

Quorum Structures for

Fault-Tolerant Distributed Mutual Exclusion

Student: Jehn-Ruey Jiang

Advisor: Professor Shing-Tsaan Huang

July, 1995

Department of Computer Science

National Tsing Hua University

HsinChu, Taiwan, 30043

Republic of China

Submitted in Partial Fulfillment of the Requirements

 for the Degree of Doctor of Philosophy

 in Computer Science

Abstract

Quorum-based algorithms are an important class of algorithms to achieve

distributed mutual exclusion. They are resilient to network partitioning caused by site

and/or network link failures and usually evoke low communication cost. The basic

idea of them is simple—a site should collect permissions (votes) from all sites of a

quorum to enter the critical section. If we can assure that any pair of quorums have a

non-empty intersection and each site gives its permission to only one site at a time,

mutual exclusion is then guaranteed.

The collection of quorums used by a quorum-based algorithm is called a quorum

structure. According to different mutual exclusion scenarios, several types of quorum

structures have been proposed: coterie, wr-coterie and k-coteries, which are related to

distributed mutual exclusion, replicated data consistency and distributed k-mutual

exclusion, respectively.

In this dissertation, we propose novel methods for constructing coteries, wr-

coteries and k-coteries that are nondominated and/or of constant expected quorum

size. The proposed methods can easily be extended to solve the problems of mutual

exclusion, replicated data consistency or k-mutual exclusion in a distributed system.

Nondominated quorum structures are favorable because they are candidates to

achieve the optimal availability, the probability that a quorum can be form in an

error-prone environment. On the other hand, quorum structures of constant expected

quorum size are preferable because when the proposed methods are applied to solve

the problems mentioned, the message cost is directly proportional to the quorum size.

Keywords: Distributed systems, fault-tolerance, k-mutual exclusion, mutual

exclusion, replica control, quorum structures.

Contents

Chapter 1 Introduction to quorum structures ..1

1.1 Coteries ..3

1.2 WR-Coteries ...4

1.3 K-Coteries ..5

1.4 Nondominance of quorum structures ..6

1.5 Dissertation organization ...7

Chapter 2 Constructing ND coteries of constant expected quorum size9

2.1 Introduction ...9

2.2 Preliminaries of coteries ..11

2.3 Construction of quorums ...13

2.4 Correctness ..14

2.5 Analysis and comparison ...17

 2.5.1 Availability...17

 2.5.2 Quorum size ...19

 2.5.3 Comparison ..21

2.6 Summary ..23

Chapter 3 Constructing ND wr-coteries of constant expected quorum size29

3.1 Introduction ...29

3.2 Preliminaries of wr-coteries ..31

3.3 Construction of quorums ...33

3.4 Correctness ..35

3.5 Analysis and comparison ...39

 3.5.1 Availability...39

 3.5.2 Quorum size ...42

 3.5.3 Comparison ..44

3.6 Summary ..48

Chapter 4 Constructing k-coteries of constant expected quorum size55

4.1 Introduction ...55

4.2 Preliminaries of k-coteries ...56

4.3 Construction of quorums ...58

4.4 Correctness ..59

4.5 Analysis and comparison ...62

 4.5.1 Availability...63

 4.5.2 Quorum size ...64

 4.5.3 Comparison ..67

4.6 Summary ..68

Chapter 5 Constructing ND k-coteries from known ND k-coteries71

5.1 Introduction ...71

5.2 Related work ..73

5.3 ND k-coteries ...78

5.4 The join and union operations ...85

 5.4.1 Coterie union operation ..86

 5.4.2 Coterie join operation ..89

5.5 Concluding remarks...95

Chapter 6 Conclusion and future work ...97

6.1 Conclusion ...97

6.2 Future work ...99

Bibliography ..101

List of Tables

Table 2.1 Bounds on quorum sizes for various coteries ...25

Table 3.1 Bounds on quorum sizes for various wr-coteries49

Table 4.1 Bounds on quorum sizes for the cohort coterie and

the k-majority coterie ..69

List of Figures

Figure 2.1 A function that can generate minimal quorums under Coh(l) 25

Figure 2.2 The availability of quorums under various Cohorts structures 26

Figure 2.3 The availability comparison of various coteries for the 15-site system ... 27

Figure 2.4 The availability comparison of various coteries for the 31-site system ... 28

Figure 3.1 Functions that can generate read and write quorums under Coh(l) 50

Figure 3.2 The availability of read quorums under various Cohorts structures 51

Figure 3.3 The availability of write quorums under various Cohorts structures 52

Figure 3.4 The availability comparison of various wr-coteries

for the 15-replica system .. 53

Figure 3.5 The availability comparison of various wr-coteries

for the 31-replica system .. 54

Figure 4.1 A function that can generate quorums under Coh(k,l) 69

Figure 4.2 The (k,h)-availability comparision of the cohort coterie (CC) and

the k-majority coterie (k-MC) for the 53-site system 70

1

Chapter 1

Introduction to quorum structures

A distributed system consists of autonomous, interconnected computers (called

sites) that can communicate with each other by exchanging messages. The problem

of mutual exclusion is essential in the design of distributed systems. It is concerned

with how to control sites to have mutually exclusive access of a designated section of

code called critical section. Quorum-based algorithms are an important class of

algorithms for solving distributed mutual exclusion. They are resilient to network

partitioning [DGS85] caused by site and/or network link failures and usually evoke

low communication cost. The basic idea of them is simple—a site should collect

permissions (votes) from all sites of a quorum to enter the critical section. If we can

assure that any pair of quorums have a non-empty intersection and each site gives its

permission to only one site at a time, mutual exclusion is then guaranteed.

The collection of quorums used by a quorum-based algorithm is called a quorum

structure. According to different mutual exclusion scenarios, several types of quorum

structures have been proposed: coterie [GB85], wr-coterie [IK93], and k-coteries

[FYA91], which correspond to the problems of mutual exclusion, replicated data

2

consistency and k-mutual exclusion in distributed systems, respectively. There are

many researches concentrating on quorum structures: some for developing new

methods to construct quorum structures with good characteristics (say, high

availability or small quorum size) [AE90, AE91, AE92a, AE92b, AJ92, CAA92,

Chu94, Gif79, HJK93, Jia95, JH94, KC91, Kum91, Mae85, Nei92, Nei93, RST92,

SW93a, Tho79, WB92, Wu93a, Wu93b], some for developing new measures for

quorum structures [AA89, BG86, BG87, CY94a, CY94b, KFYA93, KRS92, KRS93,

Nei93, RJT93], some for transforming quorum structures into new ones [GB85,

JH94, NM92, SW93b], and still some for developing theories about a special class of

quorum structures—nondominated (ND) quorum structures [GB85, IK93].

In this dissertation, we propose novel methods for constructing coteries, wr-

coteries and k-coterie that are nondominated and/or of constant expected quorum size.

The proposed methods can easily be extended to solve the problems of mutual

exclusion, replicated data consistency and k-mutual exclusion in distributed systems,

respectively. Note that nondominated quorum structures are favorable because they

are candidates for achieving the optimal (highest) availability, the probability that a

quorum can be formed in an error-prone environment. And constant quorum size is

preferable because when the proposed methods are applied to solve the problems just

mentioned, the message cost is directly proportional to the quorum size.

Below, we introduce the concept of coteries, wr-coteries and k-coteries. Note that

we assume U is the underlying set containing all system sites u1,...,un, and we may

not specify U wherever there is no ambiguity.

3

1.1 Coteries

A coterie [GB85] C is a family of non-empty subsets of U. Each member in C is

called a quorum; the following properties should hold for the quorums:

Intersection Property:

 G,H: G,HC: GH;

Minimality Property:

 G,H: G,HC: GH.

