Constructing Multiple Steiner Trees for Software-Defined
Networking Multicast

Jehn-Ruey Jiang
National Central University
Taoyuan City, Taiwan
jriiang@csie.ncu.edu.tw

ABSTRACT

A heuristic algorithm is proposed in this papecdéastruct a set of
Steiner trees for multicast with multiple sourceder the software-
defined networking (SDN) architecture, where eachiree is
associated with a group of receivers. It is basedhe extended
Dijkstra’s shortest path algorithm and the modifetective closest
terminal first Steiner tree algorithm. The formelgamithm
considers not only the edge weights but also thieneeights to
form data routing path with the shortest delay. Htier algorithm
regards nodes with shorter paths to the sourceat® thigher
priority in the priority queue for growing Steineees. In this way,
the number of Steiner tree edges is reduced arsdhietbandwidth
consumption is cut down. The proposed algorithsinsulated by
the EstiNet emulator along with a Ryu controller fiifferent
multicast scenarios. The simulation results arepared with those
of related algorithms in terms of the source-tcereer delay and
the bandwidth consumption to show the advantagleeoproposed
algorithm.

Categories and Subject Descriptions
C.2 [Computer-communication networks]: Network Atehture
and Design.

Keywords
Software-Defined Networking; Multicast; Dijkstra@hortest Path
Algorithm; Steiner Tree

1. INTRODUCTION

Software-Defined Networking (SDN) is a concept azhted by the
Open Network Foundation (ONF) [1] to decouple thetool plane
and the data plane of network devices. SDN switches

responsible for forwarding the packets on the g&tae, while an
SDN controller or a set of SDN controllers is rasgble of

collecting network information from switches andnfiguring

switches’ forwarding tables (also called flow taplevhich all

switches base on to process data packets. In Hrisen, SDN users
can composite application programs running on tdptre

controller to monitor and manage the whole netwank a

centralized and timely way.

Permission to make digital or hard copies of allpart of this work for
personal or classroom use is granted without feeiged that copies are not
made or distributed for profit or commercial adweay® and that copies bear
this notice and the full citation on the first pagepyrights for components
of this work owned by others than ACM must be hedoAbstracting with
credit is permitted. To copy otherwise, or repuhli® post on servers or to
redistribute to lists, requires prior specific pession and/or a fee. Request
permissions from Permissions@acm.org.

CFI'16, June 15-17, 2016, Nanjing, China.

©Copyright 2016 ACM. ISBN 978-1-4503-4181-3/16/06%10

DOI: http://dx.doi.org/10.114: 2935663.29356¢

Szu-Yuan Chen
National Central University
Taoyuan City, Taiwan
j35682368@yahoo.com.tw

Google has applied an SDN architecture to its peiVdAN called
B4 [2] for improving the network performance. Cogsently, the
network link utilization is driven from 30-40% taear 100% by
centralized traffic engineering (TE) based on thehigecture.
Besides the application in Google, many SDN-basgilications
[3][4] have been proposed, such as load balaneicggss control,
and multicast.

Multicast is a fundamental communication functiam,which a
data packet is sent bysaurce replicated at intermediate devices
for forwarding to multiple outgoing links, and eveally delivered
to all receivers of a multicast group It can be applied to
applications like IPTV, the video conference, aive ktreaming,
etc. Multicast routing can be regarded as constrg@ multicast
tree that is rooted at the source and spans alves. The PIM-
SM protocol [5] finds a shortest path from the seuto every
receiver and puts all paths jointly to havghartest path treas the
multicast tree. However, the shortest path tree awafain many
links which consume a large volume of bandwidthti@ncontrary,
theminimum Steiner tref5] contains the smallest number of links
to span all receivers; it is therefore a good aliive to be the
multicast tree that may consume less bandwidth.

