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M ultiuser 3D virtual environments 
(VEs) such as massively multi-
player online games (MMOGs) 

have become very popular in recent 
years. World of Warcraft, a role-playing 
MMOG in which players participate in 
epic battles and adventures between 
two opposing camps, had more than 
11 million paying subscribers in 2008. 
Second Life,1 a social MMOG entirely 
built by its “residents,” also boasts more 
than 1.4 million active accounts and 
nearly US$9 million worth of virtual 
item transactions each month. Due to 
the demand for more realistic worlds, 
VEs have become larger and more 
dynamic. As content becomes easier to 
create and cheaper to host, more devel-
opers — even individuals — are build-

ing virtual worlds (for example, Second 
Life hosted 34 Tbytes of user-generated 
content in 2007). However, the trends 
toward larger worlds and larger num-
bers of worlds are beginning to reveal 
the inadequacy of current VE instal-
lation methods, which require users to 
preinstall the full content via DVDs or 
a prior download. Easier access to this 
various and massive amount of VE con-
tent thus demands 3D streaming for 
content distribution.2,3

3D streaming delivers 3D content 
over networks in real time to let users 
navigate a VE without a complete con-
tent installation. Similar to audio or 
video media streaming, 3D streaming 
requires that the content be fragmented 
into pieces before it can be transmitted, 
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reconstructed, and displayed. However, unlike 
linearly streamed audio or video, 3D streaming 
is highly interactive and nonlinear in nature, 
with the streaming sequence based on each 
user’s unique visibility or interest area (that is, 
the landscape or objects the user can see, or is 
interested in seeing, within the virtual world).

Current 3D streaming schemes adopt the 
client-server (C/S) model for content delivery. 
However, such architecture is difficult to scale 
because 3D streaming is both data- and pro-
cessing-intensive. Prohibitively vast amounts 
of server-side bandwidth and CPU power are 
required for a massive audience. On the other 
hand, peer-to-peer (P2P) networks offer highly 
scalable yet affordable computing and content-
sharing capabilities. Given that users in a 3D 
scene could own similar content due to over-
lapping visibility, they can obtain content from 
each other in a P2P manner. However, although 
P2P media streaming has progressed signifi-
cantly in recent years, it might not be directly 
applicable to 3D content due to different content 
access patterns. In both live and on-demand 
media streaming, content is often sent linearly 
after a starting point, whereas access to 3D 
content is rather arbitrary and nonlinear, and 
depends much on real-time user behaviors.4 
New insights and novel designs are thus needed 
for P2P-based 3D streaming.

Here, we describe the P2P approach to 3D 
streaming with a conceptual model and exam-
ine some recent designs.5–7 Using prototyping 
(see Figure 1) and simulations of our proposed 
framework, Flowing Level-of-Details (FLoD),7 
we show that P2P holds great promise for pro-
viding scalable and affordable content delivery 
for future 3D virtual worlds.

3D Streaming Requirements
To understand how 3D streaming could work 
on P2P networks, we must first identify its 
requirements and challenges from both the cli-
ent and server perspectives. Four main types of 
3D streaming exist today: object-, scene-, visu-
alization-, and image-based.7 In the context 
of virtual worlds, our main focus would be on 
scene streaming, whose goal is to provide each 
user a navigation experience within a scene by 
progressively delivering the 3D objects within 
the user’s area of interest (AOI, or the area 
currently visible to the user, often denoted as 
a circle around him or her2). We can assume 

that each object consists of 3D models (such as 
meshes) and other associated data (for instance, 
textures, height maps, light maps, and anima-
tions), plus a certain position and orientation 
described in some form. To facilitate delivery, 
the content provider first fragments each object 
into a base piece and many refinement pieces 
in an application-specific manner at the server, 
using methods such as progressive meshes8 or 
geometry images9 for models, or progressive 
GIF, JPEG, or PNG formats for textures. Once 
the client obtains a set of base pieces, it can per-obtains a set of base pieces, it can per-
form an initial scene rendering to allow timely 
navigation. Additional time in the scene will 

Figure 1. Peer-to-peer (P2P) 3D streaming prototype system. The 
different frames show the progression of streaming as time passes.
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let clients download and render models in more 
detail, given certain quality-of-service (QoS) 
requirements.10 The two main requirements for 
a 3D streaming system are thus streaming qual-
ity and scalability.