For example, C ={{u1, u2}, {u1, u3}, {u2, u3}} is a coterie because every pair of

quorums have a non-empty intersection, and no quorum is a super set of another

quorum.

By the intersection property, a coterie can be used to develop algorithms for

mutual exclusion in a distributed system. To access the critical section, a site is

required to receive permissions (votes) from all the sites of some quorum. Since any

pair of quorums have at least one site in common and every site grants its permission

to only one site at a time, mutual exclusion is then guaranteed. Note that the

minimality property is not necessary for the correctness of mutual exclusion but is

used to enhance efficiency. Mutual exclusion algorithms using coteries are fault-

tolerant in the sense that even when network partitioning [DGS85] occurs and makes

some sites inaccessible, quorums not including inaccessible sites may still be

constructed.

4

1.2 WR-Coteries

A wr-coterie [IK93] (W, R) is a pair of two families of non-empty quorums

(subsets of U) satisfying

Write-Write Intersection Property:

 G,H: G,HW: GH;

Write-Read Intersection Property:

 G,H: GW, HR: GH;

Write Quorum Minimality Property:

 G,H: G,HW: GH;

Read Quorum Minimality Property:

 G,H: G,HR: GH.

For example, let W={{u1,u2,u3}, {u1,u2,u4}, {u3,u4}} and R={{u1,u3}, {u1,u4},

{u2,u3}, {u2,u4}, {u3,u4}}, then the pair (W, R) is a wr-coterie since it satisfies all the

above-mentioned properties.

In a distributed system, data can be replicated at different sites to tolerate site

and/or network link failures. However, complex replica control algorithms are

required to make multiple replicas of a data object behave as a single one, i.e., to

ensure one-copy equivalence [BHG87]. Below, we describe how one-copy

equivalence is achieved by wr-coterie (W, R). Each replica is associated with a

version number. A read operation should read-lock and access replicas of a read

quorum (a quorum in R) and return the replica owning the largest version number.

On the other hand, a write operation should write-lock and access replicas of a write

quorum (a quorum in W), and then updates them and assigns them with the new

5

version number which is one more than the largest version number just encountered.

Since any pair of a read and a write quorum and any two write quorums have a non-

empty intersection, the read operation will always return the most up-to-date replica.

Again, the minimality properties of wr-coteries are used to enhance efficiency.

Replica control algorithms using wr-coteries are fault-tolerant in the sense that even

when network partitioning [DGS85] occurs and makes some replicas inaccessible,

quorums not including inaccessible replicas may still be found.

1.3 K-Coteries

A k-coterie [FYA91] C is a family of non-empty quorums (subsets of U)

satisfying

Non-intersection Property:

For any h (< k) pairwise disjoint quorums Q1,...,Qh in C, there exists one quorum

Qh+1 in C such that Q1,...,Qh+1 are pairwise disjoint;

Intersection Property:

There are no m, m > k, pairwise disjoint quorums in C (i.e., there are at most k

pairwise disjoint quorums in C);

Minimality Property:

There are no two quorums Q1 and Q2 in C such that Q1 is a super set of Q2.

For example, {{u1,u2}, {u3,u4}, {u1,u3}, {u2,u4}} is a 2-coterie because it satisfies

all the properties of a 2-coterie—given one quorum Q1, we can always find another

quorum Q2 such that Q1 and Q2 are disjoint; there are at most two pairwise disjoint

6

quorums; and every quorum is not a super set of another quorum. The reader should

note that an 1-coterie (the value of k is taken as 1) is exactly a coterie introduced in

Section 1.1.

By the intersection and the non-intersection properties, k-coteries can be used to

develop distributed k-mutual exclusion algorithms which allow at most k sites in the

critical section simultaneously. To access the critical section, a site is required to

obtain permissions from all the sites of some quorum. By the intersection property,

no more than k sites can form quorums simultaneously, so no more than k sites can

access the critical section at the same time. The non-intersection property assures that

if there exists one unoccupied critical section entry, then some site that waits for

accessing the critical section can proceed. Again, the minimality property of the

k-coterie is not for the correctness but for the efficiency. The k-mutual exclusion

algorithm using k-coteries is fault-tolerant in the sense that even when network

partitioning [DGS85] occurs and makes some sites inaccessible, quorums including

only available sites may still be formed.

1.4 Nondominance of quorum structures

A quorum structure is said to dominate [GB85] another quorum structure if and

only if every quorum in the dominated one is a super set of some quorum in the

dominating one. Obviously, the dominating one has more chance than the dominated

one for a quorum to be formed in an error-prone environment. Thus, if optimizing

the availability is the main concern, we should always concentrate on nondominated

quorum structures that no one else can dominate. However, it is very difficult to

verify that a quorum structure is nondominated. The verification is usually done on

7

the basis of Garcia-Molina and Barbara's theorem [GB85] and Ibaraki and Kameda's

theorem [IK93].

Below, we illustrate the nondominance concept of quorum structures with an

example of coteries.

Let C and D be two coteries. C dominates D iff (CD) and (G, H: GD, HC :

HG).

A coterie is said to be nondominated if and only if no coterie can dominate it.

For example, consider the following two coteries under U={u1,u2,u3,u4}:

C = {{u1, u2}, {u1, u3}, {u1, u4}, {u2, u3, u4}}

D = {{u1, u2, u3}, {u1, u2, u4}, {u1, u3, u4}, {u2, u3, u4}}.

It is easy to see that C dominates D because for every quorum in C, we can find its

super set in D. Thus, if we can form a quorum in D, then we can also form a quorum

in C. Particularly, C is a coterie constructed by the method proposed in Chapter 2, it

will be shown to be nondominated later.

1.5 Dissertation Organization

The organization of the dissertation is as follows:

In Chapter 2, we propose a method for constructing a class of nondominated

coteries of constant expected quorum size and prove the correctness of the method

with Ibaraki and Kameda's theorem [IK93]. We analyze the constructed coteries in

terms of quorum availability and quorum size; the analyzed results are also compared

with those of related coteries.

In Chapter 3, we propose a method for constructing a class of nondominated wr-

coteries of constant expected quorum size and prove the correctness of the method

8

with Ibaraki and Kameda's theorem [IK93]. We analyze the constructed wr-coteries

in terms of quorum availability and quorum size; the analyzed results are also

compared with those of related wr-coteries.

In Chapter 4, we propose a method for constructing a class of k-coteries of

constant expected quorum size. We prove the correctness of the method and analyze

the constructed k-coteries in terms of quorum availability and quorum size; the

analyzed results are also compared with those of related k-coteries.

In Chapter 5, we develop a theorem that can be used to check the nondominance

of a k-coterie. On the basis of the theorem, we prove that some k-coteries are

nondominated. Moreover, we propose two methods (operations) which can generate

nondominated k-coteries from known nondominated k-coteries.

In Chapter 6, we give a summary of this dissertation and address further research

directions.

9

Chapter 2

Constructing ND coteries

of constant expected quorum size

2.1 Introduction

Quorum-based algorithms are an important class of algorithms to achieve mutual

exclusion in distributed systems. Such algorithms usually incur low message cost and

can tolerate site and/or network link failures, even when these failures lead to

network partitioning [DGS85]. The basic idea of this type of algorithms is simple—a

site should collect permissions (votes) from all sites of a quorum to enter the critical

section. Mutual exclusion is guaranteed if we can assure that any pair of quorums

have at least one common site and that a site gives its permission to only one site at a

time. The majority quorum consensus algorithm [Tho79], the tree quorum algorithm

[AE91] and the hierarchical quorum consensus algorithm [Kum91] are typical

quorum-based algorithms.

