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ABSTRACT  
A heuristic algorithm is proposed in this paper to construct a set of 
Steiner trees for multicast with multiple sources under the software-
defined networking (SDN) architecture, where each source is 
associated with a group of receivers. It is based on the extended 
Dijkstra’s shortest path algorithm and the modified selective closest 
terminal first Steiner tree algorithm. The former algorithm 
considers not only the edge weights but also the node weights to 
form data routing path with the shortest delay. The latter algorithm 
regards nodes with shorter paths to the source to have higher 
priority in the priority queue for growing Steiner trees. In this way, 
the number of Steiner tree edges is reduced and thus the bandwidth 
consumption is cut down. The proposed algorithm is simulated by 
the EstiNet emulator along with a Ryu controller for different 
multicast scenarios. The simulation results are compared with those 
of related algorithms in terms of the source-to-receiver delay and 
the bandwidth consumption to show the advantage of the proposed 
algorithm.   

Categories and Subject Descriptions 
C.2 [Computer-communication networks]: Network Architecture 
and Design. 

Keywords 
Software-Defined Networking; Multicast; Dijkstra’s Shortest Path 
Algorithm; Steiner Tree 

1. INTRODUCTION 
Software-Defined Networking (SDN) is a concept advocated by the 
Open Network Foundation (ONF) [1] to decouple the control plane 
and the data plane of network devices. SDN switches are 
responsible for forwarding the packets on the data plane, while an 
SDN controller or a set of SDN controllers is responsible of 
collecting network information from switches and configuring 
switches’ forwarding tables (also called flow tables) which all 
switches base on to process data packets. In this manner, SDN users 
can composite application programs running on top of the 
controller to monitor and manage the whole network in a 
centralized and timely way. 

Google has applied an SDN architecture to its private WAN called 
B4 [2] for improving the network performance. Consequently, the 
network link utilization is driven from 30-40% to near 100% by 
centralized traffic engineering (TE) based on the architecture. 
Besides the application in Google, many SDN-based applications 
[3][4] have been proposed, such as load balancing, access control, 
and multicast. 
Multicast is a fundamental communication function, in which a 
data packet is sent by a source, replicated at intermediate devices 
for forwarding to multiple outgoing links, and eventually delivered 
to all receivers of a multicast group. It can be applied to 
applications like IPTV, the video conference, and live streaming, 
etc. Multicast routing can be regarded as constructing a multicast 
tree that is rooted at the source and spans all receivers. The PIM-
SM protocol [5] finds a shortest path from the source to every 
receiver and puts all paths jointly to have a shortest path tree as the 
multicast tree. However, the shortest path tree may contain many 
links which consume a large volume of bandwidth. On the contrary, 
the minimum Steiner tree [6] contains the smallest number of links 
to span all receivers; it is therefore a good alternative to be the 
multicast tree that may consume less bandwidth. 
This paper proposes a heuristic algorithm to construct a set of 
multicast trees by combining the shortest path trees and the 
minimum Steiner trees. The constructed trees are then applied to 
achieve multicast with multiple sources under the SDN architecture. 
The proposed algorithm takes advantage of both the extended 
Dijkstra’s algorithm [7] and a Steiner tree forming algorithm called 
the Selective Closest Terminal First (SCTF) algorithm [8]. 
Modeling the network as a directed graph, the extended Dijkstra’s 
algorithm considers not only the edge weight but also the node 
weight to obtain the shortest path from a single source node to every 
other node. The SCTF algorithm uses a heuristic to build a Steiner 
tree with approximately the minimum total cost (weight). This 
paper modifies the heuristic to fit for the SDN multicast scenarios. 
The proposed algorithm is simulated by the EstiNet emulator [9] 
along with a Ryu controller [10] for different multicast scenarios. 
The simulation results are compared with those of related 
algorithms in terms of the source-to-receiver delay and the total 
bandwidth consumption to show the advantage of the proposed 
algorithm. 
The rest of this paper is organized as follows. Section 2 describes 
some related work. The proposed algorithm is detailed in Section 3. 
Section 4 demonstrates simulation results of the proposed 
algorithm. And finally, Section 5 concludes the paper. 

2. RELATED WORK 
2.1 SDN 
SDN is the concept to separate the control plane and the data plane, 
so that underlying data-plane switching devices (called switches) 
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are controlled by a centralized control-plan device (called 
controllers) on top of which different software entities (called 
applications) can be developed and run. Figure 1 depicts the logical 
view of the SDN architecture [11]. SDN allows the network 
administrator to write applications to cooperate with the controller 
through the northbound interface to interact with switches through 
the southbound interface for providing network services, including 
routing, access control, load balancing, multicast, and other traffic 
engineering tasks.  