This paper proposes a heuristic algorithm to cacsta set of
multicast trees by combining the shortest pathstraad the
minimum Steiner trees. The constructed trees ae #pplied to
achieve multicast with multiple sources under tBé&%rchitecture.
The proposed algorithm takes advantage of bothetttended
Dijkstra’s algorithm [7] and a Steiner tree formiagorithm called
the Selective Closest Terminal First (SCTF) aldonit [8].
Modeling the network as a directed graph, the aadrDijkstra’s
algorithm considers not only the edge weight bgbahe node
weight to obtain the shortest path from a singles®node to every
other node. The SCTF algorithm uses a heuristiuttyl a Steiner
tree with approximately the minimum total cost (gfg). This
paper modifies the heuristic to fit for the SDN tedst scenarios.
The proposed algorithm is simulated by the Estiélaulator [9]
along with a Ryu controller [10] for different migast scenarios.
The simulation results are compared with those eifited
algorithms in terms of the source-to-receiver delayg the total
bandwidth consumption to show the advantage ofptioposed
algorithm.

The rest of this paper is organized as followstiSe@ describes
some related work. The proposed algorithm is dedail Section 3.
Section 4 demonstrates simulation results of thepgsed
algorithm. And finally, Section 5 concludes the pap

2. RELATED WORK
2.1 SDN

SDN is the concept to separate the control pladdtadata plane,
so that underlying data-plane switching devicediddawitche$

are controlled by a centralized control-plan devigmlled
controllerg on top of which different software entities (eall
applicationg can be developed and run. Figure 1 depicts tjiedd
view of the SDN architecture [11]. SDN allows thetwork
administrator to write applications to cooperatéhwhe controller
through thenorthbound interfacéo interact with switches through
thesouthbound interfactor providing network services, including
routing, access control, load balancing, multicast] other traffic
engineering tasks.

OpenFlow [12] is the most well-known southboundeiface

protocol used between the controller and the swishdepicted in
Figure 2, a switch has one or mflew tablesand/orgroup tables

and a flow table entry consists of match fieldsurters,

instructions, and so on. A controller can updadd,and delete flow
entries in the flow table both reactively and ptoesty.

On receiving a packet, a switch first matches éader with match
fields of every entry in the flow table(s). The wl@hg process
begins in the first table and continues subsequeatidditional

tables. It is prioritized; that is, the first maéchentry is returned
and the matching process stops. If a matched éntigund, the

counter associated with the entry is updated fer ghrpose of
traffic statistics, and associated instructions asecuted to
complete specific actions, such as forwarding #nekpt to another
switch via an outgoing port, and dropping the packec. If no

match is found in any flow table, then the packeyhe dropped
or forwarded to the controller.

SDN Application

[SDN Application

Application Plane N,

Northbeund Interfaces (NBls)

Control Plane

Southbound Interface (e.g. OpenFlow)

e *.
- ~
.
//
// A

o ! .
[SDN Switch] [SDN Switch] [SDN Switch]

Data Plane
e
/

Figure 1. The illustration of the SDN architecture[11].

Controller

A
1
OpenFlow Protocol

4

LJ T
|
OpenFlow |
|
|

Group

Channel Tahle

Flow Flow
Table = Table

Fipalina

OpenFlow Switch

|Match Fields |Priority |Counters ||nstructions|Timeouts |Cookie |Flags|
Figure 2. The OpenFlow controller and the switch ad the
flow table entry fields [12].

2.2 The Extended Dijkstra’s Algorithm

Given a weighted, directed gra@(V, E) and a single source node
s, the classical Dijkstra’s algorithm [13] can retw shortest path
from the source nodeto every other node, whekeéis the set of
nodes and is the set of edges, each of which is associatddav
non-negative weight (or cost). In the original Bijla’s algorithm,
nodes are associated with no weight. The papee{®nds the
original algorithm to consider both the edge wesghihd the node
weights for end-to-end routing. The extended DigKstalgorithm
(EDA) is also applied to achieve load balancing amdticasting
in [14].