The coterie concept [GB85] is usually used to formalize quorum-based mutual

exclusion algorithms. A coterie [GB85] is a family of quorums (sets) with the

property that any pair of quorums have a non-empty intersection. Among all the

coteries, nondominated (ND) coteries [GB85] are preferable because they are

candidates to achieve the highest availability, the probability that a quorum can be

10

formed. Some classes of coteries, such as the majority coterie (MC), the tree coterie

(TC), the hierarchical coterie (HC) and the Lovasz coterie (LC) [Nei93] have been

shown to be ND. Note that the first three classes of coteries correspond to the

majority quorum consensus algorithm [Tho79], the tree quorum algorithm [AE91]

and the hierarchical quorum consensus algorithm [Kum91], respectively.

In this chapter, we propose a method to construct quorums of an ND coterie; the

method can easily be extended to be a solution to distributed mutual exclusion. The

method utilizes a logical structure named Cohorts to construct quorums of O(1)

(constant) size in the best case. When some sites are inaccessible, the quorum size

increases gradually and may be as large as O(n), where n is the number of sites.

However, the expected quorum size is shown to remain constant as n grows. This is a

desirable property since the message cost for accessing the critical section is directly

proportional to the quorum size. In addition, the availability of the constructed

quorum is shown to be asymptotically high. With the two propertiesconstant

expected quorum size and asymptotically high availability, the proposed method is

thus applicable to systems possessing an increasing number of sites. We also analyze

and compare the constructed quorums with others in terms of availability and

quorum size.

The rest of this chapter is organized as follows. In Section 2.2, we elaborate some

preliminaries of coteries. Then, in Section 2.3, we present the Cohorts structure and

show how to construct quorums with its aid. In Section 2.4, we show that the

collection of the constructed quorums is a nondominated coterie. In Section 2.5, we

analyze and compare the constructed quorums with others in terms of availability and

quorum size. At last, we conclude this chapter with Section 2.6

11

2.2 Preliminaries of coteries

In this section, we show some preliminaries of coteries. In the following

discussion, we assume u1,...,un are all system sites and let U = {u1,...,un} be the

underlying set that contains all system sites.

A coterie C is a family of subsets of U. Each member in C is called a quorum and

should observe the following two properties:

Intersection Property:

 G,H: G,HC: GH;

Minimality Property:

 G,H: G,HC: GH.

For example, C ={{u1, u2}, {u1, u3}, {u2, u3}} is a coterie under U={u1, u2, u3}

because every pair of quorums have a non-empty intersection, and no quorum is a

super set of another quorum.

By the intersection property, the coterie can be used to develop algorithms for

mutual exclusion in distributed systems. To enter the critical section, a site is

required to receive the permissions (votes) from all sites of some quorum. Since any

pair of quorums have at least one site in common and every site grants its permission

to only one site at a time, mutual exclusion is then guaranteed. The reader should

note that the minimality property is not necessary for the correctness of mutual

exclusion but is used to enhance efficiency.

Let C and D be two distinct coteries. C is said to dominate D iff G,H: GD, H

C: H  G. For example, coterie C = {{u1, u2}, {u1, u3}, {u1, u4}, {u2, u3, u4}}

12

dominates coterie D = {{u1, u2, u3}, {u1, u2, u4}, {u1, u3, u4}, {u2, u3, u4}} because

for every quorum G in D we can find a quorum H in C such that G is a super set of H.

A dominating coterie, such as C, is more resilient to site and/or network link failures

than a dominated coterie, such as D since if a quorum can be formed in the

dominated one then a quorum can be formed in the dominating one. A coterie is

nondominated (ND) if no other coterie can dominate it. We should always

concentrate on ND coteries because they are candidates to achieve the highest

availability.

In Ibaraki and Kameda's work [IK93], any subset of U is represented by an

n-tuple vector X, X=(x1,...,xn)  {0,1}n where xi is 1(resp., 0) if ui is in (resp., not in)

the subset. Let C be a family of subsets of U. Then, a Boolean function fC : {0,1}n 

{0,1} associated with C is defined as fC(X) 
Q u Q

i

i 
 

C

{ }u . Note that we follow the

convention in [IK93] and use ui (which is an element of U) as the ith component of

vector X. The function fC so defined has the property: fC(X)=1 if vector X represents a

super set of some quorum in C; otherwise fC(X)=0. The dual f d
 of a Boolean

function f is defined as f d
=f '(X'), where X' and f ' are complements of X and f,

respectively. For example, under U={u1, u2, u3}, the set {u1, u2} is represented as

(1,1,0); and {u2, u3}, as (0,1,1). Let C={{u1, u2}, {u2, u3}, {u1, u3}}, then fC(X) =

(u1u2  u2u3  u1u3). f d

C
(X)= f '(X')=(u1' u2'  u2' u3'  u1' u3')' = (u1' u2')' (u2' u3')'

(u1' u3')' =(u1  u2) (u2  u3) (u1  u3) = (u1u2  u2u3  u1u3).

The association of a Boolean function with a family of sets provides a facile way

for checking some properties of the family. For example, the following Theorem 2.1

is actually Theorem 2.2 in [IK93] which can be used to check whether a family of

sets is an ND coterie. For example, with Theorem 2.1, we can show that C, C={{u1,

13

u2}, {u2, u3}, {u1, u3}}, is an ND coterie since fC(X) = f d

C
(X), as shown in the last

paragraph.

Theorem 2.1. Let C be a family of non-empty subsets of U satisfying the minimality

property. Then, C is an ND coterie if and only if fC = f d
C .

2.3 Construction of quorums

In this section, we present the Cohorts structure and show a method (function

Get_Quorum in Figure 2.1) that can generate quorums by organizing system sites

into a Cohorts structure.

A Cohorts structure Coh(l)=(C1,...,Cl) is a list of subsets of U. Each member Ci

is called a cohort and should observe the following properties:

(P1) C1 = 1.

(P2) i: 2il : Ci  2.

(P3) i: 1il :Ci 
j i

 Cj.

To sum up, the first cohort in a Cohorts structure should have only one member

with other cohorts having at least two members and each cohort should have at least

one unique member that does not appear in any other cohort. For example, ({u1}) is a

Coh(1), ({u1},{u2,u3,u4}) is a Coh(2) and ({u1},{u2, u3},{u3, u4}) is a Coh(3).

For a Cohorts structure Coh(l)=(C1,...,Cl), a set Q is said to be a quorum under

Coh(l) if Q satisfies both (D1) and (D2).

(D1) Q contains all the members of some cohort Ci, 1il (we say that Q fully covers

Ci or that Ci
 is Q's primary cohort).

14

(D2) Q contains at least one member of each cohort Cj, i<jk (we say that Q covers

Cj or that Cj is Q's supporting cohort).

For example, under Coh(2)=({u1},{u2,u3,u4}), the possible quorums are {u1, u2},

{u1, u3}, {u1, u4} and {u2, u3, u4}. For a quorum under Coh(l)=(C1,...,Cl), the less is

the index of the primary cohort, the smaller is the quorum size. In an extreme case, if

Cl is the primary cohort, then no supporting cohort is necessary. In such a case, the

quorum size is a constant Cl. In another extreme case, if C1 is the primary cohort

with the other cohorts being supporting cohorts, then the quorum may be of size O(n).

To sum up, a quorum under Coh(l) is of constant size in the best case, and of O(n)

size in the worst case.

