
Constructing Multiple Steiner Trees for Software-Defined
Networking Multicast

Jehn-Ruey Jiang

National Central University
Taoyuan City, Taiwan

jrjiang@csie.ncu.edu.tw

Szu-Yuan Chen
National Central University

Taoyuan City, Taiwan
j35682368@yahoo.com.tw

ABSTRACT
A heuristic algorithm is proposed in this paper to construct a set of
Steiner trees for multicast with multiple sources under the software-
defined networking (SDN) architecture, where each source is
associated with a group of receivers. It is based on the extended
Dijkstra’s shortest path algorithm and the modified selective closest
terminal first Steiner tree algorithm. The former algorithm
considers not only the edge weights but also the node weights to
form data routing path with the shortest delay. The latter algorithm
regards nodes with shorter paths to the source to have higher
priority in the priority queue for growing Steiner trees. In this way,
the number of Steiner tree edges is reduced and thus the bandwidth
consumption is cut down. The proposed algorithm is simulated by
the EstiNet emulator along with a Ryu controller for different
multicast scenarios. The simulation results are compared with those
of related algorithms in terms of the source-to-receiver delay and
the bandwidth consumption to show the advantage of the proposed
algorithm.

Categories and Subject Descriptions
C.2 [Computer-communication networks]: Network Architecture
and Design.

Keywords
Software-Defined Networking; Multicast; Dijkstra’s Shortest Path
Algorithm; Steiner Tree

1. INTRODUCTION
Software-Defined Networking (SDN) is a concept advocated by the
Open Network Foundation (ONF) [1] to decouple the control plane
and the data plane of network devices. SDN switches are
responsible for forwarding the packets on the data plane, while an
SDN controller or a set of SDN controllers is responsible of
collecting network information from switches and configuring
switches’ forwarding tables (also called flow tables) which all
switches base on to process data packets. In this manner, SDN users
can composite application programs running on top of the
controller to monitor and manage the whole network in a
centralized and timely way.

Google has applied an SDN architecture to its private WAN called
B4 [2] for improving the network performance. Consequently, the
network link utilization is driven from 30-40% to near 100% by
centralized traffic engineering (TE) based on the architecture.
Besides the application in Google, many SDN-based applications
[3][4] have been proposed, such as load balancing, access control,
and multicast.
Multicast is a fundamental communication function, in which a
data packet is sent by a source, replicated at intermediate devices
for forwarding to multiple outgoing links, and eventually delivered
to all receivers of a multicast group. It can be applied to
applications like IPTV, the video conference, and live streaming,
etc. Multicast routing can be regarded as constructing a multicast
tree that is rooted at the source and spans all receivers. The PIM-
SM protocol [5] finds a shortest path from the source to every
receiver and puts all paths jointly to have a shortest path tree as the
multicast tree. However, the shortest path tree may contain many
links which consume a large volume of bandwidth. On the contrary,
the minimum Steiner tree [6] contains the smallest number of links
to span all receivers; it is therefore a good alternative to be the
multicast tree that may consume less bandwidth.
This paper proposes a heuristic algorithm to construct a set of
multicast trees by combining the shortest path trees and the
minimum Steiner trees. The constructed trees are then applied to
achieve multicast with multiple sources under the SDN architecture.
The proposed algorithm takes advantage of both the extended
Dijkstra’s algorithm [7] and a Steiner tree forming algorithm called
the Selective Closest Terminal First (SCTF) algorithm [8].
Modeling the network as a directed graph, the extended Dijkstra’s
algorithm considers not only the edge weight but also the node
weight to obtain the shortest path from a single source node to every
other node. The SCTF algorithm uses a heuristic to build a Steiner
tree with approximately the minimum total cost (weight). This
paper modifies the heuristic to fit for the SDN multicast scenarios.
The proposed algorithm is simulated by the EstiNet emulator [9]
along with a Ryu controller [10] for different multicast scenarios.
The simulation results are compared with those of related
algorithms in terms of the source-to-receiver delay and the total
bandwidth consumption to show the advantage of the proposed
algorithm.
The rest of this paper is organized as follows. Section 2 describes
some related work. The proposed algorithm is detailed in Section 3.
Section 4 demonstrates simulation results of the proposed
algorithm. And finally, Section 5 concludes the paper.