OpenFlow [12] is the most well-known southbound interface 
protocol used between the controller and the switch. As depicted in 
Figure 2, a switch has one or more flow tables and/or group tables, 
and a flow table entry consists of match fields, counters, 
instructions, and so on. A controller can update, add and delete flow 
entries in the flow table both reactively and proactively. 
On receiving a packet, a switch first matches its header with match 
fields of every entry in the flow table(s). The matching process 
begins in the first table and continues subsequently to additional 
tables. It is prioritized; that is, the first matched entry is returned 
and the matching process stops. If a matched entry is found, the 
counter associated with the entry is updated for the purpose of 
traffic statistics, and associated instructions are executed to 
complete specific actions, such as forwarding the packet to another 
switch via an outgoing port, and dropping the packet, etc. If no 
match is found in any flow table, then the packet may be dropped 
or forwarded to the controller. 
 

 
Figure 1. The illustration of the SDN architecture [11]. 

    

 

Figure 2. The OpenFlow controller and the switch and the 
flow table entry fields [12].    

2.2 The Extended Dijkstra’s Algorithm 
Given a weighted, directed graph G=(V, E) and a single source node 
s, the classical Dijkstra’s algorithm [13] can return a shortest path 
from the source node s to every other node, where V is the set of 
nodes and E is the set of edges, each of which is associated with a 
non-negative weight (or cost). In the original Dijkstra’s algorithm, 
nodes are associated with no weight. The paper [7] extends the 
original algorithm to consider both the edge weights and the node 
weights for end-to-end routing. The extended Dijkstra’s algorithm 
(EDA) is also applied to achieve load balancing and multicasting 
in [14]. 

Figure 3 shows the extended Dijkstra’s algorithm, whose input is a 
given graph G=(V, E), the edge weight setting ew, the node weight 
setting nw, and the single source node s. The extended algorithm 
uses dist[u] to store the distance of the current shortest path from 
the source node s to the destination (i.e., receiver) node u, and uses 
pred[u] to store the predecessor node preceding u on the current 
shortest path. Initially, dist[s]=0, dist[u]=∞ for each u∈V, u≠s, and 
pred[u]=null for each u∈V. The algorithm finally returns a set SP 
of shortest paths from s to all other nodes according to dist[u] and 
pred[u] for each u∈V, u≠s. 

The extended Dijkstra’s algorithm is very useful in deriving the 
best routing path to send a packet from a specific source node to a 
destination node for the SDN environment in which significant 
latency occurs when the packet goes through intermediate nodes 
and edges (or links). As shown below, the paper [7] defines the 
edge weights and node weights so that the extended Dijkstra’s 
algorithm can be applied to derive routing path for SDN 
environments. Assume the SDN network topology is derived and 
modeled as a weighted, directed, and connected graph G=(V, E). 
For a node v∈V and an edge e∈E, let Flow(v) and Flow(e) denote 
the set of all the flows passing through v and e, respectively, let 
Capacity(v) be the capacity of v (i.e., the number of bits that v can 
process per second), and let Bandwidth(e) be the bandwidth of e 
(i.e., the number of bits that e can transmit per second). The node 
weight nw[v] of v is defined according to Eq. (1), and the edge 
weight ew[e] of e is defined according to Eq. (2). 
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where Bits(f) stands for the number of flow f’s bits processed by 
node v per second.  
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where Bits(f) stands for the number of flow f’s bits passing through 
edge e per second.	

 

Note that we can easily obtain the number of a flow’s bits processed 
by a node or passing through an edge with the help of the “counters” 
field of the OpenFlow switches’ flow tables. Also note that the 
numerators in Eq. (1) and Eq. (2) are of the unit of “bits”, and the 
denominators are of the unit of “bits per second”. Therefore, the 
node weight nw[v] and the edge weight ew[e] are of the unit of 
“seconds”. When we accumulate all the node weights and all the 
edge weights along a path, we can obtain the end-to-end latency 
from one end (source) to the other end (destination or receiver) of 
the path. 