A function named Get_Quorum, which can produce quorums under Coh(l), is

shown in Figure 2.1. Function Get_Quorum can easily be modified and extended to

solve the distributed mutual exclusion problem. In such a case, as in other quorum-

based algorithms, a site is allowed to access the critical section after obtaining

permissions from all sites of a quorum; a site is to return all its obtained permissions

on leaving the critical section. Since a site may hold some permissions while waiting

for other permissions, deadlock may thus occur. Mechanism proposed in [Mae85] or

[San87] can be incorporated for avoiding deadlock (and starvation); however, the

details are not our focus and are thus omitted.

2.4 Correctness

In this section, we show that the collection of quorums returned by function

Get_Quorum is an ND coterie. We start by showing that Get_Quorum returns

minimal quorums. Note that a quorum Q is said to be minimal if and only if any

proper subset of Q is not a quorum.

15

Lemma 2.1. (Minimality property) The quorums returned by Get_Quorum are

minimal.

Proof:

Let Q1 and Q2 be two quorums returned by Get_Quorum such that Q1=Min(R1,

Ci,...,Cl) and Q2=Min(R2, Ci,...,Cl), where R1 and R2 are sets of sites that grant

permissions. We have CiQ1, Q1  (Ci...Cl), CjQ2 and Q2  (Cj...Cl).

Below, we want to show that neither Q2  Q1 nor Q1  Q2. There are three cases to

consider: (1) i=j, (2) i<j and (3) i >j.

Case (1). i = j.

It is trivial that neither Q2  Q1 nor Q1  Q2 since function Min removes all the

sites from R1 and R2 that are not essential for coverage of Ci+1(or Cj+1),...,Cl and full

coverage of Ci (or Cj).

Case (2). i < j. The proof is by contradiction.

Assume Q1  Q2, we have Ci  (Cj ... Cl) because Ci  Q1, Q1  Q2 and Q2 

(Cj...Cl). Contradiction occurs since Ci  (Cj ... Cl) violates (P3). On the

other hand, assume Q2  Q1, we have Cj  Q1 because Cj  Q2 and Q2  Q1. By (P3),

there exists one member u in Cj such that u does not belong to any other cohorts.

Since Cj  Q1, all the sites, including u, in Cj belong to Q1; i.e., function Min returns

Q1 with u involved. Because u only belongs to Cj and function Min does not remove

u from Q1, we have that Q1{u} does not cover Cj. By Cj  Q1 and (Q1{u})  Cj =

 (Q1{u} does not cover Cj), we have Cj={u}. Contradiction occurs since Cj={u}

violates (P2).

Case (3). i > j. The proof of this case is similar to that of case (2) and is omitted. •

16

By now, we have proved that Get_Quorum generates minimal quorums under

Coh(l)=(C1,...,Cl). Let C(l) be the collection of all minimal quorums under Coh(l).

Below, we further prove that C(l) is an ND coterie by showing f
C()l

= f
l

d

C()
 with some

Boolean algebra laws [Lip79]. Note that later we call C(l) cohort coterie.

Lemma 2.2. f
C()l

= f
l

d

C()
, for l1.

Proof: The proof is by induction on the value of l.

Basis (l=1):

By (P1), Coh(1)=({u1}), from which the only derived quorum is {u1}. So, we

have fC(1) = u1. The theorem holds for the basis case because f
C(1)

= f d

C()1
.

Induction Hypothesis:

We assume that f
C()l

= f
l

d

C()
, for some l, l1.

Induction Step:

Consider Coh(l+1)=(C1,...,Cl+1). Let Cl+1={u1,...,um}, where m>1. By (D1) and

(D2), a quorum under Coh(l+1) is composed of either (form-1) all sites in Cl+1 or

(form-2) one of the sites in Cl+1 and a quorum under Coh(l). Thus, we have

fC(l+1) = (
i m1,...,

 ui)(
i m1,...,

 ui fC(l))

 = (
i m1,...,

 ui)(fC(l)  (
i m1,...,

 ui)) (by commutative law and distributive law)

Therefore, we have

f
l

d

C()1
= ((

i m1,...,
 ui')(fC(l)(X')(

i m1,...,
 ui')))' (by the definition of Dual of a function)

= (
i m1,...,

 ui')
'(fC(l) (X')(

i m1,...,
 ui'))

' (by De Morgan's law)

= (
i m1,...,

 ui')
'(f

lC()
' (X')(

i m1,...,
 ui')

') (by De Morgan's law)

= (
i m1,...,

 ui'')(f
lC()

' (X')(
i m1,...,

 ui'')
 (by De Morgan's law)

= (
i m1,...,

 ui)(f
lC()

' (X')(
i m1,...,

ui) (by involution law, i.e., ui''
 = ui)

17

= (
i m1,...,

 ui)(fC(l) (X)  (
i m1,...,

ui)) (since by hypothesis, f
C()l

= f
l

d

C()
)

= ((
i m1,...,

 ui)fC(l) (X))((
i m1,...,

 ui)(
i m1,...,

 ui)) (by distributive law)

= ((
i m1,...,

 ui)fC(l) (X))(
i m1,...,

 ui) (since (
i m1,...,

ui)  (
i m1,...,

ui) = (
i m1,...,

ui))

= (
i m1,...,

 ui)(fC(l)(
i m1,...,

 ui)) (by commutative law)

=fC(l+1)

Therefore, by the induction principle, we have f
C()l

= f
l

d

C()
 for any l, l1. •

Theorem 2.2. C(l) is an ND coterie for l1.

Proof: This is a direct consequence of Theorem 2.1, Lemma 2.1 and Lemma 2.2. •

2.5 Analysis and comparison

In this section, we analyze the availability and the size of quorums under Coh(l).

We also compare the analyzed results with those of the quorums of the majority, the

tree, the hierarchical and the Lovasz coteries. To simplify the analysis, we just

discuss the Cohorts structures that have disjoint cohorts, i.e., we assume CiCj=, i

j, for Coh(l)=(C1,...,Cl).

2.5.1 Availability

The availability of a coterie is defined as the probability that a quorum can be

successfully formed in an error-prone environment. In homogeneous systems, every

site has the same up-probability p, which stands for the probability that a single site

is up (i.e., available). Let AV(l) be the function evaluating the availability of the

quorum under Coh(l)=(C1,...,Cl). Below, we show how to evaluate AV(l).

For l>1, if all the sites in Cl are up, then a quorum under Coh(l) can be formed.

On the other hand, if at least one site but not all the sites in Cl are up, then one of the

up sites together with a quorum under Coh(l1) can form a quorum under Coh(l). For

l>1, we have

18

AV(l) = Prob.(all sites in Cl are up) +

 Prob.(at least one site but not all sites in Cl are up)  AV(l1)

 = pSl + (1 pSl  (1p)Sl)AV(l1) (2.1)

For l=1, the only sites in C1 (note that by (P1) C1=1) being up is necessary to form a

quorum under Coh(1). Thus, we have AV(1)=p .

