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Abstract 

This paper proposes a cell-based dynamic load balancing (LB) 

scheme, namely Directed Load Diffusion (DLD), to achieve load 

balance among servers in a networked virtual environment (NVE). 

The virtual environment is divided into small hexagonal areas 

called cells, and a server is responsible for managing a region 

consisting of many adjacent cells. Different servers have different 

capacities, and the load degree of a server is the utilization of its 

capacity. The DLD scheme is to keep server load degrees as even 

as possible without compromising performance. We perform 

extensive simulation experiments for the DLD scheme and 

compared it with two relevant cell-based LB schemes, namely 

Ahmed and ProGReGA, to show its advantages. 
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1. INTRODUCTION 

In a networked virtual environment (NVE), players or users can 

assume roles of avatars to navigate in a computer generated 

realistic virtual world or virtual environment (VE) to interact with 

one another through networked links. NVEs are widely applied to 

a variety of areas like military simulation, education, training and 

network games. The massively multi-player online game (MMOG), 

such as World of Warcraft (WoW) [7], which is nowadays a 

billion-dollar business, is a typical example of NVEs. Thousands 

or tens of thousands of NVE users may log on and navigate 

throughout the VE concurrently. Numerous servers are provided 

to cooperatively manage the users by receiving action messages 

from them, simulating the game, and sending game state update 

messages to relevant users. However, the dynamic actions of users 

may lead to load unbalance among servers. Several load 

balancing (LB) schemes were thus proposed to flexibly balance 

NVE server loads [1-6]. 

LB schemes can be classified into four classes: shard-based, zone-

based, partition-based, and cell-based. The shard-based LB 

scheme, as adopted by WoW [7], makes multiple VE duplicates 

(called shards or realms) run concurrently, with each duplicate 

being supported by a separate unified sever cluster. The 

overloaded situation of servers can be avoided by explicitly 

limiting the maximum number of users in a shard. When the 

number of users grows and exceeds a pre-specified threshold, a 

new duplicate is produced and supported by a new server cluster. 

The shard-based LB schemes have low computation overheads; 

however, they have one limitation that avatars in different shards 

cannot interact with one another. 

The zone-based LB scheme divides the whole VE into fixed-sized 

zones or regions, each representing a country or city and managed 

by a server. Users have the chance to interact with one another 

since there is only a single shard. However, the passage from one 

zone to another requires special portals (e.g., special tunnels) or 

teleporting. Since users tend to gather around hotspots where 

certain events occur and/or NPCs (non-player characters) appear, 

the server managing many hotspots may easily become overloaded. 

The partition-based LB scheme, such as the kd-tree scheme and 

the schemes adopted by QuON [5] and VSO [6], divides the 

whole VE into various-sized partitions, each managed by a server. 

The VE partitioning is dynamical. For example, the kd-tree 

scheme, QuON and VSO uses the kd-tree, Quad-tree, and 

Voronoi-diagram structures, respectively, to grow or shrink 

partitions. Partition-based LB schemes have the advantage that the 

load of servers can be adjusted dynamically and flexibly to 

balance the server loads evenly; they have the disadvantage of 

high computation overheads, though. 

The cell-based LB scheme, such as Ahmed [2] and ProGReGA 

[3], divides the whole VE into small cells (or microcells 

mentioned in some papers), a group of which is managed by a 

server. Typical cell shapes include triangles, squares, and 

hexagons. Different heuristic strategies are developed for 

assigning servers to manage different groups of cells. The cells 

managed by a server may or may not be contiguous and may be of 

any numbers; therefore, the load of an overloaded server can 

dynamically and flexibly be transferred to arbitrary other servers. 

The computation overheads of cell-based LB schemes are mediate. 

This paper proposes a cell-based LB scheme, called DLD 

(Directed Load Diffusion), which partitions the whole VE into 

hexagonal cells to assign a region of adjacent cells to be managed 

by a server. Different servers have different capacities, and the 

load degree of a server is the utilization of its capacity. The DLD 

scheme is to keep server load degrees as even as possible, while 

maintaining low load transfer overheads, low inter-server 

communications, and low load deviation ratios. We perform 

extensive simulation experiments for the DLD scheme and 

compare it with two relevant cell-based LB schemes, namely 

Ahmed [2] and ProGReGA [3], to show its advantages. 