Figure 3 shows the extended Dijkstra’s algorithrhpge input is a
given graphG=(V, E), the edge weight settireyy, the node weight
settingnw, and the single source nodeThe extended algorithm
usesdis{u] to store the distance of the current shortedh fram
the source nodgto the destination (i.e., receiver) nagend uses
predu] to store the predecessor node precediran the current
shortest path. Initiallydis{s]=0, disfu]=cc for eachulV, u#s, and
predu]=null for eachuV. The algorithm finally returns a s&P
of shortest paths fromto all other nodes according désfu] and
predu] for eachullV, u#s.

The extended Dijkstra’s algorithm is very usefulderiving the
best routing path to send a packet from a spesificce node to a
destination node for the SDN environment in whidgngicant
latency occurs when the packet goes through intdiatee nodes
and edges (or links). As shown below, the paperdgfines the
edge weights and node weights so that the extebdj&dtra’s
algorithm can be applied to derive routing path BDN
environments. Assume the SDN network topology isved and
modeled as a weighted, directed, and connectech @afV, E).
For a node/0JV and an edgelE, let Flow(v) andFlow(e) denote
the set of all the flows passing througlande, respectively, let
Capacityv) be thecapacityof v (i.e., the number of bits thatcan
process per second), and Bandwidtt{e) be the bandwidth of
(i.e., the number of bits thatcan transmit per second). The node
weight nw{V] of v is defined according to Eq. (1), and the edge
weightew[€] of eis defined according to Eq. (2).

ZfeFlow(v) Bits(f)
nwlv] = Capacity(v) ' M
whereBits(f) stands for the number of flofis bits processed by
nodev per second.

_ Xrertow(e) Bits(f)
el = = pandwidth(e) @

whereBits(f) stands for the number of floffé bits passing through
edgee per second.

Note that we can easily obtain the number of a'8dits processed
by a node or passing through an edge with thedfete “counters”
field of the OpenFlow switches’ flow tables. Alsota that the
numerators in Eq. (1) and Eq. (2) are of the uhfbds”, and the
denominators are of the unit of “bits per secoridierefore, the
node weighthw{v] and the edge weigtaw[€e] are of the unit of
“seconds”. When we accumulate all the node weights$ all the
edge weights along a path, we can obtain the emadolatency
from one end (source) to the other end (destinairareceiver) of
the path.

Algorithm : EDA (Extended Dijkstra’s Algorithi)

>

Algorithm : SCTF (Selective Closest Terminal First) algorithr

Input: G=(V, E), ew, nw, s//G =(V, E) is a graph with edge ai
node weights stored iEwandnw, ands s the source

Output: SP//SPis the set of shortest paths frato all other
nodes

dis{s]«-0; disfu] <o, for eachsts, uoVv
insert u with keydis{u] into priority queueQ, for eactulVv
while (Qz0)
u—Extract-Min@Q)
for eachv adjacent ta
if disfv] > disfu]+ew[u,v]+nw{u] then
disfv]—disfu]+ewu,v]+nwu]
predv]—u /Ns predecessor in the shortest path is
calculatethe shortest path frosto u to add into seBPaccording
to disfu] andpredu], for eachullV, u#s,
10: return SP

Figure 3. The extended Dijkstra’s algorithm.

2.3 The Minimum Steiner Tree Algorithm

Given an undirected, weighted graph(V, E) and a seR of nodes,
calledterminals whereROV, the minimum Steiner tree problem is
to find a minimum-weight tree, called the minimuteiSer tree, to
span all terminals iR. WhenR=S, the minimum Steiner tree is
actually the minimum spanning tree. Furthermoregnvbach edge
cost is 1, the minimum Steiner tree is the tredn Wit minimum
number of edges to span all terminals. The minin8tginer tree
problem has been proven to be NP-hard. Thus, grebably exists
no deterministic algorithm running in polynomiaht complexity
to solve such a problem. However, many polynonimbt
complexity heuristic algorithms have been propadsedolve the
problem.

