H .i = H .P.i;
R4: (D.i = FT)∧ ((∀ j ∈ N.i : C. j 6= C.i +1)∨ (P.i = nil)) → D.i = F ;
R5: (P.i 6= nil)∧ ((∃ j ∈ N.i : D. j = FT ∧C. j = C.i +2)∨ (P.P.i = nil)) → P.i = nil ;
R6: (P.i = nil)∧ (Child.i = /0)∧ (∃ j ∈ N.i : D. j = FT ∧P. j 6= nil) → P.i = j;D.i = B;C.i = C. j;H .i = H . j;

Figure 3: The proposed algorithm.

We assume that each rule has a priority and a rule with a smaller number has a higher

priority: When a privileged node is selected by the daemon tomake a move, it executes

the highest-priority enabled rule. As readers can check, the memory usage is low and is

independent of any system parameter. Each node keeps only a pointer variableP, a phase

variableH, and two scalar variables of totally 6 (resp., 9) states for the noder (resp., for a

non-r node.) Let∆ denote the maximum degree of the graph; the space complexityof the

variableP is O(∆). When taking all the variablesH, D, C, andP into consideration, the

space complexity per node isO(∆K) states.

4. Correctness and time complexity analysis

In this subsection, we show that the system stabilizes inO(n2) rounds, regardless of

any arbitrary initial configuration, wheren = |V|. We first define the legal configuration as

below.

Definition 2. (Legal Configuration)

A configuration is legal if it satisfies the following three conditions:

(1) ∀i 6= r : (C.i = C.r)∧ (D.i = B).

(2) D.r = F.

(3) the number of nodes in the R-tree is n.

Furthermore, any configuration that arises from the one satisfying(1), (2) and(3) by the

completion of one or more moves is also a legal configuration.

Before showing that the system eventually reaches a legal configuration, we must guar-

antee that at least one node is privileged for any arbitrary configuration. In other words,

the system is never deadlocked.

Lemma 1. For any configuration, at least one node is privileged.

10 Size-Independent Self-Stabilizing Asynchronous Phase Synchronization in General Graphs

Proof. We prove this lemma by contradiction. We shall focus on only the R-tree. Assume

that no node is privileged. According to the value of the variableD, there are two cases to

be considered:

Case (1) every node has eitherD = B or D = F :

Let h(i) ≥ 1 be the height of a nodei in the R-tree. We first use induction onh(i)

to show that every non-r nodei in the R-tree hasD.i = B. (Basis) Since a leaf nodei

(h(i) = 1) cannot execute R2, we haveD.i = B. (Hypothesis)D. j = B for any non-r node

j with h(j) < λ . (Induction) Leti be a non-r node withh(i) = λ and j be a child ofi.

We haveD. j = B by the hypothesis. Assume thatD.i = F . If C. j 6= C.i for some nodej,

then j can execute R3. IfC. j = C.i for any nodej, nodei can execute R2. Since no rule is

enabled, the case ofD.i = F does not occur and we haveD.i = B, as desired.

For the root noder, D.r = F holds because the range ofD.r doesn’t containB. Since

r cannot execute R0, it has a childj such thatC. j 6= C.r, by which the nodej can execute

R3 due to(P. j 6= nil)∧ (D. j = B)∧ (D.P. j = F)∧ (C. j 6= C.P. j). Contradiction occurs.

Case (2) some nodei hasD.i = FT:

Because nodei cannot execute R4, we haveP.i 6= nil and i has a neighborj with

C. j = C.i + 1 (node j may not be in the R-tree). We have two sub-cases to consider: (i)

P. j 6= nil : j can execute R5 because(D.i = FT)∧ (C.i = C. j −1 = C. j +2). (ii) P. j = nil :

Since j cannot execute R6, we haveChild. j 6= /0. Nodej ’s child k can execute R5 because

(P.k 6= nil)∧ (P.P.k = P. j = nil). We get a contradiction for each sub-case.