Match Fields Priority  Counters Instructions Timeouts Cookie Flags 



Algorithm : EDA (Extended Dijkstra’s Algorithm) 

Input : G=(V, E), ew, nw, s //G =(V, E) is a graph with edge and 
node weights stored in ew and nw, and s is the source 

Output : SP //SP is the set of shortest paths from s to all other 
nodes 

1: dist[s]←0; dist[u]←∞, for each u≠s, u∈V 
2: insert u with key dist[u] into priority queue Q, for each u∈V 
3: while (Q≠∅) 
4:    u←Extract-Min(Q) 
5:    for  each v adjacent to u  
6:       if  dist[v] > dist[u]+ew[u,v]+nw[u] then  
7:          dist[v]←dist[u]+ew[u,v]+nw[u] 
8:          pred[v]←u  //v’s predecessor in the shortest path is u 
9: calculate the shortest path from s to u to add into set SP according 

to dist[u] and pred[u], for each u∈V, u≠s,  
10: return  SP 

Figure 3. The extended Dijkstra’s algorithm. 

2.3 The Minimum Steiner Tree Algorithm 
Given an undirected, weighted graph G=(V, E) and a set R of nodes, 
called terminals, where R⊆V, the minimum Steiner tree problem is 
to find a minimum-weight tree, called the minimum Steiner tree, to 
span all terminals in R. When R=S, the minimum Steiner tree is 
actually the minimum spanning tree. Furthermore, when each edge 
cost is 1, the minimum Steiner tree is the tree with the minimum 
number of edges to span all terminals. The minimum Steiner tree 
problem has been proven to be NP-hard. Thus, there probably exists 
no deterministic algorithm running in polynomial time complexity 
to solve such a problem. However, many polynomial-time-
complexity heuristic algorithms have been proposed to solve the 
problem.  

The SCTF (Selective Closest Terminal First) algorithm [8], shown 
in Figure 4, is one of the heuristic algorithms to solve the minimum 
Steiner tree problem. This paper focuses on the SCTF algorithm for 
the following reasons. First, the algorithm regards the network as a 
directed (instead of undirected) graph to solve the problem. It thus 
can be applied to more practical network environments where the 
edges between two nodes can be asymmetric (e.g., the edges may 
have different bandwidth). Second, the algorithm is parameterized 
to select between fast algorithm execution time and the low tree 
weight. 

The basic concept of the SCTF algorithm is shown below. The 
SCTF algorithm first finds the shortest path from the source to 
every terminal for obtaining the “shortest” shortest path P*. All the 
nodes in P* are added into the Steiner tree T. The algorithm then 
puts all nodes in P* into the priority queue Q according to the 
priority order: source > terminal node > non-terminal node. It then 
constructs the shortest path from every of the first κ (kappa) nodes 
in Q to every terminal that is not yet included in the Steiner tree. 
The terminal z associated with the “shortest” shortest path (SSP) is 
then added into the Steiner tree, which accounts for the algorithm 
name. Afterwards, the algorithm derives from P* a subpath, called 
Branch, from u to z such that u is the only nodes in T. Note that the 
SSP calculation is performed only for the first κ nodes in Q, so P* 
may go through some nodes already in T and needs to be pruned as 
Branch. Finally, nodes and edges in Branch are added into T. It is 
worthwhile mentioning that κ is used to limit the algorithm 
computation overhead. The larger κ is, the heavier the computation 
is. However, larger κ values usually lead to better results of Steiner 
trees. 

 

Algorithm : SCTF (Selective Closest Terminal First) algorithm  

Input : G=(V, E), ew, s, R={ r1,…,rn} and κ //G =(V, E) is a graph with 
edge weights stored in ew, s is the source, R is the group (set) of receivers 
associated with s, and κ is a control knob for the priority queue 
Output : T=(VT, ET) //T=(VT, ET), where VT⊆V and 
ET ⊆ E, is a Steiner tree rooted at s and spanning all nodes in R 

1: Q ←{ s}, VT ←{ s}, ET ← ∅	  //Q: priority queue 
2: while (R≠∅) do 
3:     B ← the set of the first Min(κ, |Q|) nodes in Q 
4:     P* ← ShortestPath(x, y), where x∈B and y∈R are arbitrary 
5:     for  each x in B do 
6:        for  each y in R do 
7:           if   w(P ← ShortestPath(x, y)) < w(P*) 
8:                P* ← P  //P* is the “shortest” shortest path 
9:     z ← the terminal at which P* terminates 

10:     Branch	← subpath(u, z) such that only u is in VT 
11:     insert nodes in Branch into Q 
12:     VT ← VT ∪ {nodes in Branch} 
13:     ET ← ET ∪ {edges in Branch} 
14:     RT ← RT − {terminals in Branch} 
15: return  T 

Figure 4. The SCTF algorithm. 