Below, we restrict each of cohorts C2,...,Cl to have the same size s to further

simplify the analysis. That is, we assume S2=...=Sl=s for Coh(l)=(C1,...,Cl) (by (P2) s

2). We denote such a Cohorts structure as Coh(l,s) and the value of s is called the

cohort size. When Coh(l,s) is considered, the recursive equation (2.1) can be

regarded as a first-order linear difference equation [DOSE86]*, which can be solved

analytically. We have

AV(l)=(1ps(1p)s)l1(pps/(p+(1p)s)) + (ps/(ps+(1p)s)) (2.2)

We first apply equation (2.2) to investigate the influence of cohort sizes on

quorum availability under a fixed number of sites. We assume the following Cohorts

structures for a 31-site system: Coh(16,2), Coh(11,3), Coh(7,5), Coh(6,6), Coh(4,10)

and Coh(3,15). The quorum availabilities corresponding to those structures are

depicted in Figure 2.2, which reveals that smaller cohort sizes usually render the

availability higher. Thus, we suggest adopting small cohort sizes, say 3 or 5. We do

not suggest adopting the cohort size of 2, which leads to lower availability than those

resulting from sizes of 3 and 5 for large up-probability p (e.g., for p>0.5). Note that

most practical systems have large up-probability p, under which the cohort size of 2

* A first-order linear difference equation of the form Xk=aXk1+b for k2 with X1 being the first term

has as its kth term Xk=ak1(X1+b/(a1))(b/(a1)) if a1.

19

causes a relatively large probability of no site in a cohort being up, which prohibits

the construction of any quorum.

We now apply equation (2.2) to investigate the asymptotic value of quorum

availability. When l goes to infinity, the term (1ps(1p)s)l1 goes to 0, and AV(l)

goes to ps/(ps+(1p)s)=1/(1+((1p)/p)s). In other words, the asymptotic availability

of quorums under Coh(l,s) is 1/(1+((1p)/p)s). For p=0.5, the asymptotic availability

is 0.5 whatever the column size is. For p<0.5, (1p)/p is larger than 1 and thus ((1

p)/p)s increases as s grows. It is easy to see that the smaller s is, the larger the

asymptotic availability is. For p>0.5, (1p)/p is less than 1 and thus ((1p)/p)s

decreases as s grows. It is easy to see that the larger s is, the larger the asymptotic

availability is. To sum up, smaller column sizes are preferable when p<0.5 and larger

column sizes are preferable when p>0.5. However, we still suggest adopting small

column sizes because the asymptotic availability is high even for small column sizes

when p>0.5. For example, when s=3, the asymptotic availability is 0.998630,

0.984615 and 0.927027 for p=0.9, 0.8 and 0.7, respectively. When s=4, the

asymptotic availability is 0.999847, 0.996108 and 0.967365 for p=0.9, 0.8 and 0.7,

respectively.

2.5.2 Quorum size

In this section, we analyze the size of quorums under Coh(l,s). The smallest

quorums under Coh(l,s), l>>s, are of size s; such quorums are formed by including

only all sites in the last cohort. However, under Coh(l,s), l>>s, the largest quorums,

which are composed of one site from each of C1,...,Cl (note that C1 has only one site),

is of size l=(n1)/s, which is of O(n).

20

Using the lower and the upper quorum size bounds to estimate critical section

access cost may be too optimistic and too pessimistic respectively. Below, we

analyze the expected quorum size as cost estimation of accessing the critical section.

Let ES(l) denote the expected size of the quorum under Coh(l). We apply parameter f,

which is also adopted in the tree quorum algorithm [AE91], to indicate the fraction

of the quorums composed of only all sites in Cl (note that f is used in the tree quorum

algorithm [AE91] to indicate the fraction of quorums including the root node). For

l>1, we have

ES(l)=fSl+(1f)(1+ES(l1))=(fSl+1f)+(1f)ES(l1) (2.3)

The term fSl arises because there are f quorums of size Sl that are composed of

only all sites in Cl. And the term (1f)(1+ES(l1) arises because there are (1f)

quorums of size ES(l1)+1 that are composed of not all sites of Cl, but one site of Cl

and one quorum under Coh(l1). Since C1 has only one site, a quorum under Coh(1)

has size 1. We have ES(1)=1.

When Coh(l,s), l>>s, is considered, the case of f=1 corresponds to the lower

bound of the quorum size, which occurs when all the sites in Cl are always included

in the quorum. On the other hand, the case of f=0 corresponds to the upper bound of

the quorum size, which occurs when a larger quorum is always chosen instead of a

smaller one. Note that the probability that all sites in Cl are up (i.e., pS) can reflect the

value of f. For example, the value of f can be reflected by 0.653=0.274625 when

p=0.65 and s=3.

Under Coh(l,s) where S2=...=Sl=s, the recursive equation (2.3) can be regarded as

a first-order linear difference equation and can be solved analytically. For f>0, we

have

21

ES(l)=(1f)l1(1(fs+1f)/f) + (fs+1f)/f (2.4)

When l goes to infinity (and so does n), the term (1f)l1 goes to 0, and hence ES(l)

goes to (fs+1f)/f=s+(1/f)1, which is a constant. In other words, the expected size of

the quorum under Coh(l,s) remains constant when n grows. It is easy to see that

smaller s or larger f produces smaller asymptotic expected quorum size. Take the

following four cases for example: (case 1) f=0.5, s=3 (case 2) f=0.5, s=5 (case 3)

f=0.25, s=3 and (case 4) f=0.25, s=5. The asymptotic expected quorum sizes for these

four cases are 4, 6, 6 and 8, respectively.

2.5.3 Comparison

In this subsection, we first compare the cohort coterie (i.e., C(l), the collection of

all minimal quorums under Coh(l)) with the majority coterie [Tho79], the tree coterie

[AE91], the hierarchical coterie [Kum91] and the Lovasz coterie [Nei93] in terms of

quorum size and the nondominance property. Then, we further compare the

availability of the cohorts coterie with those of the tree coterie and the majority

coterie.

Every quorum in the majority coterie is composed of over half of the system sites;

therefore, its quorum size is (n+1)/2. The majority coterie is shown to be ND in

[GB85] if the system has odd number of sites.

The tree coterie is constructed by organizing system sites into a binary tree of

log n levels. Its quorum is formed by obtaining all the sites along a root-to-leaf path,

and if the root fails, the obtaining should then follow two paths: one root-to-leaf path

of the left subtree plus one root-to-leaf path of the right subtree. The smallest quorum

comprises all the sites along a root-to-leaf path, which is of size

22

log n, while the largest quorum comprises all leaf nodes, which is of size (n+1)/2.

The tree coterie is shown to be ND in [NM92].

By organizing sites in leaves of a mutilevel tree with non-leaf nodes being logical,

quorums of O(n0.63) size in a hierarchical coterie are formed. The quorum forming is

hierarchical: a quorum corresponding to a node at level i is formed by collecting

enough (over half) quorums corresponding to its child nodes at level i+1. Thus, any

two quorums corresponding to the root have a non-empty intersection. The

nondominance property of the hierarchical coterie, although not explicitly stated, can

be inferred from some remarks (about coterie composition for hierarchical coteries)

in [NM92].

The Lovasz coterie [Nei93] is based on the partition of the underlying set U. Let

{P1,...,Pk} be a partition of U (i.e., PiPj= for ij and P1...Pk = U) such that

Pi  = i. Then a quorum in a Lovasz coterie is formed by obtaining all the sites in Pi

and one site from each Pj for all j > i. A similar quorum forming algorithm was

proposed in [SW93a]. All quorums in a Lovasz coterie are of the same O(n0.5) size,

and the Lovasz coterie has been shown to be ND in [Nei93] on the basis of a classical

theorem, Theorem 2.1 in [GB85]. It is obvious that the list of (P1,...,Pk) is a special

type of Cohorts structure; therefore, Lovasz coteries are a special type of cohort

coteries.

A summary of quorum sizes of the above-mentioned coteries and the cohort

coterie appears in Table 2.1. Below, we further compare the quorum availability of

the majority coterie (MC) [Tho79], the tree coterie (TC) [AE91] and the cohort

coterie (CC) for 15- and 31-site systems. For cohort coteries, we assume that sites are

arranged as Coh(5)=(C1,...,C5), where C1=1, C2=...=C4=3 and C5=5 (recall that

23

we suggest adopting small column sizes except 2) for the 15-site system, and as

Coh(11,3) for the 31-site system. The formulas for calculating the availabilities of

MC and TC are shown below.