Below, we begin to prove the convergence property. We first define tokens as follows.

In a legitimate state, there is exactly one token in every path from the noder to the leaves.

Definition 3. (Forward Token)

The root node r is said to own a forward token iff

(D.r = F ∧ (∀ j ∈Child.r : D. j = B∧C.r = C. j))∨ (D.r = FT),

whereas a non-r node is said to hold a forward token iff

(P.i 6= nil)∧ ((D.i = B∧D.P.i = F ∧C.i 6= C.P.i)∨D.i = FT).

In the above definition, the condition(D.i = B∧D.P.i = F ∧C.i 6= C.P.i) for a non-r

nodei means thatD.i has passed a forward token toi (by executing R4) buti has not yet

executed R3.

Definition 4. (Backward Token)

A non-leaf node i is said to receive and hold a backward token from a child j iff

(D.i = F)∧ (D. j = B)∧ (C.i = C. j),

whereas a non-isolated leaf node i is said to hold a backward token iff

(D.i = F).

C. H. Tzeng, J. R. Jiang AND S. T Huang 11

Our ultimate goal is to show that eventually there is a fixed spanning tree. To do this,

we first prove some properties of tokens in lemmas 2, 3, 4, and 5. By these lemmas, we

can infer the property of tokens in O-trees, Nil-trees, and the R-tree, as shown in lemmas

6, 7 and 8, respectively. Finally, lemmas 9 and 10 show how a system converges to the

legal configuration.

Lemma 2. In fixed components(R-tree, O-trees, or Nil-trees), a non-rnode does not re-

ceive consecutive forward and consecutive backward tokens.

Proof. We first show that a non-r nodei never receives consecutive forward tokens. By

definition, when nodei owns a forward token, eitherD.i = B or D.i = FT holds and it can

execute R3 and then R4 (ifD.i = B), or simply execute R4 (ifD.i = FT) to pass the token

to its children. After the token passing, its status isD.i = F. Before owning a forward

token again, nodei has to execute R2 so that the value ofD.i becomesB from F. Since

the guard of R2 implies the possession of (at least) a backward token, it means that nodei

must own (at least) a backward token before getting a forwardtoken again. That is, nodei

never receives consecutive forward tokens.

Based on the same strategy, we can also prove that nodei never receives consecutive

backward tokens, so this proof is skipped.

Lemma 3. Once a forward token meets a backward token, one of them disappears.

Proof. Consider two nodesi and j, P. j = i andP.i 6= nil , such thatj can execute R2 and

i can execute R0 (ifi = r) or R3 (if i 6= r). By definition, nodej has a backward token,

whereas nodei has a forward token. We prove this lemma by checking how many tokens

are left after the node pass the tokens.

Because the tokens meet by nodei or node j or both executing the rules, we have the

following three cases to consider:

Case (1) Onlyj passes the backward token by executing R2:

For this case, nodej is of D. j = B so the backward token disappears. On the other

hand, nodei still holds the forward token.

Case (2) Onlyi passes the forward token by executing R0 and R1 (or R3 and R4):

For this case, nodei is of D.i = F so the forward token disappears. On the other hand,

node j still holds the backward token.

Case (3) Bothi and j pass tokens:

After j executes R2 andi executes R0 and then R1 (or R3 and then R4), we have

D. j = B, D.i = F andC.i = C.P.i. According to the relation betweenC.i andC. j, we have

two sub-cases to consider: (i)C.i = C. j: Nodei has(D. j = B)∧ (D.i = F)∧ (C.i = C. j),

so it has a backward token coming fromj. On the other hand, nodej does not own the

12 Size-Independent Self-Stabilizing Asynchronous Phase Synchronization in General Graphs

forward token. (ii)C.i 6= C. j: Here, nodej has(D. j = B)∧ (D.P. j = F)∧ (C. j 6= C.P. j)

so it has a forward token. On the other hand, nodei does not receive the backward token

coming from j.