Streaming Quality
From the user’s perspective, the main concern 
for 3D streaming is its visual quality. How-
ever, because visual quality can be subjective, 
a more definable concept is the streaming qual-
ity in terms of how much data a client obtains 
and how quickly. For the former, we could use 
the ratio between the data already downloaded 
and that required to render the current view — 
that is, a fill ratio. A ratio of 100 percent indi-
cates the best visual quality (that is, the same as 
preinstalled content). For the latter, we can use 
base latency and completion latency to indicate 
the time taken to obtain an object’s base piece 
or full data. Base latency indicates the delay in 
displaying a basic view of the scene, whereas 
completion latency indicates the time needed to 
fully inspect objects. The goal is thus to maxi-
mize fill ratios while minimizing latencies.

Scalability
From the server’s perspective, the main goal is 
to maximize the number of concurrent users by 

distributing transmission and processing loads 
to clients as much as possible. For transmis-
sions, it’s preferable for clients, rather than the 
server, to deliver most content. For processing, 
the server should minimize its role in calculat-
ing transmission strategies. Ideally, if the server 
can fully delegate these calculations (for exam-
ple, distributed determination of visibility and 
delivery prioritization) to clients, then it can 
simply answer data requests.

Challenges in P2P 3D Streaming
Although it’s relatively straightforward for a 
server to determine and deliver content to cli-
ents, switching to a P2P model introduces new 
challenges. In C/S 3D streaming, the server 
first performs object discovery for each client 
because it possesses complete knowledge of all 
objects and can determine each client’s view-
able objects. Given that only one data provider 
exists, source discovery isn’t an issue. We can 
assume full data availability at the server, so 
the clients also don’t need to perform any state 
exchange to learn of content availability. Finally, 
the content is transferred from the server to 
clients in a unidirectional manner. In P2P 3D 
streaming, however, we must re-examine these 
tasks as follows, while considering performance 
and scalability. 

Related Work in 3D Scene Streaming

Researchers have proposed various techniques for 
transmitting a given 3D scene over a network to allow 

user interactions without preinstallation. Dieter Schmalstieg 
and Michael Gervautz were the first to introduce scene stream-
ing in which a server determines and transmits visible objects 
at different levels-of-detail (LODs) to clients.1 Eyal Teler and 
Dani Lischinski used prerendered, image-based impostors as 
the lowest LOD to enable faster initial visualizations.2 Cyber-
walk adopts progressive meshes to avoid the data redundancy 
from multiple LODs and focuses on caching and prefetching to 
enhance visual perception.3 Social massively multiplayer online 
games (MMOGs) such as ActiveWorlds, There.com, and Sec-
ond Life,4 as well as the 3D instant messenger IMVU, use scene 
streaming to support dynamic content, but little is publicly 
known of their mechanisms. Our work complements these 
works with distributed deliveries. 

Ketan Mayer-Patel and David Gotz present the concept 
of nonlinear media streaming,5 in which interactive content 
(for example, images for a virtual museum) is divided and 
sent through multicast channels clients have subscribed to. 
The system supports a large number of receivers by send-

ing the content via application-layer multicast (ALM). How-
ever, ensuring proper content partitioning (so that clients 
receive only relevant content) and bounded latency (impor-
tant for interactive applications) are nontrivial issues. Under 
this approach, clients might receive excessive content beyond 
current interests and experience variable latencies due to 
ALM channels’ limitations.
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Object Discovery
To know which objects to download, the user 
client must first discover the objects within its 
AOI. Preferably, the client should conduct vis-the client should conduct vis-should conduct vis-
ibility determination without the server being 
involved or having any global knowledge of the 
scene. However, because only the server ini-
tially possesses complete scene knowledge, we 
must partition and distribute the scene descrip-
tions (that is, object metadata such as placement 
or orientation) so that the client can conduct a 
distributed discovery (via hierarchical trees5 or 
grids,7,11 for example). 

Source Discovery
To obtain content from other clients instead of 
the server, each client must know some other 
peers who might hold the content of inter-
est. These partner peers likely are within each 
other’s AOIs given that overlapped visibility 
indicates shared interests. However, other peers 
who have been in the same area previously 
might also retain content in their caches. So, 
how to maintain and discover potential con-
tent sources, either centrally6 or in a distributed 
way,7 is another challenge.

