On the Nondomination of Cohorts Coteries

Jehn-Ruey Jiang

Department of Information Management Hsuan Chuang University Hsin-Chu, 300, Taiwan E-mail: jrjiang@hcu.edu.tw

All correspondence should be addressed to:

Dr. Jehn-Ruey Jiang Department of Information Management Hsuan Chuang University 48 Hsuan Chuang Rd. Hsin-Chu, 300, Taiwan

Tel:886-3-5391225 Fax:886-3-5391256 E-mail:jrjiang@hcu.edu.tw

Abstract

In this paper, we show that a subset of *Cohorts coteries* proposed in [5] are *nondominated* (ND) *k*-coteries, which are candidates to achieve the highest availability when utilized to solve the distributed *k*-mutual exclusion problem and the distributed *h*-out of-*k* mutual exclusion problem.

Index Terms — Availability, k-coteries, mutual exclusion, nondomination, quorums

1 Introduction

In [5], Jiang et al. proposed *Cohorts structures* to aid the construction of a class of *k*-coteries called *Cohorts coteries*, where a Cohorts structure $Coh(k,n)=(C_1,...,C_n)$ is a list of sets (each called a *cohort*) satisfying:

P1. $|C_1| = k$. P2. $\forall i : 1 < i \le n : |C_i| > max(2k-2, k)$. P3. $\forall i, j: 1 \le i, j \le n, i \ne j: C_i \cap C_j = \emptyset$.

In an earlier paper [3], Huang et al. constructed Cohorts coteries with P1 being relaxed to be $|C_1| \ge k$. In [8], Neilsen and Mizuno showed that a Cohorts coterie may be *dominated* if P1 is relaxed to be $|C_1| \ge k$. However, it is left open whether a Cohorts coterie is dominated or not when P1 assumes $|C_1| = k$. In this paper, we show that if P1 assumes $|C_1| = k$, then a Cohorts coterie is a *nondominated* (*ND*) *k*-coterie.

A k-coterie [1, 3] is a family of sets called *quorums* satisfying the *intersection property*: there are at most k pairwise disjoint quorums. It can be used to develop the distributed k-mutual exclusion algorithm [7] and the distributed *h*-out of-k mutual exclusion algorithm [6]. The basic idea of such algorithms is simple: a node should collect permissions from nodes of a quorum (resp. h pairwise disjoint quorums, $1 \le h \le k$) to gain one entry (resp. h entries) to a *critical section* (CS). Since a node grants its permission to one node at a time, the intersection property then guarantees that at most k entries to the CS are admitted simultaneously. The algorithms using k-coteries usually incur low message cost and can tolerate node and/or network link failures, even when the failures lead to network partitioning. For any specific value of h ($1 \le h \le k$), ND k-coteries are candidates to endow the algorithms with the highest availability, which is the probability that at least h entries to a *critical section* are available in an error-prone environment. Thus, we should always concentrate on ND k-coteries when availability is a significant concern.

There are two definitions of *k*-coteries. Fujita, Yamashita and Ae first proposed the definition of *k*-coteries in [1]; Huang, Jiang and Kuo proposed another definition in [3] independently. In [9], Neilsen and Mizuno regarded *k*-coteries as those defined by Huang et al. and used the term "*proper k-coteries*" to refer to those defined by Fujita et al. In [2], Harada and Yamashita regarded *k*-coteries as those defined by Fujita et al. and used the term "*k-semicoteries*" to refer to those defined by Huang et al.

Yamashita's way to differentiate the two k-coterie definitions. To be more precise, a k-coterie holds the non-intersection property, while a k-semicoterie does not. The non-intersection property guarantees that for any h ($h \le k$) pairwise disjoint quorums, there must exist a quorum Qsuch that Q and the h quorums are also pairwise disjoint. Thus, when applied to design k-mutual exclusion algorithms (or h-out of-k mutual exclusion algorithms), k-coteries always achieve higher degree of concurrency than k-semicoteries.

2 Nondomination of Cohorts Coteries

A *k-semicoterie* C under universal set U is a family of subsets of U. Each member in C is called a *quorum* and should observe the following two properties [3]:

Minimality Property: Any quorum is not a super set of another quorum.

Intersection Property: There are at most *k* pairwise disjoint quorums.

A *k*-semicoterie is also a *k*-coterie [1] if it further satisfies the following non-intersection property:

Non-intersection Property: For any h (h < k) pairwise disjoint quorums $Q_1, ..., Q_h$, there exists a quorum Q_{h+1} such that $Q_1, ..., Q_{h+1}$ are pairwise disjoint.