The rest of this paper is organized as follows. In Section 2, we 

introduce some related work. Section 3 elaborates the proposed 

scheme, and Section 4 presents its simulation results and 

comparisons. Finally, some concluding remarks are drawn in 

Section 5. 

2. RELATED WORK 

In this section, we introduce two cell-based LB schemes, namely 

Ahmed [2] and ProGReGA [3], which are most related to the 

proposed scheme. Below, we describe the schemes one by one. 

The Ahmed scheme [2] measures the load of a server by the sum 

of message rates of all players the server must handle. A server 

whose sum of message rates exceeds a pre-specified threshold is 

regarded as overloaded. To balance the load, the Ahmed scheme 



finds all clusters of adjacent cells managed by the overloaded 

server. The smallest cluster is selected and, from this cluster, the 

cell which has the least interaction with other cells of the same 

server is first selected to be transferred to the least loaded server. 

The selection process continues until the server is no longer 

overloaded or there is no server that can take over the transferred 

loads. 

The ProGReGA (proportional greedy region growing algorithm) 

scheme [3] assumes that the whole VE is divided into regions, 

each of which consists of several cells and is managed by a server. 

Given a list of the regions to be rebalanced, all servers managing 

these regions share proportionally the loads of all regions 

according to the server power. Initially, the heaviest-loaded cell is 

selected to be the first cell of a region to be managed by the most 

powerful server. Afterwards, a neighbor cell adjacent to the 

heaviest-loaded cell which has the largest inter-cell interaction 

overheads is added into the region. The cell-addition continues 

until the most powerful server has shared the proportional loads. 

Then, the process continues to form the second region to be 

managed by the second powerful server by repeatedly executing 

the cell-addition process. Iteratively, the third region, the fourth 

region, .., are formed until every cell is added into one region to 

be managed by one server. One undesirable effect of the 

ProGReGA scheme is that after rebalancing, one or more regions 

may completely change the servers originally managing them, 

causing high load transfer overheads. 
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Figure 1: The hexagonal partitioning of a virtual environment. 

3. PROPOSED SCHEME 

3.1 Assumptions and Definitions 

The whole SE is assumed to be divided into hexagonal cells, and 

a region containing some cells, not necessary adjacent, is managed 

by a server. An avatar (i.e., player) navigating in the VE performs 

some actions and sends associated action messages to the region 

sever. The server then updates the VE state according to the 

actions and sends update messages to every avatar of which AOI 

(Area of Interest) includes the updates, where an avatar’s AOI 

stands for the circular area of a fixed radius or range centered at 

the avatar. For example, black dots in Figure 1 represent avatars 

and dashed circles represent their AOIs. Two regions are adjacent 

if they have adjacent cells; two servers are adjacent if they manage 

adjacent regions. For example, regions A and B in Figure 1 are 

adjacent, but regions A and C are not adjacent. Two servers need 

to exchange messages if one server manages some boundary cells 

with avatars whose actions cause the updates included in the AOI 

of avatars in the cells managed by the other server. For example, 

in Figure 1, the server managing region A and the server 

managing region B need to exchange messages since they have 

avatars that are managed by different servers and influence each 

other. 

It is assumed that the overall load of a sever comes from three 

aspects: (a) the Action Load (AL), the load to process action 

messages sent by avatars, (b) the Computation Load (CL), the 

load to compute the updates caused by action messages, and (c) 

the Update Load (UL), the load to send update messages to 

relevant avatars. A server has a pre-specified Capacity (CAP) to 

take loads. In this paper, we define the Server Load (SL) to be the 

load of a server and the Load Degree (LD) to be the utilization of 

the server capacity, i.e., the ratio of the server load to the server 

capacity. Specifically, LD = SL/CAP. 

To judge the load condition of a server, we have three thresholds 

for the load degree, as explained one by one in the following. 

(a) Overload Threshold (OLT): A server is overloaded if its load 

degree exceeds OLT. An overloaded server can be a giver 

server to transfer loads to other servers. 

(b) Safety-Load Threshold (SLT): A server is normally loaded if 

its load degree is between SLT and OLT. By SLT, we can 

derive two useful server attributes, the Safety Capacity (SC) 

and the Giving Load (GL), according to the following 

calculations: SC=(SLT-LD)CAP and GL=(LD-SLT)CAP. 