Because either the forward token or the backward token disappears in each case, this

lemma holds.

For normal token circulation, tokens bounce between the root noder and leaf nodes.

That is, a backward token should become a forward token when it arrives at the noder,

whereas a forward token should become a backward token when it arrives at a leaf node.

However, in the beginning a token may change its direction atan internal node because

of the unpredictable initial configuration. And we say that an internal nodei performs an

illegal forward (resp., backward) token reversalif it receives a forward (resp., backward)

token but sends out a backward (resp., forward) token. In terms of rules, if nodei perform

an illegal forward token reversal, it executes R3, R4, and R2consecutively. (Note that

nodei can execute R2 right after executing R4, but in normal situations it cannot do so.)

Similarly, if nodei perform an illegal backward token reversal, it executes R2,R3 and R4

consecutively.

Lemma 4. Eventually no internal node can perform illegal forward or backward token

reversal.

Proof. To prove this lemma, we show that an internal nodei can perform at most once

illegal reversal of a forward token and of a backward token respectively.

Consider the case that nodei performing an illegal forward token reversal. By defini-

tion, it executes R3, R4 and R2 consecutively. After executing the three rules, nodei has

(D.i = B)∧ (∀ j ∈ Child.i : C. j = C.i ∧D. j = B). Let j be a child ofi. The next timei

receives a forward token, nodei hasC.i 6= C.P.i. After i executes R3 and R4 to pass the

forward token, the conditionC. j 6= C.i holds so it cannot execute R2 immediately. That is,

nodei cannot reverse the forward token.

Now, consider the case that nodei performs an illegal backward token reversal. Simi-

larly, it means that nodei executes R2, R3 and R4 consecutively. After executing the three

rules, nodei has(D.i = F)∧ (D.P.i = F)∧ (C.i = C.P.i). The next timei owns a backward

token and executes R2, it cannot execute R3 immediately becauseC.i = C.P.i holds. That

is, nodei cannot reverse the backward token.

Informally speaking, after a node executes R2 (resp., R3 andR4), its state is consistent

with its children (resp., parent). For a node that has executed R2, any of its children

never performs an illegal forward token reversal. Similarly, a node that has executed R3

and R4 never performs an illegal backward token reversal. Since an illegal forward (resp.,

C. H. Tzeng, J. R. Jiang AND S. T Huang 13

backward) token reversal is caused by the executions of R3, R4, and R2 (resp., R2, R3, R4),

we can infer that any non-r node performs at most one illegal forward (resp., backward)

token reversal.

Now, consider the longest waiting timeT(d) for an internal nodei to receive a forward

token, whered is the depth ofi. Because forward tokens move along only tree edges and

because they transfer from a node to the next one in a constantnumber of rounds, the

worst case happens when every ofi’s ancestors, exceptr, executes an illegal forward token

reversal. Starting from the moment when the root holds a forward token, we can deduce

T(2) = 1 andT(d) = T(d−1) + O(d), and thusT(d) = O(d2) = O(n2) rounds. Once node

i holds a forward token, it executes R3 and R4 and its children will not be able to perform

an illegal backward token traversal. In other words, every internal node cannot execute an

illegal backward token traversal inO(n2) rounds.

Based on a similar reason, we can infer that every internal node cannot execute an

illegal forward token reversal inO(n2) rounds. We have the following lemma:

Lemma 5. After O(n2) rounds, no internal node can perform illegal forward or backward

token reversal.

In the following three lemmas, we show the behavior of tokensin O-trees, Nil-trees,

and the R-tree, respectively.

Lemma 6. After O(n2) rounds, there will be no token in O-trees.

Proof. To prove this lemma, we show that, for any O-tree, tokens in the branches go into

the cycle inO(n) rounds and then disappear inO(n2) rounds. With the help of lemma 5,

we assume that no illegal token reversal would occur.