The availability of MC is given in [AE91] as

Prob.(h sites are up) + Prob.(h+1 sites are up) + ... + Prob.(n sites are up)

= []C(,) [(1)]()n i p pi n i

i h

n

   



 , where h=(n+1)/2.

Assuming system sites are organized as a binary tree T, the availability of TC is

given in [AE91] as

Availability(T) =

Prob.(T's root is up)Availability(T's left subtree)Unavailability(T's right subtree)

+

Prob.(T's root is up)Unavailability(T's left subtree)Availability(T's right subtree)

+

Prob.(T's root is up)Availability(T's left subtree)Availability(T's right subtree) +

Prob.(T's root is not up)  Availability(T's left subtree)  Availability(T's right

subtree).

Figures 2.3 and 2.4 depicts the availability comparisons of MC, TC and CC.

From these figures, we can observe that TC's availability is better (resp., worse) than

MC's when up-probability is smaller (resp., larger) than 0.5. We also observe that

CC's availability is very close to TC's but CC's is larger (resp., smaller) when up-

probability is smaller (resp., larger) than 0.5.

2.6 Summary

In this chapter, we have devised a method to construct quorums of an ND coterie;

the method survives network partitioning and can easily be extended to be a solution

24

to distributed mutual exclusion. With the aid of a logical structure named Cohorts,

the method constructs quorums of constant size in the best case. When some sites are

inaccessible, the quorum size increases gradually and may be as large as O(n), where

n is the number of sites. However, the expected quorum size has been shown to

remain constant as n grows. This is a desirable property since the message cost to

access the critical section is directly proportional to the quorum size. In addition, the

availability of the constructed quorum has been shown to be asymptotically high.

With the two propertiesconstant expected quorum size and asymptotically high

availability, the proposed method is thus applicable to systems possessing an

increasing number of sites. We have also analyzed and compared the constructed

quorums with others in terms of availability and quorum size.

25

MC TC HC LC CC

Quorum size

(Lower Bound) (n+1)/2 log n n
0.63

 n
0.5

 Constant

Quorum size

(Upper Bound) (n+1)/2 (n+1)/2 n
0.63

 n
0.5

 O(n)

MC: The majority coterie. TC: The tree coterie. HC: The hierarchical coterie.

LC: The Lovasz coterie. CC: The cohort coterie.

Table 2.1 Bounds on quorum sizes for various coteries.

Function Get_Quorum(Coh(l)=(C1,...,Cl): Cohorts Structure): Set;

Var R,S,T: Set;

If l < 1 Then Exit(failure); // Illegal function call, claim failure //

R = ; // R: The set of available sites that have granted permissions. //

 For (i = l,...,1) Do

 S = Ci  R; // S: The set of the sites whose permissions are necessary to make Ci the primary cohort. //

 T = Obtain(S); // Obtain(S) will try to get permissions form sites of S and return a set of sites that can grant permissions. //

 If T = S Then Return(Min(RT, Ci,...,Cl)); // Ci can be the primary cohort, and a minimal quorum is returned. //

 If (RT)  Ci =  Then Exit(failure); // No member of Ci grants its permission. Claim failure. //

 If (Ci  R) =  Then R=R{t}, where tT. // R does not cover Ci. So, add t of T into R to make R covers Ci. //

EndFor

 Exit(failure); // No quorum can be formed. Claim failure. //

End Get_Quorum

Function Min(R, Ci, ... ,Cl : Set): Set;

For (r  R) Do If Cover(R{r}, Ci,...,Cl) Then R= R  {r}; EndFor
// If r is not essential in the coverage of Ci,...,Cl, remove r from R. Note that we assume Cover(R, Ci,...,Cl) is a predicate

 that returns true if R covers Ci+1,...,Cl and fully covers Ci for some i, and returns false, otherwise. //

Return(R);

End Min

Figure 2.1 A function that can generate minimal quorums under Coh(l).

26

Up-Probability

0

0 .1

0 .2

0 .3

0 .4

0 .5

0 .6

0 .7

0 .8

0 .9

1

0 0 .1 0 .2 0 .3 0 .4 0 .5 0 .6 0 .7 0 .8 0 .9 1

Co h (1 6 ,2)

Co h (1 1 ,3)

Co h (7 ,5)

Co h (6 ,6)

Co h (4 ,1 0)

Co h (3 ,1 5)

A
v
a
i
l
a
b
i
l
i
t
y

Figure 2.2 The availability of quorums under various Cohorts structures.

27

Up-Probability

A
v
a
i
l
a
b
i
l
i
t
y

0

0 .1

0 .2

0 .3

0 .4

0 .5

0 .6

0 .7

0 .8

0 .9

1

0 0 .1 0 .2 0 .3 0 .4 0 .5 0 .6 0 .7 0 .8 0 .9 1

M C

T C

CC

Figure 2.3 The availability comparison of various coteries for the 15-site system.

28

Up-probability

A
v
a
i
l
a
b
i
l
i
t
y

0

0 .1

0 .2

0 .3

0 .4

0 .5

0 .6

0 .7

0 .8

0 .9

1

0 0 .1 0 .2 0 .3 0 .4 0 .5 0 .6 0 .7 0 .8 0 .9 1

M C

T C

CC

Figure 2.4 The availability comparison of various coteries for the 31-site system.

29

Chapter 3

Constructing ND wr-coteries

of constant expected quorum size

1. Introduction

In a distributed system, data can be replicated at different sites to tolerate site

and/or network link failures. However, complex replica control schemes are required

to make multiple replicas of a data object behave as a single one, i.e., to ensure one-

copy equivalence [BHG87]. Several replica control algorithms [AE90, AE91, BG84,

CAA92, KC91, KRS93, Kum91, Nei92, Tho79] have been developed on the basis of

quorum consensus concept, which is described below. Each replica is associated with

a version number. A read operation should read-lock and access a read quorum of

replicas and return the replica owning the largest version number. On the other hand,

a write operation should write-lock and access a write quorum of replicas and then

updates them with the new version number which is one more than the largest

version number just encountered. To ensure that a read operation can always return

the most up-to-date replica, any pair of a read and a write quorum and any two write

quorums are required to have a non-empty intersection. The quorum-based replica

control algorithms are fault-tolerant in the sense that even when network partitioning

[DGS85] occurs and makes some replicas inaccessible, quorums containing only

available replicas may still be found.

30

The wr-coterie concept [IK93] is usually used to formalize quorum-based replica

control algorithms. A wr-coterie [IK93] is a pair (W, R), where W and R are families

of quorums (sets) satisfying that each member of W or R has a non-empty

intersection with any member of W. Among all the wr-coteries, nondominated (ND)

wr-coteries [IK93] are preferable because they are candidates to achieve the highest

availability, the probability that a quorum can be formed in an error-prone

environment. Thus, we should concentrate on ND wr-coteries if availability is the

main concern.

In this chapter, we propose a method for constructing ND wr-coteries; the

proposed method can easily be extended for maintaining replicated data consistency.

The method utilizes a logical structure named Cohorts to construct quorums of O(1)

(constant) size in the best case. When some replicas are inaccessible, the quorum size

increases gradually and may be as large as O(n), where n is the number of replicas.