The SCTF (Selective Closest Terminal First) algoni{8], shown
in Figure 4, is one of the heuristic algorithmsabve the minimum
Steiner tree problem. This paper focuses on the=slJorithm for
the following reasons. First, the algorithm regatasnetwork as a
directed (instead of undirected) graph to solvepttblem. It thus
can be applied to more practical network environerhere the
edges between two nodes can be asymmetric (eegedipes may
have different bandwidth). Second, the algorithrpasameterized
to select between fast algorithm execution time #edlow tree
weight.

The basic concept of the SCTF algorithm is showioveThe
SCTF algorithm first finds the shortest path frone tsource to
every terminal for obtaining the “shortest” shotrfeathP*. All the
nodes inP* are added into the Steiner tféeThe algorithm then
puts all nodes irP* into the priority queu& according to the
priority order: source > terminal node > non-terahinode. It then
constructs the shortest path from every of the fikappa) nodes
in Q to every terminal that is not yet included in Siteiner tree.
The terminak associated with the “shortest” shortest path (SSP)
then added into the Steiner tree, which accoumtthf® algorithm
name. Afterwards, the algorithm derives fréfha subpath, called
Branch fromutoz such that is the only nodes ifi. Note that the
SSP calculation is performed only for the fiestodes inQ, soP*
may go through some nodes already end needs to be pruned as
Branch Finally, nodes and edgesBmanchare added intd. It is
worthwhile mentioning that is used to limit the algorithm
computation overhead. The largeis, the heavier the computation

Input: G=(V, E), ew, s, R={r1,...,rn} andx //G=(V, E) is a graph wit|
edge weights stored &w, sis the sourceR is thegroup (set) of receive|
associated witls, andk is a control knob for the priority queue
Output: T=(Vr, Er) /T=(Vr, Er), where ViOV and
Er O E, is a Steiner trerooted ais andspannincall nodes irR
Q —{s}, Vr «{s}, Er -« & /IQ: priority queue
while (R£0) do

B — the set of the firdMin(x, |Q[) nodes i

P* — ShortestPatfx, y), wherex(B andyCIR are arbitrary

for eachxin B do

for eachy in Rdo
if wW(P — ShortestPatfx, y)) < w(P*)
P* — P /IP* is the “shortest” shortest path

z — the terminal at whicP* terminates
10: Branch« subpathy, z) such that only is in Vt
11: insert nodes iBranchinto Q
12: Vr « V7O {nodes inBranch
13: Er — Er O {edges inBranch
14: Rr — Rr— {terminals inBranch
15: return T

Figure 4. The SCTF algorithm.

3. THE PROPOSED ALGORITHM

The proposed algorithm is called M-SCTF/EDA, whatands for
the modified SCTF algorithm with EDA (extended DBijla’s
algorithm). It is intended for the scenario of npl# sources, each
of which is associated with a group of receiversfialticasting. It
constructs a set of multiple Steiner trees such e¢hary tree is
rooted at a source and spans all receivers of ringpgassociated
with the source. The purpose of the algorithm igind multiple
Steiner trees such that the average source-toveadlay and the
bandwidth consumption are both kept as low as plessi

The two metrics used in the proposed algorithndaseribed in the
following. The first one is the source-to-receideday defined in

Eq. (3).

YreRr Dl;lay(r) ’ 3)

whereDelay(r) is the delay between receiveand its associated
source, andR is the set of all receivers.

The second one is the bandwidth consumption defméd. (4).

YeeE XfeFlow(e) Bits(f)
Y ecg Bandwidth(e) '

4

whereE is the set of all edgeBlow(e) is the set of all flows passing
through edge, andBits(f) is the number dffs bits passing through
e per second.

Note that the bandwidth consumption is a ratio leetwO and 1,
which stands for the ratio of total bits transndtper second to the
total bandwidth. Also note that the bandwidth conption does

is. However, largex values usually lead to better results of Steiner Not equal the average edge (link) utilization okalges.

trees.

