
Multi-Server Dynamic Load Balancing for Networked Virtual Environments

Jehn-Ruey Jiang, Fu-Hsiang Chang

Department of Computer Science and Information Engineering

National Central University, Jhongli City, Taiwan

jrjiang@csie.ncu.edu.tw, majuschang@gmail.com

Abstract

This paper proposes a cell-based dynamic load balancing (LB)

scheme, namely Directed Load Diffusion (DLD), to achieve load

balance among servers in a networked virtual environment (NVE).

The virtual environment is divided into small hexagonal areas

called cells, and a server is responsible for managing a region

consisting of many adjacent cells. Different servers have different

capacities, and the load degree of a server is the utilization of its

capacity. The DLD scheme is to keep server load degrees as even

as possible without compromising performance. We perform

extensive simulation experiments for the DLD scheme and

compared it with two relevant cell-based LB schemes, namely

Ahmed and ProGReGA, to show its advantages.

Keywords: Load Balancing, Networked Virtual Environment,

Hotspot, Massively Multi-player Online Game.

1. INTRODUCTION

In a networked virtual environment (NVE), players or users can

assume roles of avatars to navigate in a computer generated

realistic virtual world or virtual environment (VE) to interact with

one another through networked links. NVEs are widely applied to

a variety of areas like military simulation, education, training and

network games. The massively multi-player online game (MMOG),

such as World of Warcraft (WoW) [7], which is nowadays a

billion-dollar business, is a typical example of NVEs. Thousands

or tens of thousands of NVE users may log on and navigate

throughout the VE concurrently. Numerous servers are provided

to cooperatively manage the users by receiving action messages

from them, simulating the game, and sending game state update

messages to relevant users. However, the dynamic actions of users

may lead to load unbalance among servers. Several load

balancing (LB) schemes were thus proposed to flexibly balance

NVE server loads [1-6].

LB schemes can be classified into four classes: shard-based, zone-

based, partition-based, and cell-based. The shard-based LB

scheme, as adopted by WoW [7], makes multiple VE duplicates

(called shards or realms) run concurrently, with each duplicate

being supported by a separate unified sever cluster. The

overloaded situation of servers can be avoided by explicitly

limiting the maximum number of users in a shard. When the

number of users grows and exceeds a pre-specified threshold, a

new duplicate is produced and supported by a new server cluster.

The shard-based LB schemes have low computation overheads;

however, they have one limitation that avatars in different shards

cannot interact with one another.

The zone-based LB scheme divides the whole VE into fixed-sized

zones or regions, each representing a country or city and managed

by a server. Users have the chance to interact with one another

since there is only a single shard. However, the passage from one

zone to another requires special portals (e.g., special tunnels) or

teleporting. Since users tend to gather around hotspots where

certain events occur and/or NPCs (non-player characters) appear,

the server managing many hotspots may easily become overloaded.

The partition-based LB scheme, such as the kd-tree scheme and

the schemes adopted by QuON [5] and VSO [6], divides the

whole VE into various-sized partitions, each managed by a server.

The VE partitioning is dynamical. For example, the kd-tree

scheme, QuON and VSO uses the kd-tree, Quad-tree, and

Voronoi-diagram structures, respectively, to grow or shrink

partitions. Partition-based LB schemes have the advantage that the

load of servers can be adjusted dynamically and flexibly to

balance the server loads evenly; they have the disadvantage of

high computation overheads, though.

The cell-based LB scheme, such as Ahmed [2] and ProGReGA

[3], divides the whole VE into small cells (or microcells

mentioned in some papers), a group of which is managed by a

server. Typical cell shapes include triangles, squares, and

hexagons. Different heuristic strategies are developed for

assigning servers to manage different groups of cells. The cells

managed by a server may or may not be contiguous and may be of

any numbers; therefore, the load of an overloaded server can

dynamically and flexibly be transferred to arbitrary other servers.

The computation overheads of cell-based LB schemes are mediate.

This paper proposes a cell-based LB scheme, called DLD

(Directed Load Diffusion), which partitions the whole VE into

hexagonal cells to assign a region of adjacent cells to be managed

by a server. Different servers have different capacities, and the

load degree of a server is the utilization of its capacity. The DLD

scheme is to keep server load degrees as even as possible, while

maintaining low load transfer overheads, low inter-server

communications, and low load deviation ratios. We perform

extensive simulation experiments for the DLD scheme and

compare it with two relevant cell-based LB schemes, namely

Ahmed [2] and ProGReGA [3], to show its advantages.

The rest of this paper is organized as follows. In Section 2, we

introduce some related work. Section 3 elaborates the proposed

scheme, and Section 4 presents its simulation results and

comparisons. Finally, some concluding remarks are drawn in

Section 5.

