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Abstract
In this paper, we show that a subset of Cohorts coteries proposed in [5] are nondominated
(ND) k-coteries, which are candidates to achieve the highest availability when utilized to solve
the distributed k-mutua exclusion problem and the distributed h-out of-k mutual exclusion

problem.

Index Ter ms— Availability, k-coteries, mutual exclusion, nondomination, quorums
1 Introduction
In[5], Jiang et a. proposed Cohorts structures to aid the construction of aclass of k-coteries

called Cohorts coteries, where a Cohorts structure Coh(k,n)=(C,,...,C,) is a list of sets (each

called a cohort) satisfying:

PL.|Cy=k.
P2.Vi:1<i<n:|C|>max(2k-2, K).
P3. Vi, j: I<i, j<n, i#]: GNCG=2.

In an earlier paper [3], Huang et al. constructed Cohorts coteries with P1 being relaxed to be
|C,[=k. In [8], Neilsen and Mizuno showed that a Cohorts coterie may be dominated if P1 is
relaxed to be |C,|=k. However, it is |eft open whether a Cohorts coterie is dominated or not when
P1 assumes |C,|=k. In this paper, we show that if P1 assumes |C,|=k, then a Cohorts coterie is a

nondominated (ND) k-coterie.



A k-coterie [1, 3] is a family of sets called quorums satisfying the intersection property:
there are at most k pairwise digoint quorums. It can be used to develop the distributed k-mutual
exclusion algorithm [7] and the distributed h-out of-k mutual exclusion algorithm [6]. The basic
idea of such algorithms is ssimple: a node should collect permissions from nodes of a quorum
(resp. h pairwise digoint quorums, 1<h<k) to gain one entry (resp. h entries) to a critical section
(CS). Since a node grants its permission to one node at a time, the intersection property then
guarantees that at most k entries to the CS are admitted simultaneoudy. The algorithms using
k-coteries usually incur low message cost and can tolerate node and/or network link failures,
even when the failures lead to network partitioning. For any specific value of h (1<h<k), ND
k-coteries are candidates to endow the algorithms with the highest availability, which is the
probability that at least h entriesto a critical section are available in an error-prone environment.
Thus, we should always concentrate on ND k-coteries when availability is a significant concern.

There are two definitions of k-coteries. Fujita, Yamashita and Ae first proposed the
definition of k-coteries in [1]; Huang, Jiang and Kuo proposed another definition in [3]
independently. In [9], Neilsen and Mizuno regarded k-coteries as those defined by Huang et al.
and used the term “proper k-coteries’ to refer to those defined by Fujita et a. In [2], Harada and
Yamashita regarded k-coteries as those defined by Fujita et a. and used the term

“k-semicoteries’ to refer to those defined by Huang et al. In this paper, we adopt Harada and



Yamashita's way to differentiate the two k-coterie definitions. To be more precise, a k-coterie
holds the non-intersection property, while a k-semicoterie does not. The non-intersection
property guarantees that for any h (h<k) pairwise digoint quorums, there must exist a quorum Q
such that Q and the h quorums are also pairwise digoint. Thus, when applied to design k-mutual
excluson agorithms (or h-out of-k mutual exclusion agorithms), k-coteries always achieve
higher degree of concurrency than k-semicoteries.
2 Nondomination of Cohorts Coteries

A k-semicoterie € under universal set U is a family of subsets of U. Each member in € is
called a quorum and should observe the following two properties[3]:
Minimality Property: Any quorum is not a super set of another quorum.
I ntersection Property: There are at most k pairwise digoint quorums.

A k-semicoterie isaso ak-coterie [1] if it further satisfies the following non-intersection

property:
Non-intersection Property: For any h (h<k) pairwise digoint quorums Q;,...,Q,, thereexists a
quorum Q,,,; such that Q,,...,Q;,,; are pairwise digoint.

In [5], Cohorts structures are used to help construct k-coteries. Given a Cohorts structure
Coh(k,n)=(C,,...,Cy), a set Q is said to be a quorum under Coh(k, n) if some cohort C; is Q's

primary cohort, and each cohort C;, j > i, is a supporting cohort of Q, where a cohort C is Q's



primary cohort if |QNC|=|C|-(k-1) (i.e., Q contains exactly all except k-1 members of C), and a
cohort C is a supporting cohort of Q if |QNC|=1 (i.e., Q contains exactly one member of C). The
family of quorums under Coh(k, n) is called a Cohorts coterie, which has been shown to be a
k-coteriein [5].

Let € and D be two distinct k-coteries (or k-semicoteries). € is said to dominate 9 if and
only if every quorumin 9 is asuper set of some quorumin € (i.e.,vVQ, 3Q": Qe D, Qe C: Q'cQ).
Obvioudly, the dominating one (€) has more chances than the dominated one (D) to have
available quorums in an error-prone environment, where a quorum is said to be available if all of
its members (nodes) are up. Note that an available quorum implies an available entry to the CS.
Thus, when availability is a significant concern, we should always concentrate on ND k-coteries
(or k-semicoteries) that no other k-coterie (or k-semicoterie) can dominate.