2. RELATED WORK
2.1 SDN
SDN is the concept to separate the control plane and the data plane,
so that underlying data-plane switching devices (called switches)

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from Permissions@acm.org.
CFI’16, June 15-17, 2016, Nanjing, China.
©Copyright 2016 ACM. ISBN 978-1-4503-4181-3/16/06$15.00
DOI: http://dx.doi.org/10.1145/ 2935663.2935665

are controlled by a centralized control-plan device (called
controllers) on top of which different software entities (called
applications) can be developed and run. Figure 1 depicts the logical
view of the SDN architecture [11]. SDN allows the network
administrator to write applications to cooperate with the controller
through the northbound interface to interact with switches through
the southbound interface for providing network services, including
routing, access control, load balancing, multicast, and other traffic
engineering tasks.

OpenFlow [12] is the most well-known southbound interface
protocol used between the controller and the switch. As depicted in
Figure 2, a switch has one or more flow tables and/or group tables,
and a flow table entry consists of match fields, counters,
instructions, and so on. A controller can update, add and delete flow
entries in the flow table both reactively and proactively.
On receiving a packet, a switch first matches its header with match
fields of every entry in the flow table(s). The matching process
begins in the first table and continues subsequently to additional
tables. It is prioritized; that is, the first matched entry is returned
and the matching process stops. If a matched entry is found, the
counter associated with the entry is updated for the purpose of
traffic statistics, and associated instructions are executed to
complete specific actions, such as forwarding the packet to another
switch via an outgoing port, and dropping the packet, etc. If no
match is found in any flow table, then the packet may be dropped
or forwarded to the controller.

Figure 1. The illustration of the SDN architecture [11].

Figure 2. The OpenFlow controller and the switch and the
flow table entry fields [12].

2.2 The Extended Dijkstra’s Algorithm
Given a weighted, directed graph G=(V, E) and a single source node
s, the classical Dijkstra’s algorithm [13] can return a shortest path
from the source node s to every other node, where V is the set of
nodes and E is the set of edges, each of which is associated with a
non-negative weight (or cost). In the original Dijkstra’s algorithm,
nodes are associated with no weight. The paper [7] extends the
original algorithm to consider both the edge weights and the node
weights for end-to-end routing. The extended Dijkstra’s algorithm
(EDA) is also applied to achieve load balancing and multicasting
in [14].

Figure 3 shows the extended Dijkstra’s algorithm, whose input is a
given graph G=(V, E), the edge weight setting ew, the node weight
setting nw, and the single source node s. The extended algorithm
uses dist[u] to store the distance of the current shortest path from
the source node s to the destination (i.e., receiver) node u, and uses
pred[u] to store the predecessor node preceding u on the current
shortest path. Initially, dist[s]=0, dist[u]=∞ for each u∈V, u≠s, and
pred[u]=null for each u∈V. The algorithm finally returns a set SP
of shortest paths from s to all other nodes according to dist[u] and
pred[u] for each u∈V, u≠s.

The extended Dijkstra’s algorithm is very useful in deriving the
best routing path to send a packet from a specific source node to a
destination node for the SDN environment in which significant
latency occurs when the packet goes through intermediate nodes
and edges (or links). As shown below, the paper [7] defines the
edge weights and node weights so that the extended Dijkstra’s
algorithm can be applied to derive routing path for SDN
environments. Assume the SDN network topology is derived and
modeled as a weighted, directed, and connected graph G=(V, E).
For a node v∈V and an edge e∈E, let Flow(v) and Flow(e) denote
the set of all the flows passing through v and e, respectively, let
Capacity(v) be the capacity of v (i.e., the number of bits that v can
process per second), and let Bandwidth(e) be the bandwidth of e
(i.e., the number of bits that e can transmit per second). The node
weight nw[v] of v is defined according to Eq. (1), and the edge
weight ew[e] of e is defined according to Eq. (2).

����� =
∑ �	
�(
)�∈����(�)

�����	
�(�)
,																																																					(1)

where Bits(f) stands for the number of flow f’s bits processed by
node v per second.

����� = 	
∑ �	
�(
�∈����(�))

��� �	
ℎ(�)
,																																																					(2)

where Bits(f) stands for the number of flow f’s bits passing through
edge e per second.	

Note that we can easily obtain the number of a flow’s bits processed
by a node or passing through an edge with the help of the “counters”
field of the OpenFlow switches’ flow tables. Also note that the
numerators in Eq. (1) and Eq. (2) are of the unit of “bits”, and the
denominators are of the unit of “bits per second”. Therefore, the
node weight nw[v] and the edge weight ew[e] are of the unit of
“seconds”. When we accumulate all the node weights and all the
edge weights along a path, we can obtain the end-to-end latency
from one end (source) to the other end (destination or receiver) of
the path.