2. RELATED WORK

In this section, we introduce two cell-based LB schemes, namely

Ahmed [2] and ProGReGA [3], which are most related to the

proposed scheme. Below, we describe the schemes one by one.

The Ahmed scheme [2] measures the load of a server by the sum

of message rates of all players the server must handle. A server

whose sum of message rates exceeds a pre-specified threshold is

regarded as overloaded. To balance the load, the Ahmed scheme

finds all clusters of adjacent cells managed by the overloaded

server. The smallest cluster is selected and, from this cluster, the

cell which has the least interaction with other cells of the same

server is first selected to be transferred to the least loaded server.

The selection process continues until the server is no longer

overloaded or there is no server that can take over the transferred

loads.

The ProGReGA (proportional greedy region growing algorithm)

scheme [3] assumes that the whole VE is divided into regions,

each of which consists of several cells and is managed by a server.

Given a list of the regions to be rebalanced, all servers managing

these regions share proportionally the loads of all regions

according to the server power. Initially, the heaviest-loaded cell is

selected to be the first cell of a region to be managed by the most

powerful server. Afterwards, a neighbor cell adjacent to the

heaviest-loaded cell which has the largest inter-cell interaction

overheads is added into the region. The cell-addition continues

until the most powerful server has shared the proportional loads.

Then, the process continues to form the second region to be

managed by the second powerful server by repeatedly executing

the cell-addition process. Iteratively, the third region, the fourth

region, .., are formed until every cell is added into one region to

be managed by one server. One undesirable effect of the

ProGReGA scheme is that after rebalancing, one or more regions

may completely change the servers originally managing them,

causing high load transfer overheads.

2

1

A
B

C

Figure 1: The hexagonal partitioning of a virtual environment.

3. PROPOSED SCHEME

3.1 Assumptions and Definitions

The whole SE is assumed to be divided into hexagonal cells, and

a region containing some cells, not necessary adjacent, is managed

by a server. An avatar (i.e., player) navigating in the VE performs

some actions and sends associated action messages to the region

sever. The server then updates the VE state according to the

actions and sends update messages to every avatar of which AOI

(Area of Interest) includes the updates, where an avatar’s AOI

stands for the circular area of a fixed radius or range centered at

the avatar. For example, black dots in Figure 1 represent avatars

and dashed circles represent their AOIs. Two regions are adjacent

if they have adjacent cells; two servers are adjacent if they manage

adjacent regions. For example, regions A and B in Figure 1 are

adjacent, but regions A and C are not adjacent. Two servers need

to exchange messages if one server manages some boundary cells

with avatars whose actions cause the updates included in the AOI

of avatars in the cells managed by the other server. For example,

in Figure 1, the server managing region A and the server

managing region B need to exchange messages since they have

avatars that are managed by different servers and influence each

other.

It is assumed that the overall load of a sever comes from three

aspects: (a) the Action Load (AL), the load to process action

messages sent by avatars, (b) the Computation Load (CL), the

load to compute the updates caused by action messages, and (c)

the Update Load (UL), the load to send update messages to

relevant avatars. A server has a pre-specified Capacity (CAP) to

take loads. In this paper, we define the Server Load (SL) to be the

load of a server and the Load Degree (LD) to be the utilization of

the server capacity, i.e., the ratio of the server load to the server

capacity. Specifically, LD = SL/CAP.

To judge the load condition of a server, we have three thresholds

for the load degree, as explained one by one in the following.

(a) Overload Threshold (OLT): A server is overloaded if its load

degree exceeds OLT. An overloaded server can be a giver

server to transfer loads to other servers.

(b) Safety-Load Threshold (SLT): A server is normally loaded if

its load degree is between SLT and OLT. By SLT, we can

derive two useful server attributes, the Safety Capacity (SC)

and the Giving Load (GL), according to the following

calculations: SC=(SLT-LD)CAP and GL=(LD-SLT)CAP.

Note that when LD is larger than SLT, SC is defined to be 0.

The SC of a server indicates the maximum extras loads that

can be transferred from other servers into the server.

(c) Underload Threshold (ULT): A server is lightly loaded if its

load degree is between ULT and SLT; it is underloaded if its

load degree is beneath ULT. A normally loaded or a lightly

loaded server can be a taker server to take over loads from

other servers. The ULT threshold is very useful for

performing LB at the presence of hotspots, which will be

described later.