In [5], Cohorts structures are used to help construct *k*-coteries. Given a Cohorts structure $Coh(k,n)=(C_1,...,C_n)$, a set *Q* is said to be a *quorum under Coh(k, n)* if some cohort C_i is *Q*'s *primary cohort*, and each cohort C_j , j > i, is a *supporting cohort* of *Q*, where a cohort *C* is *Q*'s

primary cohort if $|Q \cap C| = |C| - (k-1)$ (i.e., Q contains exactly all except k-1 members of C), and a cohort C is a supporting cohort of Q if $|Q \cap C| = 1$ (i.e., Q contains exactly one member of C). The family of quorums under Coh(k, n) is called a Cohorts coterie, which has been shown to be a k-coterie in [5].

Let \mathcal{C} and \mathcal{D} be two distinct *k*-coteries (or *k*-semicoteries). \mathcal{C} is said to *dominate* \mathcal{D} if and only if every quorum in \mathcal{D} is a super set of some quorum in \mathcal{C} (i.e., $\forall Q, \exists Q' : Q \in \mathcal{D}, Q' \in \mathcal{C}: Q' \subseteq Q$). Obviously, the dominating one (\mathcal{C}) has more chances than the dominated one (\mathcal{D}) to have *available quorums* in an error-prone environment, where a quorum is said to be *available* if all of its members (nodes) are *up*. Note that an available quorum implies an available entry to the CS. Thus, when availability is a significant concern, we should always concentrate on ND *k*-coteries (or *k*-semicoteries) that no other *k*-coterie (or *k*-semicoterie) can dominate.

Below, we show that Cohorts coteries are ND *k*-coteries (with P1 being $|C_1|=k$) on the basis of Theorem 1, which was proposed in [4] and [8] simultaneously, and was restated in [2].

Theorem 1 ([2, 4, 8]). Let \mathcal{C} be a *k*-semicoterie under universal set U. \mathcal{C} is dominated if and only if there exists a set $X \subseteq U$ such that

A1. For any quorum $Q \in \mathcal{C}$, $Q \not\subseteq X$.

A2. For any k pairwise disjoint quorums $Q_1, \dots, Q_k \in \mathbb{C}$, there exists an $i, 1 \le i \le k$, such that $Q_i \cap X \neq \emptyset$.

Theorem 2. Let \mathcal{C} be a family of quorums under $Coh(k, n) = (C_1, ..., C_n), n \ge 1$. \mathcal{C} is an ND *k*-coterie. Proof: As shown in [5], \mathcal{C} is a *k*-coterie; it is thus a *k*-semicoterie. Below, we first prove that \mathcal{C} is an ND *k*-semicoterie. The proof is by induction on the value of *n*.

Basis: *n*=1.

Let $C_1 = \{u_1, ..., u_k\}$ (by P1, $|C_1| = k$). Then, the family of all the quorums under $Coh(k, 1) = (C_1)$ is $\{\{u_1\}, ..., \{u_k\}\}$, which is a *k*-singleton coterie and is shown to be ND in [4].

Induction Hypothesis: Assume the family of quorums under $Coh(k, n-1)=(C_1,...,C_{n-1})$ is ND.

Induction Step: On the basis of the induction hypothesis, we want to prove that \mathcal{C} is ND.

The proof is done by contradiction. Suppose that the family \mathcal{C} of quorums under Coh(k, n) is dominated, then by Theorem 1, we can find a set *X* satisfying

A1. For any quorum *Q* under Coh(k, n), $Q \not\subseteq X$.

A2. For any k pairwise disjoint quorums $Q_1, ..., Q_k$ under Coh(k, n), there exists an $i, 1 \le i \le k$, such that $Q_i \cap X \neq \emptyset$.

Let $C_n = \{v_1, ..., v_s\}$, where $s = |C_n| > max(2k-2, k)$ (by P2). Then, by definition, a quorum under Coh(k, n) may take C_n as the primary cohort with no supporting cohort, or may take C_m , $1 \le m \le n-1$, as the primary cohort with $C_{m+1}, ..., C_n$ being supporting cohorts. Thus, a quorum under Coh(k, n) may be of the form: either (**form-1**) a set of s - (k-1) members of C_n , or (**form-2**) a quorum under $Coh(k, n-1) \cup \{v_i\}$, $1 \le j \le s$.

Let Q be a form-1 quorum. By A1, we have $Q \not\subseteq X$. It follows that X should have less than s-(k-1) members of C_n , i.e., C_n has at least k members not in X. Without loss of generality, let v_1, \ldots, v_k be the k members of C_n that are not in X.