Algorithm : M-SCTF/EDA

Input: G=(V, E), ew, nw, n, S={s1,...,%}, M={Ry,...,Rn},

IIG =(V, E) is a graph with edge and node weights storeshviendnw, n

is the number of sourceR, is thei™ group (set) of receiverassociate

with s, 1<i< n, andk is a control knob for the priority queue

Output: T={Ty,...,Tn} //T is a set of Steiner trees, whéie(V;, Ei),

ViDVandEi OE, is a tree rooted is and spaning all nodes irR;, 1<i<n

Qi ~{s}, Vi < {s}, B « O, for everyi, I<i<n;

/IQi: it priority queue

while (Mz0) do
laArg Min _

2

3

4: M — M —Ra
5: while (Rsz0) do
6

7

8

9

=

€ (Unjon Rj)W(EDA(r s sourcer)), whererallRa

B ~ the set of the firsMin(x, |Q|) nodes iQ
P* — EDA(X, y), wherexUB andy[JR. are arbitrary
for eachxin B do

for eachy in Ra do

if W(P — EDA(X, Y)) <w(P*)
11: P* — P /[P*is the “shortest” shortest path
12: z — the terminal at whicP* terminates
13: Branch« subpathy, z) such that only is inVa
14: insert nodes Branchinto Qa
15: \4 « Va O {nodes inBranch
16: E —~ Ea0 {edges inBranch
17: R « Ra- {terminals inBranch
18: return T

Figure 5. The proposed M-SCTF/EDA algorithm.

Figure 5 shows the M-SCTF/EDA algorithm, which tske
advantage of both the SCTF algorithm and the ex@mjkstra’s
algorithm to keep the source-to-receiver delay tedbandwidth
consumption as low as possible for multiple-sounselticast
scenarios. The algorithm constructs a Steinerftneeach group of
receivers. A grouRa is chosen for the Steiner tree construction if
it has the “shortest” shortest path from the sotoaereceiver (ref.:
line 3 in Figure 5) among all receiver groupsMnwhich initially
includes all receiver groups. The algorithm themaeesR. from

M and follows the similar idea of the SCTF algorittomconstruct
a Steiner tree rooted @atand spanning all receiversha. (ref: lines
5-17 in Figure 5). The algorithm terminates andnres a sef of
Steiner trees if it detects thidtis empty.

Note that the shortest path from a source to awecs calculated
by the extended Dijkstra’s algorithm, which cons&éoth the
node weights and the edge weights for obtainingstiwetest path
that is more suitable for practical scenarios. Taking of EDA
algorithm is abbreviated as EDA(x,y) in the M-SCEBA
algorithm with the meaning that the algorithm vditectly return
the shortest path from nodédo nodey.

Also note that the priority to order nodes in thi®gty queue is
modified as: source > non-terminal node (less fmmtfrom the
source first) > terminal node. Due to the priontypdification, the
source-to-receiver delay may decrease, while thedwalth
consumption may not necessarily increase. Thiglgftl for the
proposed M-SCTF/EDA algorithm to construct Steitrees with
both low source-to-receiver delay and low bandwethsumption.

4. PERFORMANCE EVALUATION

The proposed M-SCTF/EDA algorithm is simulated ty EstiNet
emulator along with a Ryu controller for two diféet multicast
scenarios. The parameter setting of these two soeria shown in
Table 1; it is derived according to the specificas of off-the-shelf
products, namely NEC ProgrammableFlow PF5248 Switch

Xinguard Pica8 3290 Switch, and HP 3500 Seriescdwithe two
scenarios are depicted in Figure 6 and Figure shedtively, in
which node 21 is the controller. The first scendras only one
source (node 40) and 18 receivers, while the sesoadario has
two sources (node 40 and node 23), which both Baeeeivers.

Other parameters of the simulation are describeflisvs. The
multicast data are UDP packets sent at the conisitarate of 2500
kbps, which is the rate of HD (high definition) ewl data of the
720P H.264 high profile format. The control knofor the priority
queue is set as 4 for all simulation cases.