Note that when LD is larger than SLT, SC is defined to be 0. 

The SC of a server indicates the maximum extras loads that 

can be transferred from other servers into the server. 

(c) Underload Threshold (ULT): A server is lightly loaded if its 

load degree is between ULT and SLT; it is underloaded if its 

load degree is beneath ULT. A normally loaded or a lightly 

loaded server can be a taker server to take over loads from 

other servers. The ULT threshold is very useful for 

performing LB at the presence of hotspots, which will be 

described later. 

Note that the server load degree and the above-mentioned 

threshold values are between 0 (no load) and 1 (full load) and 

OLT > SLT > ULT. For a specific server, we below define the 

Local Load Degree (LLD), to estimate the server load conditions 

for its neighborhood of itself, indexed by 0, and its adjacent n 

neighbor servers, indexed by 1,…, n. 
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3.2 The Proposed Algorithm 

In this subsection, we describe the proposed Directed Load 

Diffusion (DLD) scheme, which is a greedy load balancing 

algorithm trying to keep every server normally loaded. A server 

can be a taker server to take over other servers’ loads if it is 

lightly loaded or underloaded (i.e., its load degree is beneath SLT). 

A server X checks its load degree every Check Load Period (CLP). 

If X is overloaded, it then performs General Load Balancing 

(GLB), described below. X first calculates LLD to evaluate the 

load conditions for its neighborhood of itself and all its neighbor 

servers. If the calculated LLD is smaller than SLT, then X’s 

neighborhood is assumed to be lightly loaded (or underloaded) 

and X can transfer its load to the neighbor server Y with the lowest 

server load (i.e., SLY). The load transferred from X to Y is 

Min(GLX, SCY). Otherwise, X’s neighborhood is assumed to be 

heavily loaded. It is probably that every neighbor server of X has a 

load degree exceeding or approximating SLT. In that case, X 

transfers its load to the neighbor server Z with the largest safety 



capacity (i.e., SCZ). The load transferred from X to Z is Min(GLX, 

SCZ). Note that X transfers its load to only one server for GLB 

within a CLP; if X is still overloaded after the load transfer, X will 

transfer its load within next CLP. 

It is likely that all servers in the neighborhood of a hotspot have 

load degrees exceeding SLT so that an overloaded server X may 

not transfer its load to any other server for GLB. In that case, X 

performs Forced Load Balancing (FLB) by sending an FLB 

Request (FLB-Req) message to all neighbor servers. When server 

Y receives the FLB-Req message sent by X, Y is forced to transfer 

its load to its neighbors so that Y is lightly loaded to take over X’s 

load. To prevent Y from transferring its load to a server that is X’s 

and Y’s common neighbor, the FLB-Req message sent by X 

contains a Forbidden Transfer List (FT-List) including X and all 

neighbors of X. Y transfers its load to its every neighbor server not 

in FT-List according to the “high safety capacity first” order. The 

load transferred from Y to Z caused by X’s FLB-Req message is 

Min((LDYULT)CAPY, SCZ) so that Y becomes lightly-loaded 

and Z becomes normally-loaded after the load transfer. If Y cannot 

make itself lightly-loaded, Y forwards X’s FLB-Req message to 

neighbors not in the FT-List to further make them underloaded. 

However, if all Y’s neighbors are in the FT-List, Y just stops FLB. 

Note that Y’s neighbors are added into the FT-List before Y 

forwards X’s FLB-Req message.  

We have above described when and how much to transfer load 

between servers. Below, we describe how to select cells for load 

transfer. In practice, a server transfers its load by reducing the 

number of cells managed by it. For better performance, the server 

tries to keep all the cells adjacent but not to be of the shape of 

narrow strips, which may cause more inter-server communications. 

We use the Cell Weight (CW) to help cell selection. The CW of a 

cell c is defined to be the ratio of the number of c’s adjacent cells 

managed by different servers to the total number of c’s adjacent 

cells. To take Figure 1 for example, cell 1 managed by server B 

has the CW of 2/3, while cell 2, 1/6. The larger the CW of a cell is, 

the higher the priority of the cell to be selected as a cell candidate 

(CC) to be transferred to another server. 