Match Fields Priority Counters Instructions Timeouts Cookie Flags

Algorithm : EDA (Extended Dijkstra’s Algorithm)

Input : G=(V, E), ew, nw, s //G =(V, E) is a graph with edge and
node weights stored in ew and nw, and s is the source

Output : SP //SP is the set of shortest paths from s to all other
nodes

1: dist[s]←0; dist[u]←∞, for each u≠s, u∈V
2: insert u with key dist[u] into priority queue Q, for each u∈V
3: while (Q≠∅)
4: u←Extract-Min(Q)
5: for each v adjacent to u
6: if dist[v] > dist[u]+ew[u,v]+nw[u] then
7: dist[v]←dist[u]+ew[u,v]+nw[u]
8: pred[v]←u //v’s predecessor in the shortest path is u
9: calculate the shortest path from s to u to add into set SP according

to dist[u] and pred[u], for each u∈V, u≠s,
10: return SP

Figure 3. The extended Dijkstra’s algorithm.

2.3 The Minimum Steiner Tree Algorithm
Given an undirected, weighted graph G=(V, E) and a set R of nodes,
called terminals, where R⊆V, the minimum Steiner tree problem is
to find a minimum-weight tree, called the minimum Steiner tree, to
span all terminals in R. When R=S, the minimum Steiner tree is
actually the minimum spanning tree. Furthermore, when each edge
cost is 1, the minimum Steiner tree is the tree with the minimum
number of edges to span all terminals. The minimum Steiner tree
problem has been proven to be NP-hard. Thus, there probably exists
no deterministic algorithm running in polynomial time complexity
to solve such a problem. However, many polynomial-time-
complexity heuristic algorithms have been proposed to solve the
problem.

The SCTF (Selective Closest Terminal First) algorithm [8], shown
in Figure 4, is one of the heuristic algorithms to solve the minimum
Steiner tree problem. This paper focuses on the SCTF algorithm for
the following reasons. First, the algorithm regards the network as a
directed (instead of undirected) graph to solve the problem. It thus
can be applied to more practical network environments where the
edges between two nodes can be asymmetric (e.g., the edges may
have different bandwidth). Second, the algorithm is parameterized
to select between fast algorithm execution time and the low tree
weight.

The basic concept of the SCTF algorithm is shown below. The
SCTF algorithm first finds the shortest path from the source to
every terminal for obtaining the “shortest” shortest path P*. All the
nodes in P* are added into the Steiner tree T. The algorithm then
puts all nodes in P* into the priority queue Q according to the
priority order: source > terminal node > non-terminal node. It then
constructs the shortest path from every of the first κ (kappa) nodes
in Q to every terminal that is not yet included in the Steiner tree.
The terminal z associated with the “shortest” shortest path (SSP) is
then added into the Steiner tree, which accounts for the algorithm
name. Afterwards, the algorithm derives from P* a subpath, called
Branch, from u to z such that u is the only nodes in T. Note that the
SSP calculation is performed only for the first κ nodes in Q, so P*
may go through some nodes already in T and needs to be pruned as
Branch. Finally, nodes and edges in Branch are added into T. It is
worthwhile mentioning that κ is used to limit the algorithm
computation overhead. The larger κ is, the heavier the computation
is. However, larger κ values usually lead to better results of Steiner
trees.

Algorithm : SCTF (Selective Closest Terminal First) algorithm

Input : G=(V, E), ew, s, R={ r1,…,rn} and κ //G =(V, E) is a graph with
edge weights stored in ew, s is the source, R is the group (set) of receivers
associated with s, and κ is a control knob for the priority queue
Output : T=(VT, ET) //T=(VT, ET), where VT⊆V and
ET ⊆ E, is a Steiner tree rooted at s and spanning all nodes in R

1: Q ←{ s}, VT ←{ s}, ET ← ∅	 //Q: priority queue
2: while (R≠∅) do
3: B ← the set of the first Min(κ, |Q|) nodes in Q
4: P* ← ShortestPath(x, y), where x∈B and y∈R are arbitrary
5: for each x in B do
6: for each y in R do
7: if w(P ← ShortestPath(x, y)) < w(P*)
8: P* ← P //P* is the “shortest” shortest path
9: z ← the terminal at which P* terminates

10: Branch	← subpath(u, z) such that only u is in VT
11: insert nodes in Branch into Q
12: VT ← VT ∪ {nodes in Branch}
13: ET ← ET ∪ {edges in Branch}
14: RT ← RT − {terminals in Branch}
15: return T

Figure 4. The SCTF algorithm.