Note that the server load degree and the above-mentioned

threshold values are between 0 (no load) and 1 (full load) and

OLT > SLT > ULT. For a specific server, we below define the

Local Load Degree (LLD), to estimate the server load conditions

for its neighborhood of itself, indexed by 0, and its adjacent n

neighbor servers, indexed by 1,…, n.








n

i

i

n

i

i

CAP

SL

LLD

0

0

3.2 The Proposed Algorithm

In this subsection, we describe the proposed Directed Load

Diffusion (DLD) scheme, which is a greedy load balancing

algorithm trying to keep every server normally loaded. A server

can be a taker server to take over other servers’ loads if it is

lightly loaded or underloaded (i.e., its load degree is beneath SLT).

A server X checks its load degree every Check Load Period (CLP).

If X is overloaded, it then performs General Load Balancing

(GLB), described below. X first calculates LLD to evaluate the

load conditions for its neighborhood of itself and all its neighbor

servers. If the calculated LLD is smaller than SLT, then X’s

neighborhood is assumed to be lightly loaded (or underloaded)

and X can transfer its load to the neighbor server Y with the lowest

server load (i.e., SLY). The load transferred from X to Y is

Min(GLX, SCY). Otherwise, X’s neighborhood is assumed to be

heavily loaded. It is probably that every neighbor server of X has a

load degree exceeding or approximating SLT. In that case, X

transfers its load to the neighbor server Z with the largest safety

capacity (i.e., SCZ). The load transferred from X to Z is Min(GLX,

SCZ). Note that X transfers its load to only one server for GLB

within a CLP; if X is still overloaded after the load transfer, X will

transfer its load within next CLP.

It is likely that all servers in the neighborhood of a hotspot have

load degrees exceeding SLT so that an overloaded server X may

not transfer its load to any other server for GLB. In that case, X

performs Forced Load Balancing (FLB) by sending an FLB

Request (FLB-Req) message to all neighbor servers. When server

Y receives the FLB-Req message sent by X, Y is forced to transfer

its load to its neighbors so that Y is lightly loaded to take over X’s

load. To prevent Y from transferring its load to a server that is X’s

and Y’s common neighbor, the FLB-Req message sent by X

contains a Forbidden Transfer List (FT-List) including X and all

neighbors of X. Y transfers its load to its every neighbor server not

in FT-List according to the “high safety capacity first” order. The

load transferred from Y to Z caused by X’s FLB-Req message is

Min((LDYULT)CAPY, SCZ) so that Y becomes lightly-loaded

and Z becomes normally-loaded after the load transfer. If Y cannot

make itself lightly-loaded, Y forwards X’s FLB-Req message to

neighbors not in the FT-List to further make them underloaded.

However, if all Y’s neighbors are in the FT-List, Y just stops FLB.

Note that Y’s neighbors are added into the FT-List before Y

forwards X’s FLB-Req message.

We have above described when and how much to transfer load

between servers. Below, we describe how to select cells for load

transfer. In practice, a server transfers its load by reducing the

number of cells managed by it. For better performance, the server

tries to keep all the cells adjacent but not to be of the shape of

narrow strips, which may cause more inter-server communications.

We use the Cell Weight (CW) to help cell selection. The CW of a

cell c is defined to be the ratio of the number of c’s adjacent cells

managed by different servers to the total number of c’s adjacent

cells. To take Figure 1 for example, cell 1 managed by server B

has the CW of 2/3, while cell 2, 1/6. The larger the CW of a cell is,

the higher the priority of the cell to be selected as a cell candidate

(CC) to be transferred to another server.

There are two options of the DLD scheme: DLD with Load

Constrains (DLD-wLC) and DLD without Load Constrains

(DLD-woLC). DLD-wLC has the limitation that the load involved

in a CC should not exceed the load to be transferred in GLB or

FLB, while DLD-woLC does not have the limitation. The former

(resp., the latter) can (resp., cannot) prevent the load of the taker

server from exceeding SLT too much but makes LB more

inflexible (resp., flexible).

4. SIMULATION

4.1 Simulation Settings

We limit a server to manage at least one cell but not limit the

maximum number of cells that a server can manage. We assume

there are 8 servers and 800 avatars. Furthermore, there may be 3

hotspots or no hotspot in the VE. OLT, SLT, and ULT are set as

0.9, 0.8, and 0.6, respectively. We set the server capacity to be

1600 units and the load caused by avatar actions to be arbitrarily 3,

5, or 10 units. The AOI radius and the cell side length are both set

to 4 units. The avatar speed is assumed to be 0 to 2 units per

second, and the avatar follows the random waypoint mobility

model with 50% of choosing the direction toward the closest

hotspot. The CLP is set as 32 seconds. Table 1 shows all the

simulation settings.