State Exchange
Once the client finds a few peers, it still needs 
to know which content pieces are available at 
which peers, and what network conditions 
exist for each peer, so that it can fulfill content 
requests. A naïve approach is to query (that is, 
pull) each known peer,7 but the query-response 
time might not meet 3D streaming’s real-time 
requirements. A push approach, in which peers 
proactively notify each other about content 
availability, is thus also possible.12

Content Exchange
To optimize the visual (or streaming) quality for 
a given bandwidth budget, a client can lever-
age its knowledge of peers to schedule content 
requests based on visibility, content availabil-
ity, and network conditions. Interestingly, 3D 
streaming can be view-dependent,8 with data 
pieces applied arbitrarily to reconstruct objects. 
As long as the download sequence satisfies the 
piece dependencies, only a roughly sequential 
transfer is needed (as opposed to the strictly 
sequential transfer required for video stream-transfer required for video stream-video stream-
ing). The clients can also exploit concurrent 
downloads to accelerate the retrieval for pieces 

that don’t involve dependencies. Depending on 
the results of initial requests, additional peers 
or requests might then be needed.

A Conceptual Model
Given the requirements and challenges we’ve 
discussed, we categorized the main tasks for 
P2P-based 3D scene streaming as follows (see 
Figure 2):

• Partitioning divides the entire scene into 
smaller units so that the client doesn’t 
require global knowledge of all object place-
ments to determine visibility.5 Scene par-
titioning is essential for decentralizing 
visibility calculations.

• Fragmentation divides 3D objects into pieces 
so that a client can progressively receive 
and reconstruct the 3D objects. Progressive 
meshes8 and geometry images9 are some 
example techniques.

• Prefetching predicts data usage ahead of 
time and generates data requests so that 
transmission latency is hidden from users. 
The client can also try to predict user move-can also try to predict user move-also try to predict user move-user move-
ments or behaviors for this task.10,11

• Prioritization occurs when the client per-the client per-per-
forms visibility determination to generate 
the request order for object pieces. The goal 
is to maximize visual quality by consider-
ing factors such as distance, line of sight, or 
visual importance.2,11

• Selection determines the proper peers to con-
nect with and pieces to obtain based on peer 
capacity, content availability, and network 
conditions to efficiently fulfill prefetching 
and prioritization needs.

We can see from this model that the main 
additional tasks in P2P 3D streaming are 
partitioning the scene (for distributed visibility 
determination) and selecting peers and pieces 
(for P2P content exchange). Other tasks more or 
less are also required in C/S 3D streaming. 

FLoD Design
Based on the model just mentioned, we devel-
oped the FLoD framework7 to realize P2P 3D 
streaming. Given that content and users (or 
nodes) tend to cluster at hotspots,13 a user often 
has overlapped visibility with its AOI neighbors 
(that is, other users within that user’s AOI). By 
requesting data from the neighbors first, the 
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server needn’t answer content requests repeti-answer content requests repeti-content requests repeti-requests repeti-repeti-
tively. Note that neighbors here are based on 
proximity inside the virtual world and not on 
the physical network. Finding AOI neighbors 
is, in fact, the discovery of the proper interest 
groups for content exchange and must occur 
efficiently. For this purpose, we utilize a Vor-
onoi-based Overlay Network (VON)14 that sup-
ports neighbor discovery for P2P-VEs. VON 
lets a node learn its AOI neighbors’ IDs, vir-
tual coordinates, and IP addresses (akin to per-
forming a spatial query for objects within the 
AOI). The basic idea is that even though a node 
might not know other nodes beyond its AOI, its 
neighbors near the AOI border (called boundary 
neighbors) have such knowledge and can send 
notification about incoming neighbors. We can 
thus conduct neighbor discovery in a fully dis-
tributed way without relying on any servers.

To allow client-side visibility determination, 
we partition the VE into square grids, each with 
a small scene description for the objects within. 
Each client can then determine the visible objects 
by retrieving scene descriptions for the cells 
that its AOI covers. When entering a new area, 
a client first prepares some scene requests to 
obtain scene descriptions from its AOI neighbors 
or the server. The client then performs object 
discovery by decoding the scene descriptions 
and sends out prioritized piece requests based on 
the client’s visibility preferences. As data pieces 
arrive from either other peers or the server 
(which acts as the final data source for unfilled 
peer requests), the client can render a view pro-, the client can render a view pro-render a view pro-
gressively. Before the actual content exchange, 
the client first queries its neighbors on content 
availability. Among the neighbors that answer 

positively, some are chosen randomly to request 
the actual content. The client repeats this pro-. The client repeats this pro-
cess as it moves in the environment.