3. THE PROPOSED ALGORITHM 
The proposed algorithm is called M-SCTF/EDA, which stands for 
the modified SCTF algorithm with EDA (extended Dijkstra’s 
algorithm). It is intended for the scenario of multiple sources, each 
of which is associated with a group of receivers for multicasting. It 
constructs a set of multiple Steiner trees such that every tree is 
rooted at a source and spans all receivers of the group associated 
with the source. The purpose of the algorithm is to find multiple 
Steiner trees such that the average source-to-receiver delay and the 
bandwidth consumption are both kept as low as possible. 

The two metrics used in the proposed algorithm are described in the 
following. The first one is the source-to-receiver delay defined in 
Eq. (3). 
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where Delay(r) is the delay between receiver r and its associated 
source, and R is the set of all receivers. 

 

The second one is the bandwidth consumption defined in Eq. (4). 
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where E is the set of all edges, Flow(e) is the set of all flows passing 
through edge e, and Bits(f) is the number of f’s bits passing through 
e per second.  

 

Note that the bandwidth consumption is a ratio between 0 and 1, 
which stands for the ratio of total bits transmitted per second to the 
total bandwidth. Also note that the bandwidth consumption does 
not equal the average edge (link) utilization of all edges. 

 

 



Algorithm : M-SCTF/EDA 

Input : G=(V, E), ew, nw, n, S={s1,…,sn}, M={R1,…,Rn} , κ 
//G =(V, E) is a graph with edge and node weights stored in ew and nw, n 
is the number of sources, Ri is the ith group (set) of receivers associated 
with si, 1≤i≤ n, and κ is a control knob for the priority queue 
Output : T={T1,…,Tn} //T is a set of Steiner trees, where Ti=(Vi, Ei), 
Vi ⊆V and Ei ⊆ E, is a tree rooted at si and spanning all nodes in Ri, 1≤i≤n 

1: Qi ←{ si}, Vi ←{ si}, Ei ← ∅, for every i, 1≤ i ≤ n; 
//Qi: i th priority queue 

2: while (M≠∅) do 
3:      ra←:;<	=	�

	'	∈	>⋃ +@)@∈A Bw(EDA(r’s source, r)), where ra∈Ra 

4:     M ← M − Ra 
5:     while (Ra≠∅) do 
6:          B ← the set of the first Min(κ, |Q|) nodes in Q 
7:          P* ← EDA(x, y), where x∈B and y∈Ra are arbitrary 
8:          for  each x in B do 
9:              for  each y in Ra do 

10:                  if   w(P ← EDA(x, y)) < w(P*) 
11:                       P* ← P  // P* is the “shortest” shortest path 
12:           z ← the terminal at which P* terminates 
13:           Branch	← subpath(u, z) such that only u is in Va 
14:           insert nodes in Branch into Qa 
15:           Va ← Va ∪ {nodes in Branch} 
16:           Ea ← Ea ∪ {edges in Branch} 
17:           Ra ← Ra − {terminals in Branch} 
18: return  T 

Figure 5. The proposed M-SCTF/EDA algorithm.    
Figure 5 shows the M-SCTF/EDA algorithm, which takes 
advantage of both the SCTF algorithm and the extended Dijkstra’s 
algorithm to keep the source-to-receiver delay and the bandwidth 
consumption as low as possible for multiple-source multicast 
scenarios. The algorithm constructs a Steiner tree for each group of 
receivers. A group Ra is chosen for the Steiner tree construction if 
it has the “shortest” shortest path from the source to a receiver (ref.: 
line 3 in Figure 5) among all receiver groups in M, which initially 
includes all receiver groups. The algorithm then removes Ra from 
M and follows the similar idea of the SCTF algorithm to construct 
a Steiner tree rooted at sa and spanning all receivers in Ra. (ref: lines 
5-17 in Figure 5). The algorithm terminates and returns a set T of 
Steiner trees if it detects that M is empty. 

Note that the shortest path from a source to a receiver is calculated 
by the extended Dijkstra’s algorithm, which considers both the 
node weights and the edge weights for obtaining the shortest path 
that is more suitable for practical scenarios. The calling of EDA 
algorithm is abbreviated as EDA(x,y) in the M-SCTF/EDA 
algorithm with the meaning that the algorithm will directly return 
the shortest path from node x to node y. 

Also note that the priority to order nodes in the priority queue is 
modified as: source > non-terminal node (less hop count from the 
source first) > terminal node. Due to the priority modification, the 
source-to-receiver delay may decrease, while the bandwidth 
consumption may not necessarily increase. This is helpful for the 
proposed M-SCTF/EDA algorithm to construct Steiner trees with 
both low source-to-receiver delay and low bandwidth consumption. 