Let $Q_1',...,Q_k'$ be k pairwise disjoint quorums under $Coh(k, n-1)=(C_1,...,C_{n-1})$ (P1, P2 and P3 ensure the existence of the k quorums). Then, $Q_1=Q_1'\cup\{v_1\},...,Q_k=Q_k'\cup\{v_k\}$ are k pairwise disjoint form-2 quorums under Coh(k, n). By A2, there exists an $i, 1\leq i\leq k$, such that $Q_i \cap X \neq \emptyset$. Since $v_1,...,v_k$ are not in X, we have that there exists an $i, 1\leq i\leq k$, such that $Q_i'\cap X\neq\emptyset$. Because $Q_1',...,Q_k'$ contains no member of C_n (by P3), we infer that there exists an $i, 1\leq i\leq k$, such that $Q_i'\cap(X-C_n)\neq\emptyset$. We have

A2'. For any k pairwise disjoint quorums Q_1', \dots, Q_k' under Coh(k, n-1), there exists an $i, 1 \le i \le k$, such that $Q_i' \cap (X - C_n) \ne \emptyset$.

Now, suppose there exists a quorum Q' under Coh(k, n-1) such that $Q' \subseteq (X-C_n)$. Then, we have $(Q' \cup \{v_j\}) \subseteq X$ for j=k+1,...,s. This contradicts A1 because $Q' \cup \{v_j\}$ is a form-2 quorum under Coh(k, n). Thus, we have

A1'. For any quorum Q' under $Coh(k, n-1), Q' \not\subseteq (X-C_n)$.

By A1' and A2', we have that the family of quorums under Coh(k, n-1) is dominated, which contradicts the induction hypothesis. So, the family \mathcal{C} of quorums under Coh(k, n) must not be dominated. It is hence ND.

Thus, by the induction principle, \boldsymbol{e} is an ND *k*-semicoterie for any $n, n \ge 1$. As noted in [2], any ND *k*-semicoterie is an ND *k*-coterie if it satisfies the non-intersection property. In [5], \boldsymbol{e} has been shown to be a *k*-coterie, which satisfies the non-intersection property. Hence, \boldsymbol{e} is an ND *k*-coterie.

3 Conclusion

The *k*-coterie can be utilized to design distributed *k*-mutual exclusion algorithms and distributed *h*-out of-*k* mutual exclusion algorithms. The *k*-coterie-based algorithms usually incur low message cost and have high availability. They can tolerate node and/or network link failures, even when the failures lead to network partitioning. In this paper, we have shown that a subset of Cohorts coteries proposed in [5] are ND *k*-coteries, which are candidates to endow the *k*-coterie-based algorithms with the highest availability.

Acknowledgment

We would like to thank the anonymous referees for their comments, which helped make the proof more robust, and the presentation more concise.

References

- S. Fujita, M. Yamashita and T. Ae, "Distributed k-mutual exclusion problem and k-coteries," in *Proc. of the 2nd Int'l. Symp. on Algorithms*, pp. 22-31, 1991.
- [2] T. Harada and M. Yamashita, "Coterie join operation and tree structured *k*-coteries," *IEEE Trans. Parallel and Distrib. Systems*, 12(9):865-874, 2001.
- [3] S.-T. Huang, J.-R. Jiang and Y.-C. Kuo, "k-Coteries for fault-tolerant k entries to a critical section," in *Proc. of the 13rd IEEE Int'l Conf. on Distrib. Comput. Systems*, pp. 74-81, 1993.
- [4] J.-R. Jiang and S.-T. Huang, "Obtaining nondominated k-coteries for fault-tolerant distributed k-mutual exclusion," in Proc. of 1994 IEEE Int'l Conf. on Parallel and Distrib. Systems, pp. 582–587, 1994.
- [5] J.-R. Jiang, S.-T. Huang and Y.-C. Kuo, "Cohorts structures for fault-tolerant *k* entries to a critical section," *IEEE Trans. Comput.*, 48(2):222-228, 1997.
- [6] J.-R. Jiang, "Distributed h-out of-k mutual exclusion using k-coteries," in Proc. of the 3rd Int'l Conf. on Parallel and Distrib. Computing, Application and Technologies, pp. 218-226, 2002.
- [7] H. Kakugawa, S. Fujita, M. Yamashita and T. Ae, "A distributed *k*-mutual exclusion algorithm using *k*-coterie," *Inform. Process. Lett.*, 49:213-238, 1994.
- [8] M. L. Neilsen and M. Mizuno, "Nondominated k-coteries for multiple mutual exclusion," *Inform. Process. Lett.*, 50(5):247-252, 1994.
- [9] M. L. Neilsen and M. Mizuno, "Erratum to nondominated *k*-coteries for multiple mutual exclusion," *Inform. Process. Lett.*, 60(6):319, 1996.

Biography of Dr. Jehn-Ruey Jiang

Jehn-Ruey Jiang received his Ph. D. degree in Computer Science in 1995 from National Tsing-Hua University, Taiwan. He joined Chung-Yuan Christian University as an Associate Professor in 1995. He is currently an Associate Professor of the Department of Information Management, Hsuan-Chuang University. He is a recipient of the Best Paper Award in Int'l Conf. on Parallel Processing, 2003. His research interests include distributed algorithms, distributed computing, distributed fault-tolerance, mobile computing, protocols for mobile ad hoc networks and wireless sensor networks.