However, the expected quorum size is shown to remain constant as n grows. This is a

desirable property since the message cost for accessing replicated data is directly

proportional to the quorum size. In addition, the availability of the constructed

quorums is shown to be asymptotically high. With the two propertiesconstant

expected quorum size and asymptotically high availability, the proposed solution is

thus applicable to systems possessing an increasing number of replicas. We also

analyze and compare the constructed quorums with others in terms of availability and

quorum size.

The remainder of this chapter is organized as follows. In Section 3.2, we

elaborate some preliminaries of wr-coteries. Then, in Section 3.3, we introduce the

Cohorts structure and show how to construct read quorums and write quorums with

31

its aid. In Section 3.4, we show that the pair of collections of the constructed read

quorums and write quorums is an ND wr-coterie. In Section 3.5, we analyze and

compare the constructed quorums with others in terms of availability and quorum

size. At last, we conclude this chapter with Section 3.6

3.2 Preliminaries of wr-coteries

In this section, we show some preliminaries of wr-coteries. In the following

discussion, we assume u1,...,un are all replicas and let U = {u1,...,un} be the

underlying set that contains all replicas.

A wr-coterie [IK93] (W, R) is a pair of two families of subsets of U satisfying

(P1) Write-Write Intersection Property

 G,H: G,HW: GH.

(P2) Write-Read Intersection Property

 G,H: GW, HR: GH.

(P3) Write Quorum Minimality Property

 G,H: G,HW: GH.

(P4) Read Quorum Minimality Property

 G,H: G,HR: GH.

For example, let W={{u1,u2,u3}, {u1,u2,u4}, {u3,u4}}, R={{u1,u3}, {u1,u4},

{u2,u3}, {u2,u4}, {u3,u4}}, then the pair (W, R) is a wr-coterie since it satisfies all the

properties (P1), (P2), (P3), and (P4). By the write-write and write-read intersection

properties, wr-coteries can be used to formalize replica control algorithms. Note that

the minimality properties are not necessary for the correctness of replica control but

can be used to enhance efficiency.

The domination concept for wr-coteries [IK93] can be used to compare two wr-

coteries in terms of the possibility of successful quorum forming. Let (W1,R1) and

(W2,R2) be two wr-coteries. (W1,R1) is said to be dominated by (W2,R2) if and only if

the following three statements are all satisfied

32

(1) W1W2 or R1R2

(2) G: GW1: [H: HW2: HG]

(3) G: GR1: [H: HR2: HG].

For example, let W1={{u1,u2,u3}, {u1,u2,u4}, {u1,u3,u4}, {u2,u3,u4}}, R1={{u1,u3},

{u1,u4}, {u2,u3}, {u2,u4}}, W2={{u1,u2,u3}, {u1,u2,u4}, {u3,u4}}, and R2={{u1,u3},

{u1,u4}, {u2,u3}, {u2,u4}, {u3,u4}}. Then, by definition, (W1,R1) and (W2,R2) are wr-

coteries, and (W1,R1) is dominated by (W2,R2). The dominating wr-coterie (W2,R2)

has more chance than the dominated wr-coterie (W1,R1) for a quorum to be formed in

an error-prone environment because if a quorum can be formed in the dominated one,

then a quorum can be formed in the dominating one. Thus, we should always

concentrate on nondominated (ND) wr-coteries [IK93] that no other wr-coterie can

dominate, and we can claim that nondominated wr-coteries bias toward the highest

availability.

In Ibaraki and Kameda's work [IK93], any subset of U is represented by n-tuple

vector X, X=(x1,...,xn)  {0,1}n where xi, 1in, is 1 (resp., 0) if ui is in (resp., not in)

the subset. Let C be a family of subsets of U. Then, Boolean function fC : {0,1}n

{0,1} associated with C is defined as fC(X)
Q u Q

i

i 
 

C

{ }u . Note that we follow the

convention of [IK93] and also use ui (which is an element of U) to represent the ith

component of vector X. Function fC so defined has the property: fC(X)=1 if vector X

represents a super set of some quorum in C; otherwise fC(X)=0. The dual f d
 of

Boolean function f is defined as f d
=f '(X'), where X' and f ' are complements of X

and f, respectively. For example, under U={u1, u2, u3}, the set {u1, u2} is represented

as (1,1,0); {u2, u3}, as (0,1,1); and {u1, u2, u3}, as (1,1,1). Let C={{u1, u2}, {u2, u3},

33

{u1, u3}}, then fC(X) = (u1u2  u2u3  u1u3). f d

C
(X)= f '(X')=(u1' u2'  u2' u3'  u1'

u3')' = (u1' u2')' (u2' u3')' (u1' u3')' =(u1  u2) (u2  u3) (u1  u3) = (u1u2  u2u3  u1u3).

The association of a Boolean function with a family of sets provides a facile way

for checking some properties for the family. For example, the following Theorem 3.1

and Theorem 3.2 are actually Theorem 2.3 and Theorem 2.4 in [IK93], respectively.

They are related to properties of a pair of families of subsets of U.

Theorem 3.1. Let W and R be families of non-empty subsets of U satisfying the

minimality properties (P3) and (P4). Then, the pair (W,R) is a wr-coterie if and only

if (1) f
W
 f d

W
 and (2) f

W
 f d

R
.

Theorem 3.2. Let W and R be as defined in Theorem 3.1. Then, the pair (W,R) is a

nondominated wr-coterie if and only if (1) f
W
 f d

W
 and (2) f

W
= f d

R
.

By Theorem 3.1 and Theorem 3.2, we can easily derive the following corollary

that can be used to verify the nondominance of wr-coteries.

Corollary 3.1. Let (W,R) be a wr-coterie. It is nondominated if and only if f
W

= f d

R
. •

3.3 Construction of quorums

In this section, we propose the Cohorts structure and two methods (functions

Get_Write_Quorum and Get_Read_Quorum in Figure 3.1) that can generate read and

write quorums with Cohort structure's help.

A Cohorts structure Coh(l)=(C1,...,Cl) is a list of pairwise disjoint sets of replicas.

Each set Ci is called a cohort and must satisfy Ci>1 for 1il (the necessity for this

restriction will be explained later). For example, ({u1,u2}, {u3,u4,u5}, {u6,u7,u8,u9})

34

and ({u1,u2,u3,u4,u5}, {u6,u7}, {u8,u9}) (with u1,...,u9 being replicas) are Cohorts

structures.

By organizing data replicas as Cohorts structure Coh(l)(C1,...,Cl), we define the

write and read quorums as follows:

A write quorum under Coh(l) is a set that contains all replicas of some cohort Ci,

1il (note that i=1 is included), and one replica of each of the cohorts Ci+1,...,Cl.

A read quorum under Coh(l) is either

Type-1: a set that contains one replica of each of the cohorts C1,...,Cl.

 or

Type-2: a set that contains all replicas of some cohort Ci, 1<il (note that i=1 is

excluded), and one replica of each of the cohorts Ci+1,...,Cl.

For example, under Coh(2)=({u1,u2,u3}, {u4,u5}), the possible write quorums are

{u4,u5}, {u1,u2,u3,u4}, {u1,u2,u3,u5}, and the possible read quorums are {u1,u4},

{u1,u5}, {u2,u4}, {u2,u5}, {u3,u4}, {u3,u5} (of type-1) and {u4,u5} (of type-2). Note

that the write quorum definition and the type-2 read quorum definition are identical

except that the latter does not include the sets composed of all replicas in C1 and one

replica from each of C2,...,Cl. For the sake of efficiency, the sets just mentioned are

not regarded as read quorums because each of them is a super set of a type-1 read

quorum.