Table 1. Parameter setting of the scenario 1 and 2

Parameter Setting
Bandwidth on edges 100Mbps ~ 1Gbps
Capacity of each node 10Gbps ~ 179Gbps
Number of sources lor2
Number of receivers 18 or 16
Number of switches 20
Number of edges 63
Controller Ryu ver 1.7.90
Simulation time per case 1000 sec

Figure 7. The simulation scenario 2.

#EDA NM-SCTF/EDA =SCTF/EDA #DA % M-SCTF IISCTF © MST

w
o

Scenario 1

N
(%]

N
o

[y
wv

=
o
l

S

|

Source-to-Receiver Delay (ms)

..
.

Different Algorithms

35

Scenario 2

Source-to-Receiver Delay (ms)

i

Different Algorithms

60

Scenario 1

o
o

S
o

N
o
I

.

[y
o
|

Bandwidth Consumption (%)
w
o

o
I

~I
o

o

o

|

|

=N W s U D

o o o o o
I

Bandwidth Consumption (%)

Different Algorithms

s

Figure 8. Performance comparisons for different algrithms.

The simulation experiments are performed for noty otne
proposed M-SCTF/EDA algorithm but also the SCTF/EBETF,
M-SCTF, DA (i.e., the original Dijkstra’s algoritipEDA and the
MST algorithm (i.e., the exhaustive algorithm testuct exactly
the minimum Steiner tree using the minimum numbezdges to

span all receivers) for the sake of comparisonstf®wvn in Figure
8, the proposed M-SCTF/EDA algorithm has very good
performance. It has the second lowest source-teivecdelay and
bandwidth consumption. In terms of the source-teieer delay,
itis inferior to only EDA, which focuses solely tre shortest delay.
However, EDA has very high bandwidth consumptiontekrms of
the bandwidth consumption, it is inferior to onlySW, which
focuses solely on the lowest bandwidth consumptitowever,
MST is an exhaustive algorithm consuming a lot ahputation
and has very high source-to-receiver delay. We wely say that
the proposed M-SCTF/EDA algorithm is the best atbor
suitable for the SDN architecture to achieve mattavith multiple
sources when the source-to-receiver delay and #relviadth
consumption are both considered at the same time.

5. CONCLUDING REMARKS

The proposed M-SCTF/EDA algorithm takes advantdgeth the

extended Dijkstra's shortest path algorithm and thedified

selective closest terminal first Steiner tree dtgar to construct a
set of Steiner trees for multicast with multipleusmes. The
proposed algorithm reaches the goal of keepingwasak possible
both the source-to-receiver delay and the bandvadttsumption.
Simulation experiments through EstiNet emulatonglwith a Ryu

controller are performed for the proposed algorghamd other
related algorithms for the sake of comparison. Fhaulation

results are compared in the aspects of the soarpeetiver delay
and the bandwidth consumption. By the compariseult® we can
observe the proposed M-SCTF/EDA algorithm is théy ame

among all compared algorithms to perform well inhbaspects.

We have observed that the Floyd-Warshall algorifh®j can also
be easily extended to consider both edge weiglitsiade weights.
We have also observed that if we rewrite the tweirifor” loops
in the proposed M-SCTF/EDA algorithm and replaceehktended
Dijkstra’s algorithm (EDA) with the “extended Floyarshall
algorithm”, then the proposed algorithm can be imapd in terms
of computation overheads. This is because the fBéjlssalgorithm
is a one-to-all shortest path algorithm, the Floydrshall
algorithm is an all-pair shortest path algorithmd ahe two inner
“for” loops are actually used to find the “shorteshortest path
among all pairs of shortest paths. We plan to zealihe
improvement in the future.

Many studies related SDN multicast have been pemposcently.
They focus on different aspects of multicast, sacfault-tolerance
[16], scalability [17][18], and load balancing [{20]. The

proposed algorithm is not compared with those #lgwms, as they
emphasize on aspects different from source-tovecelelay and
bandwidth consumption. We plan to improve the psago
algorithm by considering more aspects and to afi@yproposed
algorithm to more practical multicast scenarids live streaming
and the video conference.