3. THE PROPOSED ALGORITHM
The proposed algorithm is called M-SCTF/EDA, which stands for
the modified SCTF algorithm with EDA (extended Dijkstra’s
algorithm). It is intended for the scenario of multiple sources, each
of which is associated with a group of receivers for multicasting. It
constructs a set of multiple Steiner trees such that every tree is
rooted at a source and spans all receivers of the group associated
with the source. The purpose of the algorithm is to find multiple
Steiner trees such that the average source-to-receiver delay and the
bandwidth consumption are both kept as low as possible.

The two metrics used in the proposed algorithm are described in the
following. The first one is the source-to-receiver delay defined in
Eq. (3).

∑ $��%&(')(∈)

|+|
 , (3)

where Delay(r) is the delay between receiver r and its associated
source, and R is the set of all receivers.

The second one is the bandwidth consumption defined in Eq. (4).

∑ ∑ ,-./(�)0∈1234(5)5∈6

∑ ,%78�-8.9(�)5∈6
 , (4)

where E is the set of all edges, Flow(e) is the set of all flows passing
through edge e, and Bits(f) is the number of f’s bits passing through
e per second.

Note that the bandwidth consumption is a ratio between 0 and 1,
which stands for the ratio of total bits transmitted per second to the
total bandwidth. Also note that the bandwidth consumption does
not equal the average edge (link) utilization of all edges.

Algorithm : M-SCTF/EDA

Input : G=(V, E), ew, nw, n, S={s1,…,sn}, M={R1,…,Rn} , κ
//G =(V, E) is a graph with edge and node weights stored in ew and nw, n
is the number of sources, Ri is the ith group (set) of receivers associated
with si, 1≤i≤ n, and κ is a control knob for the priority queue
Output : T={T1,…,Tn} //T is a set of Steiner trees, where Ti=(Vi, Ei),
Vi ⊆V and Ei ⊆ E, is a tree rooted at si and spanning all nodes in Ri, 1≤i≤n

1: Qi ←{ si}, Vi ←{ si}, Ei ← ∅, for every i, 1≤ i ≤ n;
//Qi: i th priority queue

2: while (M≠∅) do
3: ra←:;<	=	�

	'	∈	>⋃ +@)@∈A Bw(EDA(r’s source, r)), where ra∈Ra

4: M ← M − Ra
5: while (Ra≠∅) do
6: B ← the set of the first Min(κ, |Q|) nodes in Q
7: P* ← EDA(x, y), where x∈B and y∈Ra are arbitrary
8: for each x in B do
9: for each y in Ra do

10: if w(P ← EDA(x, y)) < w(P*)
11: P* ← P // P* is the “shortest” shortest path
12: z ← the terminal at which P* terminates
13: Branch	← subpath(u, z) such that only u is in Va
14: insert nodes in Branch into Qa
15: Va ← Va ∪ {nodes in Branch}
16: Ea ← Ea ∪ {edges in Branch}
17: Ra ← Ra − {terminals in Branch}
18: return T

Figure 5. The proposed M-SCTF/EDA algorithm.
Figure 5 shows the M-SCTF/EDA algorithm, which takes
advantage of both the SCTF algorithm and the extended Dijkstra’s
algorithm to keep the source-to-receiver delay and the bandwidth
consumption as low as possible for multiple-source multicast
scenarios. The algorithm constructs a Steiner tree for each group of
receivers. A group Ra is chosen for the Steiner tree construction if
it has the “shortest” shortest path from the source to a receiver (ref.:
line 3 in Figure 5) among all receiver groups in M, which initially
includes all receiver groups. The algorithm then removes Ra from
M and follows the similar idea of the SCTF algorithm to construct
a Steiner tree rooted at sa and spanning all receivers in Ra. (ref: lines
5-17 in Figure 5). The algorithm terminates and returns a set T of
Steiner trees if it detects that M is empty.

Note that the shortest path from a source to a receiver is calculated
by the extended Dijkstra’s algorithm, which considers both the
node weights and the edge weights for obtaining the shortest path
that is more suitable for practical scenarios. The calling of EDA
algorithm is abbreviated as EDA(x,y) in the M-SCTF/EDA
algorithm with the meaning that the algorithm will directly return
the shortest path from node x to node y.