First, focus on the tokens in the O-tree branches. In such components, a forward token

becomes a backward when it arrives at a leaf node and the backward token either goes

into the O-tree cycle or disappears. The time complexity forthis isO(n) rounds, including

O(n) rounds for a forward token to become a backward token and anotherO(n) rounds for

the backward token to go into the cycle.

Now, consider the tokens in the O-tree cycle. According to lemma 3, the number of

tokens decreases when two tokens of different directions meet; hence eventually the tokens

in the cycle are of the same direction, either forward or backward. The time complexity for

this isO(n)×O(n) = O(n2) rounds because there may beO(n) tokens in the cycle and two

tokens of different types meet inO(n) rounds. Afterwards, these survival tokens disappear

in O(n) rounds, since a node never consecutively receives tokens ofthe same direction,

according to lemma 2. In summary, all the tokens in the O-treecycle disappear inO(n2)

rounds, as desired.

14 Size-Independent Self-Stabilizing Asynchronous Phase Synchronization in General Graphs

Lemma 7. After O(n) rounds, there will be no token in Nil-trees.

Proof. By definition, an isolated node has no token. Therefore, we prove this lemma by

showing that any Nil-tree becomes a set of isolated nodes inO(n) rounds.

According to R5, a child of a Nil-tree root can point to nil, sothe Nil-tree’s height

decreases by one everyO(1) rounds. Combining the fact that the tree height isO(n), the

Nil-tree becomes a set of isolated nodes inO(n) rounds.

Below, we show that the R-tree eventually reaches theperfect state; viz. D.r = F and

any non-r nodei in the R-tree has(C.i = C.r)∧ (D.i = B).

Lemma 8. After O(n2) rounds, the R-tree reaches the perfect state.

Proof. To prove this lemma, we first show that inO(n2) rounds only one token exists in

each tree path from a leaf node to the root noder. Afterwards, the R-tree enters the perfect

state inO(n) rounds. Similar to lemma 6, we assume that no illegal token reversal would

occur.

Consider a tree path from a leaf node to the root noder. By the proof of lemma 1,

there is at least one token in this path. Let the number of tokens in this path beO(n).

Because the tokens bounce between the root node and the leaf node, they meet one another

in O(n) rounds. By lemma 3, it means that the number of tokens decreases by one every

O(n) rounds, or, equivalently, decreases to one inO(n)×O(n) = O(n2) rounds. If the last

survival token is forward, it reaches the leaf node inO(n) rounds and becomes a backward

token traveling back to the root node.

Now we consider the configuration in which there is exactly one backward token in

any tree path from a leaf node to the root node. For a non-r node i receiving all the

backward tokens from its children, it executes R2 to pass themerged backward token to its

parent. After the execution, nodei hasD.i = B∧C. j = C.i ∧D. j = B, where j ∈Child.i.

Since everyO(1) rounds a backward token moves from the node of heightk to the node

of height k+ 1, the root node receives backward tokens from all the children in O(n)

rounds. By that time, the root node is ofD.r = F and any non-r nodei in the R-tree is of

D.i = B∧C.i = C.P.i = C.r. That is, the R-tree is in the perfect state.

According to the above proof, the R-tree enters the perfect state inO(n2) rounds.

Lemma 9. Once the R-tree reaches the perfect state and there is no token in O-trees/Nil-

trees, the number of nodes in the R-tree is monotonically increasing.

Proof. To prove this lemma, we show that a nodei in the R-tree does not execute R5 to

depart from the R-tree. Letj be a neighbor ofi. Our attempt is to show thatC. j 6= C.i −2

holds whenD. j = FT holds. This nodej must be in the R-tree; otherwiseD. j = FT cannot

C. H. Tzeng, J. R. Jiang AND S. T Huang 15

hold since there is no token in O-trees/Nil-trees. Below, weconsider a token circulation in

the R-tree, observe how the colorC changes, and prove the desired property:C. j 6=C.i−2.