There are two options of the DLD scheme: DLD with Load 

Constrains (DLD-wLC) and DLD without Load Constrains 

(DLD-woLC). DLD-wLC has the limitation that the load involved 

in a CC should not exceed the load to be transferred in GLB or 

FLB, while DLD-woLC does not have the limitation. The former 

(resp., the latter) can (resp., cannot) prevent the load of the taker 

server from exceeding SLT too much but makes LB more 

inflexible (resp., flexible). 

4. SIMULATION 

4.1 Simulation Settings 

We limit a server to manage at least one cell but not limit the 

maximum number of cells that a server can manage. We assume 

there are 8 servers and 800 avatars. Furthermore, there may be 3 

hotspots or no hotspot in the VE. OLT, SLT, and ULT are set as 

0.9, 0.8, and 0.6, respectively. We set the server capacity to be 

1600 units and the load caused by avatar actions to be arbitrarily 3, 

5, or 10 units. The AOI radius and the cell side length are both set 

to 4 units. The avatar speed is assumed to be 0 to 2 units per 

second, and the avatar follows the random waypoint mobility 

model with 50% of choosing the direction toward the closest 

hotspot. The CLP is set as 32 seconds. Table 1 shows all the 

simulation settings. 

Table 1: Simulation Settings 

The number of cells  224 (1416) 

The number of servers  8 

The number of avatars  800 

Server capacity 1600 

Action load  1 

Update load  2 

Computation load 3, 5, or 10 (random)  

AOI radius 4 units 

Cell side length 4 units 

Avatar Speed 0~2 units (random) 

Check load period 32 sec 

Simulation duration  30 min 

4.2 Comparisons 

We simulate the proposed DLD scheme and compare its two 

options (i.e., DLD-wLC and DLD-woLC) with two related 

schemes, namely the Ahmed [2] and ProGReGA [3]. The 

comparisons are shown below in terms of the following overheads: 

avatar migration, inter-server communication, and load deviation 

ratio, each in a separate subsubsection. 

4.2.1 Avatar Migration 

Avatar migration has two portions: walking migration and 

still migration. When an avatar navigates in the VE and walks 

from one cell managed by a server to another cell managed by 

another region, the walking migration occurs and the avatar’s data 

should be transferred from the former server to the latter. When 

servers perform LB to transfer loads of some cells from one server 

to another server, the still migration occurs and all data of the 

avatars in the cells should be transferred from the former server to 

the latter. By Figure 2, we can observe that both DLD-wLC and 

DLD-woLC outperforms the other two schemes in terms of 

walking migration, still migration, and total avatar migration 

whether there are hotspots or not. 

 

Figure 2: Avatar Migration Comparisons of LB Schemes with 

hotspots (up) or without hotspots (down). 



4.2.2 Inter-server Communication 

As we have mentioned, two servers need to exchange messages if 

one server manages some boundary cells with avatars whose 

actions cause the updates included in the AOI of avatars in the 

cells managed by the other server. Such a case causes the 

overheads of inter-server communication. By Figure 3, we can 

observe that both DLD-wLC and DLD-woLC outperforms the 

other two schemes in terms of inter-server communication 

whether there are hotspots or not. 

 

 

Figure 3: Inter-Server Communication Comparisons of LB 

Schemes with hotspots (up) or without hotspots (down). 

4.2.3 Load Deviation Ratio 

The Load Deviation Ratio (LDR) of a server X is defined to be the 

ratio of the difference between X’s load and the average load to 

the average load. For example, if the average load is 0.8 and X’s 

load is 0.85, then X’s LDR is |0.85-0.8|/0.8=0.0625. The LDR of a 

scheme is the average LDR of all servers. By Figure 4, we can 

observe that DLD (precisely DLD-woLC) outperforms the Ahmed 

and ProGReGA schemes in terms of LDR. 

5. CONCLUSION 

This paper proposes DLD, a cell-based dynamic load balancing 

scheme to achieve load balance among multiple NVE servers. 

DLD tries to keep servers normally-loaded and makes an 

overloaded server transfer its load to lightly-loaded or 

underloaded servers. Extensive simulation experiments are 

performed to compare the DLD scheme with the Ahmed and 

ProGReGA schemes. The proposed scheme outperforms others in 

terms of overheads of avatar migration, inter-server 

communication and load deviation ratio. 

 

 

 

Figure 4: Load Deviation Ratio Comparisons of LB Schemes 

with hotspots (up) or without hotspots (down). 
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