Also note that the priority to order nodes in the priority queue is
modified as: source > non-terminal node (less hop count from the
source first) > terminal node. Due to the priority modification, the
source-to-receiver delay may decrease, while the bandwidth
consumption may not necessarily increase. This is helpful for the
proposed M-SCTF/EDA algorithm to construct Steiner trees with
both low source-to-receiver delay and low bandwidth consumption.

4. PERFORMANCE EVALUATION
The proposed M-SCTF/EDA algorithm is simulated by the EstiNet
emulator along with a Ryu controller for two different multicast
scenarios. The parameter setting of these two scenarios is shown in
Table 1; it is derived according to the specifications of off-the-shelf
products, namely NEC ProgrammableFlow PF5248 Switch,

Xinguard Pica8 3290 Switch, and HP 3500 Series Switch. The two
scenarios are depicted in Figure 6 and Figure 7, respectively, in
which node 21 is the controller. The first scenario has only one
source (node 40) and 18 receivers, while the second scenario has
two sources (node 40 and node 23), which both have 8 receivers.

Other parameters of the simulation are described as follows. The
multicast data are UDP packets sent at the constant bit rate of 2500
kbps, which is the rate of HD (high definition) video data of the
720P H.264 high profile format. The control knob κ for the priority
queue is set as 4 for all simulation cases.

Table 1. Parameter setting of the scenario 1 and 2

Parameter Setting

Bandwidth on edges 100Mbps ~ 1Gbps

Capacity of each node
(switches)

10Gbps ~ 179Gbps

Number of sources 1 or 2

Number of receivers 18 or 16

Number of switches 20

Number of edges 63

Controller Ryu ver 1.7.90

Simulation time per case 1000 sec

Figure 6. The simulation scenario 1.

Figure 7. The simulation scenario 2.

Figure 8. Performance comparisons for different algorithms.
The simulation experiments are performed for not only the
proposed M-SCTF/EDA algorithm but also the SCTF/EDA, SCTF,
M-SCTF, DA (i.e., the original Dijkstra’s algorithm), EDA and the
MST algorithm (i.e., the exhaustive algorithm to construct exactly
the minimum Steiner tree using the minimum number of edges to

span all receivers) for the sake of comparison. As shown in Figure
8, the proposed M-SCTF/EDA algorithm has very good
performance. It has the second lowest source-to-receiver delay and
bandwidth consumption. In terms of the source-to-receiver delay,
it is inferior to only EDA, which focuses solely on the shortest delay.
However, EDA has very high bandwidth consumption. In terms of
the bandwidth consumption, it is inferior to only MST, which
focuses solely on the lowest bandwidth consumption. However,
MST is an exhaustive algorithm consuming a lot of computation
and has very high source-to-receiver delay. We may well say that
the proposed M-SCTF/EDA algorithm is the best algorithm
suitable for the SDN architecture to achieve multicast with multiple
sources when the source-to-receiver delay and the bandwidth
consumption are both considered at the same time.

5. CONCLUDING REMARKS
The proposed M-SCTF/EDA algorithm takes advantage of both the
extended Dijkstra's shortest path algorithm and the modified
selective closest terminal first Steiner tree algorithm to construct a
set of Steiner trees for multicast with multiple sources. The
proposed algorithm reaches the goal of keeping as low as possible
both the source-to-receiver delay and the bandwidth consumption.
Simulation experiments through EstiNet emulator along with a Ryu
controller are performed for the proposed algorithms and other
related algorithms for the sake of comparison. The simulation
results are compared in the aspects of the source-to-receiver delay
and the bandwidth consumption. By the comparison results, we can
observe the proposed M-SCTF/EDA algorithm is the only one
among all compared algorithms to perform well in both aspects.

We have observed that the Floyd-Warshall algorithm [15] can also
be easily extended to consider both edge weights and node weights.
We have also observed that if we rewrite the two inner “for” loops
in the proposed M-SCTF/EDA algorithm and replace the extended
Dijkstra’s algorithm (EDA) with the “extended Floyd-Warshall
algorithm”, then the proposed algorithm can be improved in terms
of computation overheads. This is because the Dijkstra’s algorithm
is a one-to-all shortest path algorithm, the Floyd-Warshall
algorithm is an all-pair shortest path algorithm, and the two inner
“for” loops are actually used to find the “shortest” shortest path
among all pairs of shortest paths. We plan to realize the
improvement in the future.