Table 1: Simulation Settings

The number of cells 224 (1416)

The number of servers 8

The number of avatars 800

Server capacity 1600

Action load 1

Update load 2

Computation load 3, 5, or 10 (random)

AOI radius 4 units

Cell side length 4 units

Avatar Speed 0~2 units (random)

Check load period 32 sec

Simulation duration 30 min

4.2 Comparisons

We simulate the proposed DLD scheme and compare its two

options (i.e., DLD-wLC and DLD-woLC) with two related

schemes, namely the Ahmed [2] and ProGReGA [3]. The

comparisons are shown below in terms of the following overheads:

avatar migration, inter-server communication, and load deviation

ratio, each in a separate subsubsection.

4.2.1 Avatar Migration

Avatar migration has two portions: walking migration and

still migration. When an avatar navigates in the VE and walks

from one cell managed by a server to another cell managed by

another region, the walking migration occurs and the avatar’s data

should be transferred from the former server to the latter. When

servers perform LB to transfer loads of some cells from one server

to another server, the still migration occurs and all data of the

avatars in the cells should be transferred from the former server to

the latter. By Figure 2, we can observe that both DLD-wLC and

DLD-woLC outperforms the other two schemes in terms of

walking migration, still migration, and total avatar migration

whether there are hotspots or not.

Figure 2: Avatar Migration Comparisons of LB Schemes with

hotspots (up) or without hotspots (down).

4.2.2 Inter-server Communication

As we have mentioned, two servers need to exchange messages if

one server manages some boundary cells with avatars whose

actions cause the updates included in the AOI of avatars in the

cells managed by the other server. Such a case causes the

overheads of inter-server communication. By Figure 3, we can

observe that both DLD-wLC and DLD-woLC outperforms the

other two schemes in terms of inter-server communication

whether there are hotspots or not.

Figure 3: Inter-Server Communication Comparisons of LB

Schemes with hotspots (up) or without hotspots (down).

4.2.3 Load Deviation Ratio

The Load Deviation Ratio (LDR) of a server X is defined to be the

ratio of the difference between X’s load and the average load to

the average load. For example, if the average load is 0.8 and X’s

load is 0.85, then X’s LDR is |0.85-0.8|/0.8=0.0625. The LDR of a

scheme is the average LDR of all servers. By Figure 4, we can

observe that DLD (precisely DLD-woLC) outperforms the Ahmed

and ProGReGA schemes in terms of LDR.

5. CONCLUSION

This paper proposes DLD, a cell-based dynamic load balancing

scheme to achieve load balance among multiple NVE servers.

DLD tries to keep servers normally-loaded and makes an

overloaded server transfer its load to lightly-loaded or

underloaded servers. Extensive simulation experiments are

performed to compare the DLD scheme with the Ahmed and

ProGReGA schemes. The proposed scheme outperforms others in

terms of overheads of avatar migration, inter-server

communication and load deviation ratio.

Figure 4: Load Deviation Ratio Comparisons of LB Schemes

with hotspots (up) or without hotspots (down).

6. REFERENCES

[1] S. A. Abdulazeez, A. El Rhalibi, M. Merabti and D. Al-

Jumeily, “Multi-Server Dynamic Load Balancing for

Networked Virtual Environments,” in Proc. of The 15th Post

Graduate Network Symposium (PGNet), 2014.

[2] D. T. Ahmed, and S. Shirmohammadi, “A Microcell

Oriented Load Balancing Model for Collaborative Virtual

Environments,” in Proc. of 2008 IEEE Conference on

Virtual Environments, Human-Computer Interfaces and

Measurement Systems, pp. 86 – 91, 2008.

[3] C. E. Bezerra and C. F. R. Geyer, “A load balancing scheme

for massively multiplayer online games,” Journal of

Multimedia Tools and Applications, Vol. 45, Issue 1-3, pp.

263-289, 2009.

[4] C. E. Bezerra, J. L. D. Comba, and C. F. R. Geyer, “A fine

granularity load balancing technique for MMOG servers

using a kd-tree to partition the space,” in Proc. of 2009 IEEE

VIII Brazilian Symposium on Games and Digital

Entertainment (SBGAMES), 2009.

[5] H. Backhaus and S. Krause, “QuON: a quad-tree-based

overlay protocol for distributed virtual worlds,” Int. Journal

of Advanced Media and Communication, vol. 4, no. 2, p.

126-139, 2010.

[6] S.-Y. Hu and K.-T. Chen, “VSO: Self-Organizing Spatial

Publish Subscribe,” 2011 IEEE 5th Int. Conf. on Self-

Adaptive and Self-Organizing Systems, pp. 21–30, Oct. 2011.

[7] World of Warcraft, http://us.battle.net/wow/en.