6. ACKNOWLEDGMENTS

This work was supported in part by the MinistrySxdience and
Technology (MOST), Taiwan, under grant number 10212E-
008-017- and grant number 105-2218-E-008-008-.

7. REFERENCES

[1] Open Network Foundation (ONF).
https://www.opennetworking.org/sdn-resources/sdn-
definition (last accessed on March 2016).

[2] Jain, S., et al. 2013. B4: Experience with a gliybdéployed
software defined WANACM SIGCOMM Computer
Communication Review3, 4, 3-14.

[3] Nunes, B. A., Mendonca, M., Nguyen, X. N., Obraczka
and Turletti, T. 2014. A survey of software-defined
networking: Past, present, and future of progranienab

networks IEEE Communications Surveys & Tutorial$. 3.

1617-1634.

[4] Farhady, H., Lee, H., and Nakao, A. 2015. Softwdefned
networking: A surveyComputer Networks81. 79-95.

[5] Fenner, B., et al. 2006. Protocol independent casti-
sparse mode (pim-sm): protocol specification (re)idETF
RFC 4601

[6] Hwang, F. K., Richards, D. S., and Winter, P. 199%
Steiner tree problenkElsevier.

[7] Jiang, J. R., Huang, H. W., Liao, J. H. and CherY,.2014.
Extending Dijkstra's shortest path algorithm fditware
defined networking. IfProc. of 16th IEEE Asia-Pacific
Network Operations and Management Symposium
(APNOMS) 1-4.

[8] Ramanathan, S. 1996. Multicast tree generatioetwarks
with asymmetric linkslEEE/ACM Transactions on
Networking (TON)1996

[9] Wang, S. Y., Chou, C. L., and Yang, C. M. 201 3Nt
OpenFlow network simulator and emulat®EE
Communications Magazingl. 9. 110-117.

[10] Ryu OpenFlow Controller. URL: http://osrg.githuldriou/

[11] Banse, C, and Rangarajan, S. 2015. A secure nanticbo
interface for SDN applications. Proceedings of th2015
IEEE Conference ofirustcom/BigDataSE/ISPA.

[12] Open Networking Foundation. 201GpenFlow Switch
Specification version 1.5.1

[13] Dijkstra, E. W. 1959. A note on two problems in gerion
with graphsNumerische mathematik. 1. 269-271.

[14] Jiang, J.-R., et al. 2014. Load balancing and casting
using the extended Dijkstra’s algorithm in softwdegined
networking. InProc. of the International Computer
Symposium 2014 (ICS 2014)

[15] Floyd, R. W. 1962. Algorithm 97: Shortest path.
Communications of the ACM. 5. 6. 345.

[16] Pfeiffenberger, T., et al. 2015. Reliable and thdsi
communications for power systems: Fault-toleraniticast
with SDN/OpenFlow. IrProc. of the 7th IEEE International
Conference on New Technologies, Mobility and Sgcuri
(NTMS) 1-6.

[17] Cui, W., and Qian, C. 2015. Scalable and load-lwadmata
center multicast. IProc. of 2015 IEEE Global
Communications Conference (GLOBECOMS.

[18] Zhou, S., Wang, H., Yi, S., and Zhu, F. 2015. G#fitient
and scalable multicast tree in software definedvagkting.
Algorithms and Architectures for Parallel Procegsib92-
605.

[19] Iyer, A., Kumar, P., and Mann, V. 2014. AvalancbBata
center multicast using software defined networkingroc.
of the 6th IEEE International Conference on Comroatibon
Systems and Networks (COMSNETS3.

[20] Craig, A., Nandy, B., Lambadaris, I., and Ashwoatdi8, P.
2015. Load balancing for multicast traffic in SDhing real-
time link cost modification. IfProc. of IEEE International
Conference on Communications (IC6Y89-5795.