Many studies related SDN multicast have been proposed recently.
They focus on different aspects of multicast, such as fault-tolerance
[16], scalability [17][18], and load balancing [19][20]. The
proposed algorithm is not compared with those algorithms, as they
emphasize on aspects different from source-to-receiver delay and
bandwidth consumption. We plan to improve the proposed
algorithm by considering more aspects and to apply the proposed
algorithm to more practical multicast scenarios, like live streaming
and the video conference.

6. ACKNOWLEDGMENTS
This work was supported in part by the Ministry of Science and
Technology (MOST), Taiwan, under grant number 104-2221-E-
008-017- and grant number 105-2218-E-008-008-.

7. REFERENCES
[1] Open Network Foundation (ONF).

https://www.opennetworking.org/sdn-resources/sdn-
definition (last accessed on March 2016).

[2] Jain, S., et al. 2013. B4: Experience with a globally-deployed
software defined WAN. ACM SIGCOMM Computer
Communication Review. 43, 4, 3-14.

[3] Nunes, B. A., Mendonca, M., Nguyen, X. N., Obraczka, K.,
and Turletti, T. 2014. A survey of software-defined
networking: Past, present, and future of programmable
networks. IEEE Communications Surveys & Tutorials. 16. 3.
1617-1634.

[4] Farhady, H., Lee, H., and Nakao, A. 2015. Software-defined
networking: A survey. Computer Networks. 81. 79-95.

[5] Fenner, B., et al. 2006. Protocol independent multicast -
sparse mode (pim-sm): protocol specification (revised). IETF
RFC 4601.

[6] Hwang, F. K., Richards, D. S., and Winter, P. 1992. The
Steiner tree problem. Elsevier.

[7] Jiang, J. R., Huang, H. W., Liao, J. H. and Chen, S. Y. 2014.
Extending Dijkstra's shortest path algorithm for software
defined networking. In Proc. of 16th IEEE Asia-Pacific
Network Operations and Management Symposium
(APNOMS). 1-4.

[8] Ramanathan, S. 1996. Multicast tree generation in networks
with asymmetric links. IEEE/ACM Transactions on
Networking (TON). 1996

[9] Wang, S. Y., Chou, C. L., and Yang, C. M. 2013. EstiNet
OpenFlow network simulator and emulator. IEEE
Communications Magazine. 51. 9. 110-117.

[10] Ryu OpenFlow Controller. URL: http://osrg.github.io/ryu/
[11] Banse, C, and Rangarajan, S. 2015. A secure northbound

interface for SDN applications. In Proceedings of the 2015
IEEE Conference on Trustcom/BigDataSE/ISPA.

[12] Open Networking Foundation. 2015. OpenFlow Switch
Specification version 1.5.1.

[13] Dijkstra, E. W. 1959. A note on two problems in connexion
with graphs. Numerische mathematik, 1. 1. 269-271.

[14] Jiang, J.-R., et al. 2014. Load balancing and multicasting
using the extended Dijkstra’s algorithm in software defined
networking. In Proc. of the International Computer
Symposium 2014 (ICS 2014).

[15] Floyd, R. W. 1962. Algorithm 97: Shortest path.
Communications of the ACM. 5. 6. 345.

[16] Pfeiffenberger, T., et al. 2015. Reliable and flexible
communications for power systems: Fault-tolerant multicast
with SDN/OpenFlow. In Proc. of the 7th IEEE International
Conference on New Technologies, Mobility and Security
(NTMS). 1-6.

[17] Cui, W., and Qian, C. 2015. Scalable and load-balanced data
center multicast. In Proc. of 2015 IEEE Global
Communications Conference (GLOBECOM). 1-6.

[18] Zhou, S., Wang, H., Yi, S., and Zhu, F. 2015. Cost-efficient
and scalable multicast tree in software defined networking.
Algorithms and Architectures for Parallel Processing. 592-
605.

[19] Iyer, A., Kumar, P., and Mann, V. 2014. Avalanche: Data
center multicast using software defined networking. In Proc.
of the 6th IEEE International Conference on Communication
Systems and Networks (COMSNETS). 1-8.

[20] Craig, A., Nandy, B., Lambadaris, I., and Ashwood-Smith, P.
2015. Load balancing for multicast traffic in SDN using real-
time link cost modification. In Proc. of IEEE International
Conference on Communications (ICC). 5789-5795.

