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Abstract 

This paper proposes an algorithm, named the optimal node selection algorithm (ONSA), to solve the sink-
connected barrier coverage optimization problem, which is concerned with how to select randomly deployed 
sensor nodes of a wireless sensor network (WSN) to reach two optimization goals: (1) to maximize the 
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will be activated for constructing sink-connected barrier coverage with the maximum degree. The 
pseudo code of ONSA is shown in Fig. 4 and explained below. 

 
In step 1, ONSA constructs a coverage graph Gc with a virtual node S and a virtual node T. 

The edges incident to the sink node are associated with Capacity 1 and Cost 0, and all other edges 
are associated with Capacity 1 and Cost 1. 

 
In step 2, ONSA executes the node-disjoint transformation to covert Gc into Gc*. As shown 

in Fig. 5(a), the node-disjoint transformation changes a node X with multiple inbound flows and 
multiple outbound flows into a pair of virtual nodes X' and X'' which has an edge going from X' to 
X'' associated with Capacity=1 and Cost=0. The purpose of the transformation is to make the 
generated flow plan in Gc* node-disjoint. 

 
In step 3, ONSA executes the maximum flow minimum cost algorithm on Gc* to decide the 

flow plan Fc. The maximum flow minimum cost algorithm has two procedures. The first 
procedure is to find the maximum flow by executing the Edmonds-Karp algorithm [Cormen 2001]. 
The second procedure is to find the minimum cost flow by executing the Orlin-Ahuja algorithm 
[Orlin and Ahuja 1992]. The readers are referred to [Cormen 2001] and [Orlin and Ahuja 1992] 
for the procedure details. In this step, the nodes selected in Fc are included in the node set Vd, the 
set of detecting nodes. Since the flow in Fc is maximized, the number of node-disjoint traversable 
paths in Vd is also maximized. Moreover, since the cost of Fc is minimized, the number of nodes 
in Vd is also minimized. 

 
In step 4, ONSA constructs a transmission graph Gt(VsVk, Et) and adds a virtual source 

node S and a virtual target node T into Gt. 
 
In step 5, ONSA inserts a virtual source node S into Gt and adds an edge between the node S 

and every detecting node in Vd. Each newly added edge is associated with Capacity=1 and Cost=0. 
ONSA also inserts a virtual target node T into Gt and adds an edge between the node T and every 
sink node in Vk. Each newly added edge is associated with Capacity=∞ and Cost=0. The settings 
of Capacity and Cost are to guarantee that every detecting node in Vd has a flow going to one of 
the sink nodes. 

 
In step 6, ONSA executes the node-edge transformation to covert Gt into Gt*. As shown in 

Fig. 5(b), the node-edge transformation changes each node (excluding S and T) into two virtual 
nodes with one edge of Capacity= and Cost=1. The purpose of the transformation is to make the 
obtained flow plan in Gt* have the minimum number of nodes. 

 
In step 7, ONSA executes the maximum flow minimum cost algorithm on Gt* to decide the 

flow plan Ft. In this step, the nodes selected in Ft are included in the node set Vm. Since Ft has the 
minimum cost, the number of nodes in Vm is minimized. 

 
In step 8, ONSA returns Vd as the set of detecting nodes, and returns Vf=Vm  Vd as the set 

of forwarding nodes. 
 

Optimal Node Selection Algorithm (ONSA) 
Input: Vs, Vk, Ec, Et 
Output: Vd and Vf 
Step 1: Construct a coverage graph Gc(Vs{S,T}, Ec), where S and T are virtual nodes, and 
associate all edges incident to T with Capacity=1 and Cost=0, and all other edges with Capacity=1 
and Cost=1. 
Step 2: Execute the node-disjoint transformation to convert Gc into Gc*.  
Step 3: Execute the maximum flow minimum cost algorithm to obtain the minimum cost flow plan 
Fc on Gc*. Let node set Vd, VdVs, be the set of nodes associated with Fc. 
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Step 4: Construct a transmission graph Gt(VsVk, Et), where each edge is with Capacity=1 and 
Cost=0. Add a virtual source node S and a virtual target node T into Gt.  
Step 5: For each node in Vd on graph Gt, add an edge going from S to it with Capacity=1 and 
Cost=0. For each sink node in Vk, add an edge going from it to T with Capacity= and Cost=0. 
Step 6: Execute the node-edge transformation to convert Gt into Gt*.  
Step 7: Execute the maximum flow minimum cost algorithm to obtain the minimum cost flow plan 
Ft on Gt*. Let Vm, VmVs, be the set of the nodes associated with Ft. 
Step 8: Return Vd as the set of detecting nodes. Let Vf be (Vm  Vd), and return Vf as the set of 
forwarding nodes. 

Fig. 4. The pseudo code of the ONSA algorithm 
 

 

(a) Node-Disjoint Transformation 

 

 

(b) Node-Edge Transformation 

Fig. 5. Two transformations of ONSA 
 
Below, we take the WSN in Fig. 2 as an example to illustrate the execution of ONSA. In step 

1, a coverage graph Gc will be constructed. After step 2, the nodes with multiple inbound flows 
and multiple outbound flows are transformed by the node-disjoint transformation. The 
transformation results are shown in Fig. 6. In step 3, a flow plan is obtained by the maximum flow 
minimum cost algorithm. In this example, the maximum number of flows is two and the set of 
nodes Vd associated with Fc is {N1,…,N8}. 