Let’s consider a token circulation starting from the perfect state, in which every node

has the same colorC.r = α −1. During this token circulation, the root noder executes

exactly two rules R0 and R1, and any other R-tree node executes exactly three rules R2,

R3, and R4. Because a node changes its color to beα only when it executes R0 or R3,

and because these two rules setD = FT as well, the conditionC. j = α must hold when

D. j = FT holds. For nodei, its color is eitherC.i = α or C.i = α −1. It is easy to check

thatC. j 6= C.i −2, as desired.

Lemma 10. Once the R-tree reaches the perfect state and there is no token in O-trees/Nil-

trees, the R-tree spans all the nodes in O(n2) rounds.

Proof. Let i and j be two adjacent nodes such thatj is in the R-tree, whilei is not. We can

prove this lemma by showing that nodei joins the R-tree inO(n) rounds.

Consider the token circulations in the R-tree. During a token circulation propagating

color 0, nodej is of D. j = FT andC. j = 0 at some time by executing R0 (ifj = r) or R3

(if j 6= r). Similarly, during the token circulations propagating color 1 and color 2, node

j is of (D. j = FT)∧ (C. j = 1) and(D. j = FT)∧ (C. j = 2) at some point, respectively.

Because nodei has no token and thus cannot changeC.i, the condition(D. j = FT)∧(C. j =

C.i +2) holds at some time within three consecutive token circulations. Since each token

circulation finishes inO(n) rounds, this condition holds within 3∗O(n) rounds. The next

step is to prove that nodei points to nodej within O(1) rounds when this condition holds.

By the components wherei locates, there are three cases to consider:

Case (1)i is an isolated node:

Nodei executes R6 to setP.i = j to join the R-tree.

Case (2)i is in an O-tree:

Nodei executes R5 to setP.i = nil and becomes a Nil-tree root. Then its children, if any,

execute R5 so nodei becomes an isolated node. The remaining proof of this case issimilar

to that of Case (1).

Case (3)i is in a Nil-tree containing more than one node:

The proof of this case is similar to that of Case (2).

The actions in all the three cases takeO(1) rounds, so nodei becomes a part of the R-

tree inO(1) rounds when(D. j = FT)∧(C. j =C.i+2) holds. Because this condition holds

in O(n) rounds, the number of nodes in the R-tree increases by one every O(n) rounds, until

the R-tree spans all the nodes. Thus the overall time complexity is O(n)×O(n) = O(n2)

rounds.

Theorem 1(convergence). The system enters legal configurations in O(n2) rounds.

16 Size-Independent Self-Stabilizing Asynchronous Phase Synchronization in General Graphs

Proof. This is a direct consequence of lemmas 5, 6, 7, 8, 9 and 10.

Theorem 2(closure). Once the system is in a legal configuration, it remains so henceforth.

Proof. Note that the criteria (1) and (2) of definition 2 are the conditions of perfect states.

By lemma 9, no node can depart from the R-tree so the number of nodes in the R-tree is

alwaysn.

5. Concluding Remarks

We propose a size-independent self-stabilizing algorithmfor the phase synchronization

problem in semi-uniform systems of general connected graphtopologies. The algorithm

runs under the parallel execution model and does not rely on any system parameter like the

number of nodes. It is thus fit for the systems with dynamically changing number of nodes.

Another advantage of the algorithm is the low space complexity: O(∆K) states per node,

whereK is the number of phases and∆ is the maximum degree of system nodes. Moreover,

the number of phases can be any number larger than one, which makes the proposed algo-

rithm very flexible. To the best of our knowledge, there are noother such size-independent

self-stabilizing algorithms for systems of general connected graph topologies.

In our algorithm, the scheduling daemon can be unfair for thefollowing reasoning.

Suppose that a nodei is continuously privileged but not selected by the daemon. It is

safe to say that the phase (C.i or H.i) of i dose not change. By definition 1, other nodes

cannot advance their phases eventually, or equivalently, they cannot execute R0 or R3.