To demonstrate how FLoD works in real sce-
narios, we implemented a prototype (see Figure 
1) that performs all the major 3D streaming 
tasks except prefetching. We experimented 
with the prototype by setting up a Linux server 
to load the initial scene and respond to client 
requests as users log in to navigate the scenes. 
The experiment shows that the server band-
width usage is about half that of a pure C/S 
approach because clients can be self-sufficient 
in content serving.7

To investigate large-scale behaviors, we then 
performed simulations with bandwidth lim-
its (a 1-Mbps download/256-Kbps upload limit 
for clients, and a 10-Mbps symmetric limit for 
the server). We placed objects randomly on a 
2D map, with sizes based on our prototype (15 
Kbytes per object, with a 3-Kbyte base piece, 
1.2-Kbyte refinement pieces, and 300 to 500 
bytes per scene description). The nodes move 
with constant speeds using random waypoints11 
for 3,000 time steps and request scene descrip-
tions or data pieces as needed.

Scalable systems must keep resource usages 
bounded at all relevant system nodes. Figure 
3a shows the upload bandwidth for both a C/S 
server and a FLoD server. Because the server 
upload limit is 10 Mbps, the C/S server exhausts 
its bandwidth at 1,250 Kbyte/sec when serving 
200 nodes. On the other hand, a FLoD serv-
er’s upload stays relatively constant under 50 
Kbytes/sec. Figure 3b explains this reduction, 
showing that the upload and download band-
widths of FLoD clients converge, indicating 

Server-side

Object
preprocessing

Client-side

Fragmementation

Partitioning

Cache

Rendering

Prioritization

Prefetching

Movement

Object determination

Peer and piece
selection

Object transmission

Defragmentation
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Figure 2. A conceptual model for peer-to-peer (P2P)-based 3D scene streaming. Obtaining movements and performing 
rendering are the only tasks required when content is locally available. Object preprocessing, determination, 
transmission, and reconstruction are additional stages for networked 3D streaming. Client-server 3D streaming 
requires only fragmentation, prefetching, and prioritization. Partitioning and selection are the new tasks required for 
P2P-based 3D streaming.
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that as the system scales (that is, as the num-
ber of AOI neighbors increases), FLoD clients 
become self-sufficient in content serving. How-
ever, some bandwidth overhead exists for using 
the P2P overlay, because the overlay needs to 
exchange user positions and notify peers of new 
neighbors.7 Although this overhead indicates a 
certain scalability limit as AOI neighbor density 
increases, the entire system can still accommo-
date users scalably (to possibly millions of con-
current users).

Comparisons and Open Questions
FLoD addresses object discovery by using 
grid-based scene descriptions, and queries AOI 
neighbors from a P2P-VE overlay for source 
discovery. It uses a query-response approach 
for state exchange and random selection from 
peers for content exchange. Although this basic 
design is simple, the data sources are limited 
and the query for states might be slow. In a 
subsequent work,12 we let clients keep historic 
AOI neighbors as extra sources and proactively 
push content availability to all connected 
neighbors to reduce the query-response delay. 
Clients also send requests to closer AOI neigh-also send requests to closer AOI neigh-
bors first to avoid concentrating requests. 
Simulation results show that both fill ratio and 
base latency have improved.

Other researchers have recently proposed 
two alternative designs for P2P 3D streaming. 
Table 1 shows a taxonomy based on the main 
challenges we mentioned and compares these 
designs with FLoD, while outlining the poten-with FLoD, while outlining the poten- FLoD, while outlining the poten-
tial solution space.

LODDT
The level-of-detail description tree (LODDT)5 is a 
tree structure that stores urban cityscapes hier-
archically. Clients can progressively perform 
visibility determination given a partial tree cov-
ered by the user’s AOI. LODDT also evaluates 
a few peer-selection strategies based on object 
proximity and estimated content availability. 
Object discovery is thus based on a distributed 
tree, whereas source discovery is performed 
with a P2P-VE overlay similar to FLoD. How-
ever, given that only a selected set of connec-
tivity peers provides the AOI neighbors, LODDT 
is more of a super peer than a fully distributed 
design. To learn about client states, peers also 
exchange queries and responses. Content avail-
ability isn’t exchanged but is rather inferred 

from the relative positions between neighbors. 
Based on response time and estimated con-
tent availability, a client then randomly makes 
requests from potential sources.