Cost=0 
X 

X'' 

X' Capacity=1 

Cost=1
X 

X'' 

X' Capacity=
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Fig. 6. An example of the node-disjoint transformation on a coverage graph 

Now, we take the WSN in Fig. 3, which is extended from that in Fig. 2, as another example 
to illustrate the execution of ONSA. Note that we assume nodes N1,…,N8 have been selected as 
detecting nodes in Vd. In step 4, the graph transmission graph Gt is constructed and virtual nodes S 
and T are added into Gt. In step 5, a new edge is added between the virtual source node S and 
every node in Vd. Moreover, a new edge is added between every sink node in Vk and the virtual 
target node T. 

In step 6, the node-edge transformation is performed to convert Gt into Gt*, as shown in Fig. 
7. In step 7, the maximum flow minimum cost algorithm is executed to obtain Vm. In this example, 
Vm is {N1,…,N13}, which is a set containing the nodes selected in Ft.  

 
Fig. 7. An example of the node-edge transformation on a transmission graph 
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Traffic Type CBR (constant bit rate)
Sending Frequency 1 packet/sec
Packet Size 70 bytes 
Transmitting Power 19.8 mW
Receiving Power 35.5 mW 
Idling Power 0.8 mW 
No. of Experiments 100 times/case

 
The parameter settings used in simulation are listed in Table 1 and described as follows. All 

the sensors are equipped with 802.15.4 unslotted CSMA/CA network interface, and are randomly 
deployed in a 120m x 10m rectangle-shaped area. The number of nodes is 150, 200, 250, or 300. 
The sensing area coverage radius (sensing range) and the wireless transmission radius 
(transmission range) are both set to 10m. The power of the radio module in different mode is set 
according to the commercial transceiver CC2420 [TI, 2012]. The duration of a simulation 
experiment is 10 seconds. The states of nodes and links are assumed to be fixed during the 
simulation duration. The result of a simulation case is derived by averaging 100 experiment results.  

We first consider the case that only 1 sink node is located at (60m, 5m), the center position of 
the monitored rectangle. We compare ONSA and GDA in terms of the number of nodes selected 
to achieve the sink-connected barrier coverage with the highest degree. As shown in Fig. 9, ONSA 
selects fewer nodes than GDA for all the numbers of deployed nodes.  

We then consider the case that 2 sink nodes are respectively located at (40m, 5m) and (80m, 
5m) which is relative to the leftmost and lowest position of the rectangle. By Fig. 10 we can 
observe that more sink nodes lead to fewer selected nodes and that ONSA again selects fewer 
nodes than GDA. We conclude that ONSA needs fewer nodes than GDA to achieve sink-
connected barrier coverage with the highest degree. This is because ONSA, which is based on the 
maximum flow minimum cost algorithm, will always select the minimum number of nodes. 

Fig. 9. Comparisons of ONSA and GDA with 1 sink node in terms of the number 
 of selected nodes 
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Fig 10. Comparisons of ONSA and GDA with 2 sink nodes in terms of the number 
 of selected nodes 

 
We compare ONSA and GDA in terms of energy consumptions in transmissions. The 

simulations are conducted by simulating two event transmission scenarios: (i) one detection event 
source, and (ii) two detection event sources. The first (resp., second) scenario is simulated by 
randomly selecting one (resp., two) source node(s) to transmit 10 notification packets of 70 bytes 
to one of the sink nodes at the rate of one packet per second. The packet transmission is based on 
the path determined by the maximum flow minimum cost algorithm for the cases of 1 sink node 
and 2 sink nodes. As shown in Figs. 11 and 12, the energy consumption of ONSA is lower than 
GDA in both scenarios for both cases of 1 sink node and 2 sink nodes. This is because more nodes 
are selected by GDA than ONSA to turn on their sensing module and/or radio module. We can 
also observe that larger numbers of deployed sensor nodes leads to more energy consumption. 
This is because more nodes are selected to be active to construct barrier coverage with higher 
degrees. The cases of two sink nodes have less energy consumption than the cases of one sink 
node. This is because the former cases have smaller source-to-sink hop counts than the latter. 

We also compare ONSA and GDA in terms of the packet delay of transmitting an event 
notification packet from a source node to a sink node. The comparisons results of packet delay are 
reported in Figs. 13 and 14, which show that the packet delay is almost the same between ONSA 
and GDA for both scenarios of one detection source or two detection sources and that the delay 
does not vary with the number of deployed nodes. This is because both ONSA and GDA use pre-
established paths with fixed hop counts to transmit the packet. We can also observe that the cases 
of 2 sink nodes have smaller delay than the cases of 1 sink node. This is because the former cases 
have smaller source-to-sink hop counts than the latter. 
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Fig. 11. Comparisons of ONSA and GDA with 1 sink node in terms of the total energy 

consumption 
 

 
Fig. 12. Comparisons of ONSA and GDA with 2 sink nodes in terms of the total energy 

consumption 
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Given the node position information and the topology of a WSN, ONSA can be used to 
construct optimal sink-connected barrier-coverage. When the WSN topology changes due to 
node/link failure or insertion, the topology changes should be detected to initiate some actions for 
recover the barrier-coverage. All active nodes are demanded to report its state and associated link 
states to the sink node periodically. On detecting node and/or link condition changes, the sink 
node then broadcasts requests to all nodes, either active or inactive, to collect the topology 
information and make the ONSA run at the backend system to determine new barrier coverage. 
Note that we assume inactive nodes turn on their radio modules periodically to guarantee to 
receive broadcast requests within a pre-specified period of time. Afterwards, the new coverage 
information is disseminated to all nodes to form the new barrier coverage. 
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