4. PERFORMANCE EVALUATION 
The proposed M-SCTF/EDA algorithm is simulated by the EstiNet 
emulator along with a Ryu controller for two different multicast 
scenarios. The parameter setting of these two scenarios is shown in 
Table 1; it is derived according to the specifications of off-the-shelf 
products, namely NEC ProgrammableFlow PF5248 Switch, 

Xinguard Pica8 3290 Switch, and HP 3500 Series Switch. The two 
scenarios are depicted in Figure 6 and Figure 7, respectively, in 
which node 21 is the controller. The first scenario has only one 
source (node 40) and 18 receivers, while the second scenario has 
two sources (node 40 and node 23), which both have 8 receivers. 

Other parameters of the simulation are described as follows. The 
multicast data are UDP packets sent at the constant bit rate of 2500 
kbps, which is the rate of HD (high definition) video data of the 
720P H.264 high profile format.  The control knob κ for the priority 
queue is set as 4 for all simulation cases.  

 

Table 1. Parameter setting of the scenario 1 and 2 

Parameter Setting 

Bandwidth on edges 100Mbps ~ 1Gbps 

Capacity of each node 
(switches)  

10Gbps ~ 179Gbps 

Number of sources 1 or 2 

Number of receivers 18 or 16 

Number of switches 20 

Number of edges 63 

Controller Ryu ver 1.7.90 

Simulation time per case 1000 sec 

 

 

 

Figure 6. The simulation scenario 1. 

    

 

Figure 7. The simulation scenario 2.    



 

 

Figure 8. Performance comparisons for different algorithms.    
The simulation experiments are performed for not only the 
proposed M-SCTF/EDA algorithm but also the SCTF/EDA, SCTF, 
M-SCTF, DA (i.e., the original Dijkstra’s algorithm), EDA and the 
MST algorithm (i.e., the exhaustive algorithm to construct exactly 
the minimum Steiner tree using the minimum number of edges to 

span all receivers) for the sake of comparison. As shown in Figure 
8, the proposed M-SCTF/EDA algorithm has very good 
performance. It has the second lowest source-to-receiver delay and 
bandwidth consumption. In terms of the source-to-receiver delay, 
it is inferior to only EDA, which focuses solely on the shortest delay. 
However, EDA has very high bandwidth consumption. In terms of 
the bandwidth consumption, it is inferior to only MST, which 
focuses solely on the lowest bandwidth consumption. However, 
MST is an exhaustive algorithm consuming a lot of computation 
and has very high source-to-receiver delay. We may well say that 
the proposed M-SCTF/EDA algorithm is the best algorithm 
suitable for the SDN architecture to achieve multicast with multiple 
sources when the source-to-receiver delay and the bandwidth 
consumption are both considered at the same time. 

5. CONCLUDING REMARKS 
The proposed M-SCTF/EDA algorithm takes advantage of both the 
extended Dijkstra's shortest path algorithm and the modified 
selective closest terminal first Steiner tree algorithm to construct a 
set of Steiner trees for multicast with multiple sources. The 
proposed algorithm reaches the goal of keeping as low as possible 
both the source-to-receiver delay and the bandwidth consumption. 
Simulation experiments through EstiNet emulator along with a Ryu 
controller are performed for the proposed algorithms and other 
related algorithms for the sake of comparison. The simulation 
results are compared in the aspects of the source-to-receiver delay 
and the bandwidth consumption. By the comparison results, we can 
observe the proposed M-SCTF/EDA algorithm is the only one 
among all compared algorithms to perform well in both aspects. 

We have observed that the Floyd-Warshall algorithm [15] can also 
be easily extended to consider both edge weights and node weights. 
We have also observed that if we rewrite the two inner “for” loops 
in the proposed M-SCTF/EDA algorithm and replace the extended 
Dijkstra’s algorithm (EDA) with the “extended Floyd-Warshall 
algorithm”, then the proposed algorithm can be improved in terms 
of computation overheads. This is because the Dijkstra’s algorithm 
is a one-to-all shortest path algorithm, the Floyd-Warshall 
algorithm is an all-pair shortest path algorithm, and the two inner 
“for” loops are actually used to find the “shortest” shortest path 
among all pairs of shortest paths. We plan to realize the 
improvement in the future.  

Many studies related SDN multicast have been proposed recently. 
They focus on different aspects of multicast, such as fault-tolerance 
[16], scalability [17][18], and load balancing [19][20]. The 
proposed algorithm is not compared with those algorithms, as they 
emphasize on aspects different from source-to-receiver delay and 
bandwidth consumption. We plan to improve the proposed 
algorithm by considering more aspects and to apply the proposed 
algorithm to more practical multicast scenarios, like live streaming 
and the video conference. 
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