Those nodes can only execute R1, R2, R4, R5, or R6, and ultimately end up withD =

B. Because they cannot execute R3, which is the only rule to reset the variableD, the

conditionD = B remains and their privileges vanish. Therefore, nodei eventually becomes

the only privileged one. The daemon then must selecti to execute.

We make an assumption that there is a unique root noder. This node is responsible

for coordinating other nodes so that they know when to enter anew phase. If the noder

departs from the system (due to events such as power failure), then the proposed algorithm

no longer works. However, the assumption of the root node in this paper is for constructing

a spanning tree deterministically during the convergence of the phase synchronizer, and it

may be unnecessary for a phase synchronizer. Therefore, it is challengin task to remove

this assumption and develop another self-stabilizing phase synchronizer for general graphs.

We will take this as a future work.

C. H. Tzeng, J. R. Jiang AND S. T Huang 17

References

1. L. O. Alima, J. Beauquier, A. K. Datta, and S. Tixeuil. Self-stabilization with global

rooted synchronizers. InProceedings of the 18th International Conference on Dis-

tributed Computing Systems, pages 102–109, 1998.

2. A. Arora, S. Dolev, and M. G. Gouda. Maintaining digital clocks in step.Parallel

Processing Letters, 1:11–18, 1991.

3. A. Arora and M. Gouda. Distributed reset.IEEE Transactions on Computers,

43(9):1026–1038, 1994.

4. B. Awerbuch, S. Kutten, Y. Mansour, B. Patt-Shamir, and G.Varghese. Time optimal

self-stabilizing synchronization. InACM Symposium on Theory of Computing, pages

652–661, 1993.

5. C. Boulinier, F. Petit, and V. Villain. Synchronous vs. asynchronous unison. InSelf-

Stabilizing Systems, pages 18–32, 2005.

6. E. W. Dijkstra. Self-stabilizing systems in spite of distributed control.Communica-

tions of the ACM, 17(11):643–644, 1974.

7. S. Dolev. Possible and impossible self-stabilizing digital clock synchronization in

general graphs.Real-Time Systems, 12(1):95–107, 1997.

8. S. Dolev, A. Israeli, and S. Moran. Uniform dynamic self-stabilizing leader election.

IEEE transations on Parallel and Distributed Systems, 8(4):424–440, 1997.

9. F. C. Gärtner. A Survey of Self-Stabilizing Spanning-Tree Construction Algorithms.

Technical report, Swiss Federal Institution of Technology, 2003.

10. M. G. Gouda and F. F. Haddix. The alternator. InWSS, pages 48–53, 1999.

11. M. G. Gouda and T. Herman. Stabilizing unison.Information Processing Letters,

35:171–175, 1990.

12. S. T. Huang and T. J. Liu. Self-stabilizing 2m-clock for unidirectional rings of odd

size.Distributed Computing, 12:41–46, 1999.

13. S. T. Huang and T. J. Liu. Phase synchronization on asynchronous uniform rings

with odd size.IEEE Transactions on Parallel and Distributed System, 12(6):638–652,

2001.

18 Size-Independent Self-Stabilizing Asynchronous Phase Synchronization in General Graphs

14. S. T. Huang, T. J. Liu, and S. S. Hung. Asynchronous phase synchronization in uni-

form unidirectional rings. IEEE Transactions on Parallel and Distributed System,

15(4):378–384, 2004.

15. H. S. M. Kruijer. Self-stabilization(in spite of distributed control) in tree-structured

systems.Information Processing Letters, 8(2):91–95, 1979.

16. S. Kulkarni and A. Arora. Fine-grain multitolerant barrier synchronization. Technical

report, Technical Report OSU-CISRC TR34, Ohio State University, 1997.

17. S. Kulkarni and A. Arora. Multitolerant barrier synchronization.Information Process-

ing Letters, 64(1):29–36, 1997.

18. J. Misra. Phase synchronization.Information Processing Letters, 38(2):101–105,

1991.