HyperVerse
HyperVerse uses a group of public servers to 
construct a static, structured overlay that main-
tains user positions for a VE.6 The clients learn 
of other peers from the servers and exchange 
content by forming a loosely structured overlay. 
Thus, the server performs object and source dis-
covery centrally and notifies clients of relevant 
peers and objects. No explicit state exchange 
policy exists, and clients request content from 
random neighbors.

Object Discovery Comparison
FLoD differs from LODDT mainly in the scene-
partitioning method (for example, FLoD uses 
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grids whereas LODDT utilizes trees); Hyper-
Verse uses the server to maintain the object 
list. A central list is arguably more flexible and 
secure because distributed scene descriptions 
aren’t straightforward to update, and mali-
cious clients could manipulate the object list. 
On the other hand, a central list faces scalabil-
ity limitations if the server receives too many 
requests. Grid partitioning is simple, and only 
a few cells are needed for ground-level navi-
gation. However, for scenes viewable from dif-
ferent altitudes (such as city models or virtual 
globes), grids become inefficient because too 
many cells might be involved. Tree structures, 
however, require a top-down construction, so 
clients must first retrieve many nodes from the 
root down before they can determine ground-
level objects.

Source Discovery Comparison
The current designs use mostly AOI neigh-
bors as sources, maintained either centrally 
or among peers. Using a P2P-VE overlay for 
neighbor discovery can drastically reduce 
server loads.14 However, the overlay incurs 
some overhead that grows with AOI neighbor 
density. A super-peer-based tracker for sources 
might be a balance between the two extremes 
and could keep track of non-AOI neighbors with 
relevant content. However, we must consider 
the fault-tolerance of the super-peers, so that 
the neighbor tracking tasks would not become 
unavailable when the super-peers fail.

State Exchange Comparison
The current designs exchange few states (such 
as content availability and network condition), 
and the two main approaches are pull (query-
response) and push (proactive update). Current 
evaluation indicates that the push approach 
is faster than the pull approach.12 However, 

whether alternative or hybrid approaches exist 
requires further investigation. 

Content Exchange Comparison
Both the basic FLoD design and HyperVerse use 
random selection. With enhanced FLoD, clients 
send requests to closer neighbors first, whereas 
LODDT bases requests on estimated capacities. 
However, researchers have yet to make detailed 
comparisons among these approaches. The 
clients can also use additional criteria to form 
the requests, such as latency or piece depen-
dency. Current methods are mostly pull-based 
(that is, a client sends requests to the source 
providers), but push-based approaches are also 
possible (that is, sources proactively send out 
content, similar to how content delivery net-
works, or CDNs, push Web content to different 
geographic servers).

Besides these network-specific issues, other 
3D streaming requirements are also worth 
exploring — for example, commercial applica-
tions likely will require dynamic updates and 
content authentication.15 Prefetching and cach-
ing are also important aspects we have yet to 
investigate in-depth.10,11

A recent study on Second Life traffic has 
shown that 60 to 88 percent of server band-

width usage is for textures, and a busy region 
might deliver close to 100 Gbytes of textures 
a day.13 As our experiments and simulations 
show, FLoD can relieve the server of its heavy 
loads. Virtual globe applications such as Google 
Earth might also benefit from P2P 3D stream-
ing as they move toward 3D content with pos-
sible multiuser interactions. 

Real-time 3D content has yet to find its way 
to most Internet users in spite of years of effort. 
Although challenges remain in areas such as 

Table 1. Taxonomy of P2P 3D streaming approaches.

Stage FLoD Level-of-detail description 
tree (LODDT)

HyperVerse

Basic Enhanced

Object discovery Grid-based scene 
descriptions

Grid-based scene 
descriptions

Hierarchical scene 
descriptions

Server-provided 
list

Source discovery AOI (area of interest) 
neighbors (from peers)

Extended AOI neighbors 
(from peers)

n nearest neighbors 
(from super peers)

AOI neighbors 
(from server)

State exchange Query-response (pull) Incremental update (push) Query-response (pull) N/A

Content exchange Random selection Multilevel AOI selection Round-trip time (RTT) and 
estimated peer loading

Random selection
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protocol standards and ease of content creation, 
content streaming can effectively address the 
delivery problem. 3D streaming on P2P networks 
is thus a topic of interest to both graphics and 
networking professionals. By identifying the 
basic issues, we hope to highlight this promising 
direction for making 3D content more accessible. 
An open source implementation of FLoD is avail-
able at http://ascend.sourceforge.net. 
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