Below, we show that Cohorts coteries are ND k-coteries (with P1 being |C,|=K) on the basis
of Theorem 1, which was proposed in [4] and [8] simultaneously, and was restated in [2].
Theorem 1 ([2, 4, 8]). Let € be a k-semicoterie under universal set U. € isdominated if and only
if there exists a set XcU such that
Al. For any quorum Qe €, Qz X.

A2. For any k parwise digoint quorums Qs,...,Qke G, there exists an i, 1<i<k, such that

QNX£D.



Theorem 2. Let € be afamily of quorums under Coh(k, n)=(Cy,...,Cy), n>1. €isan ND k-coterie.
Proof: Asshown in [5], Cisak-coterig; it is thus a k-semicoterie. Below, we first prove that € is
an ND k-semicoterie. The proof is by induction on the value of n.

Basis: n=1.

Let Ci={uy,...,u} (by P1, |C4=K). Then, the family of all the quorums under Coh(k,1)=(C,)
is{ {ua},...{u¢ }, which isak-singleton coterie and is shown to be ND in [4].

I nduction Hypothesis: Assume the family of quorums under Coh(k, n—1)=(C;,...,Cy-1) iSND.
I nduction Sep: On the basis of the induction hypothesis, we want to prove that € isND.

The proof is done by contradiction. Suppose that the family € of quorums under Coh(k, n) is
dominated, then by Theorem 1, we can find a set X satisfying
Al.For any quorum Q under Coh(k, n), Q & X.

A2.For any k pairwise digoint quorums Q;,...,Qx under Coh(k, n), there exists an i, 1<i<k, such
that QN XzJ.

Let Cy={Vvi,...,vs}, where s=|C,|>max(2k-2, k) (by P2). Then, by definition, a quorum under
Coh(k, n) may take C, as the primary cohort with no supporting cohort, or may take Cp,
1<m<n-1, as the primary cohort with Cp.g,...,C, being supporting cohorts. Thus, a quorum
under Coh(k, n) may be of the form: either (for m-1) a set of s-(k—1) members of C,, or (form-2)

aquorum under Coh(k, n-1) U {vi}, 1<j<s.



Let Q be aform-1 quorum. By Al, we have Q ¢ X. It follows that X should have less than
S—(k-1) members of C,, i.e., C, has at least k members not in X. Without loss of generality, let
Vi,...,Vk be the k members of C, that are not in X.

Let Q7,...,Qc be k pairwise disoint quorums under Coh(k, n-1)=(C,...,Cn-1) (P1, P2 and
P3 ensure the existence of the k quorums). Then, Q:=Q1" {Vvi},...,Qx=Q'u{w} are k pairwise
digoint form-2 quorums under Coh(k, n). By A2, there exists an i, 1<i<k, such that QNX#J.
Since vy,..., are not in X, we have that there exists an i, 1<i<k, such that Q'nX=J. Because
Q7,...,Q¢ contains no member of C, (by P3), we infer that there exists an i, 1<i<k, such that
Q'N(X-C)=. We have
A2'. For any k pairwise digoint quorums Q¢’,...,Q«" under Coh(k, n—1), there exists an i, 1<i<k,
such that Q'N(X-C))=J.

Now, suppose there exists a quorum Q" under Coh(k, n—1) such that Q'c(X-C,). Then, we
have (Qu{vj}) c X for j=k+1,...,s. This contradicts Al because Q'U{Vv;} is a form-2 quorum
under Coh(k, n). Thus, we have
AY’. For any quorum Q" under Coh(k, n-1), Q" & (X-C,).

By A1l” and A2, we have that the family of quorums under Coh(k, n—1) is dominated, which
contradicts the induction hypothesis. So, the family € of quorums under Coh(k, n) must not be

dominated. It is hence ND.



Thus, by the induction principle, € is an ND k-semicoterie for any n, n=1. As noted in [2],
any ND k-semicoterie is an ND k-coterie if it satisfies the non-intersection property. In [5], € has
been shown to be a k-coterie, which satisfies the non-intersection property. Hence, € is an ND
k-coterie. m
3 Conclusion

The k-coterie can be utilized to design distributed k-mutual exclusion algorithms and
distributed h-out of-k mutua exclusion algorithms. The k-coterie-based algorithms usually incur
low message cost and have high availability. They can tolerate node and/or network link failures,
even when the failures lead to network partitioning. In this paper, we have shown that a subset of
Cohorts coteries proposed in [5] are ND k-coteries, which are candidates to endow the

k-coterie-based algorithms with the highest availability.
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