In an extreme case, only all replicas in Cl can constitute a quorum that is of a

constant size Cl. And in another extreme case, one replica from each of C1,...,Cl (for

a type-1 read quorum) or all replicas in C1 together with one replica from each of

C2,...,Cl (for a write quorum) can constitute a quorum. If the size of each Ci, 1il, is

constant (or bounded above and below by a constant), then the quorum mentioned is

of size O(n).

35

Two functions, Get_Write_Quorum and Get_Read_Quorum, which can

respectively produce read quorums and write quorums under Coh(l) are shown in

Figure 3.1. Note that we assume wlock(Ci) is a function that tries to write-lock and

return replicas of Ci. It locks and returns (case 1) the set of all replicas of Ci if they

are all lockable, or (case 2) a singleton set of one arbitrary lockable replica if more

than one replica is lockable, or (case 3) an empty set, otherwise. Note that when

wlock(C1) (i=1) is performed, (case 2) is ruled out, i.e., either the set of all replicas of

C1 or an empty set is returned. Function rlock(Ci) is identical to wlock(Ci) except that

rlock(Ci) uses read-lock instead of write-lock and that when rlock(C1) is performed,

(case 1) is ruled out, i.e., either a singleton set of one lockable replica of C1 or an

empty set is returned.

3.4 Correctness

Let W(l) denote the collection of all write quorums under Coh(l), and R(l), the

collection of all read quorums. Below, we prove that the pair (W(l), R(l)), l1, is an

ND wr-coterie. Note that later we call (W(l), R(l)) cohort coterie.

Theorem 3.3. The pair (W(l), R(l)) is a wr-coterie for l1.

Proof: The proof is by induction on the value of l.

Basis (l=1):

Consider Coh(1)({u1,...,um}), where m>1. Then, under Coh(1), the only write

quorum is {u1,...,um} and the read quorums are {u1},...,{um}. It is obvious that these

quorums satisfy all of (P1), (P2), (P3) and (P4). Therefore, (W(1), R(1)) is a wr-

coterie, and the theorem holds for the basis case.

Induction Hypothesis:

36

We assume that (W(l), R(l)) is a wr-coterie satisfying (P1), (P2), (P3) and (P4) for

some l, l1.

Induction Step:

Consider Coh(l+1)(C1,...,Cl+1). Let Cl+1={u1,...,um}, where m>1 (note that m

should be larger than one according to the Cohorts structure definition in Section 2).

Then, a write quorum of W(l+1) may be of the form: either (form-1) {u1,...,um} or

(form-2) {ui}any quorum of W(l) for 1im. A read quorum of R(l+1) may be of

the form: either (form-1) {u1,...,um} or (form-2) {ui}any quorum of R(l) for 1im.

Below, we show that (W(l+1), R(l+1)) satisfies (P1), (P2), (P3) and (P4) on the basis

of induction hypothesis.

Satisfaction of (P1): The form-1 write quorum overlaps any form-2 write quorum

since {u1,...,um}{ui}={ui}. Two form-2 write quorums overlap each other since

by hypothesis any two quorums of W(l) overlap each other. (And trivially, the form-1

write quorum overlaps itself.)

Satisfaction of (P2): The form-1 write quorum overlaps any form-2 read quorum

since {u1,...,um}{ui}={ui}. In the same way, the form-1 read quorum overlaps

any form-2 write quorum. Any form-2 write quorum overlaps any form-2 read

quorum since by hypothesis any quorum of W(l) overlaps any quorum of R(l). And

obviously, the form-1 write quorum overlaps the form-1 read quorum.

Satisfaction of (P3): The form-1 write quorum is not a proper subset of any form-2

write quorum since {u1,...,um} is not a proper subset of any quorum in W(l) (by

C1,...,Cl+1 being pairwise disjoint) and {u1,...,um}  {ui} (by m>1). Any form-2 write

quorum is not a proper subset of the form-1 write quorum since any quorum in W(l)

is not a proper subset of {u1,...,um} (by C1,...,Cl+1 being pairwise disjoint). Any form-

2 write quorum is not a proper subset of any form-2 write quorum since by

37

hypothesis any quorum in W(l) is not a proper subset of any quorum in W(l). (And

trivially, the form-1 write quorum is not a proper subset of itself.)

Satisfaction of (P4): The proof is similar to that provided in Satisfaction of (P3)

and is omitted.

By now, on the basis of induction hypothesis, we have shown that (W(l+1),

R(l+1)) satisfies (P1), (P2), (P3) and (P4), which means (W(l+1), R(l+1)) is a wr-

coterie.

Thus, by the induction principle, (W(l), R(l)) is a wr-coterie for arbitrary l, l1. •

Now, the reason why we restrict each cohort of a Cohorts structure to contain

more than one replica is clearit is for the correctness of the minimality properties

(P3) and (P4). Note that the first cohort (C1) having only one replica will not violate

the minimality properties but will make the set of all write quorums and the set of all

read quorums identical. We prefer to have different sets of read and write quorums so

that we can treat read and write operations differently when facing practical systems

where the numbers of read and write operations are usually quite different. Therefore,

we still limit C1 to contain more than one replica.

By now, we have proved that (W(l),R(l)) is a wr-coterie. Below, we further prove

that (W(l),R(l)) is nondominated. We start by showing the relation between f
W ()l

 and

f
l

d

R()
 with the aid of Boolean algebra laws [Lip79].

Lemma 3.1. f
W ()l

= f
l

d

R()
 for l1.

Proof: The proof is by induction on the value of l.

Basis (l=1):

38

Consider Coh(1)({u1,...,um}), where m>1. Under Coh(1), the only write quorum

is {u1,...,um} and the read quorums are {u1},...,{um}. We have f
W(1)

=(u1...um) and

f
R()1

=(u1 ...um). Since f d
R()1 = (u1'  ... um')' = (u1')'  ... (um')' = (u1 ...

um)= f
W(1)

 (by De Morgan's law and (ui')
' = ui), the lemma holds for the basis case.

Induction Hypothesis:

We assume that f
W ()l

= f
l

d

R()
 for some l, l1.

Induction Step:

Consider Coh(l+1)(C1,...,Cl+1). Let Cl+1={u1,...,um}, where m>1. Then, a quorum

of W(l+1) may be of the form: either (1) {u1,...,um} or (2) {ui}  any quorum of W(l),

for 1im. A quorum of R(l+1) may be of the form: either (1) {u1,...,um} or (2) {ui}

 any quorum of R(l), for 1im. Thus, we have fW(l+1) = (
i m1,...,

 ui)  (
i m1,...,

 ui

fW(l)(X)) and fR(l+1) = (
i m1,...,

 ui)  (
i m1,...,

 ui fR(l)(X)), where X is a vector that can

represent subsets of C1...Cl. Note that below fW(l)(X) and fR(l) (X) are occasionally

abbreviated as fW(l) and fR(l), respectively.

Below, we show that f
l

d

R()1
 = fW(l+1) on the basis of induction hypothesis. We

have

fR(l+1) = (
i m1,...,

 ui)  ((
i m1,...,

 ui)  fR(l)) (by distributive law)

= (
i m1,...,

 ui)  (fR(l)  (
i m1,...,

 ui)) (by commutative law).

Therefore,

f
l

d

R()1
 = ((

i m1,...,
 ui')  (fR(l)(X')  (

i m1,...,
 ui')))' (by definition of f

l

d

R()1
)

= (
i m1,...,

 ui')
'  (fR(l) (X')  (

i m1,...,
 ui'))

' (by De Morgan's law)

= (
i m1,...,

 ui')
'  (f

l
'

R()
 (X')  (

i m1,...,
 ui')

') (by De Morgan's law)

= (
i m1,...,

 (ui')
')  (f

l
'

R()
(X')  (

i m1,...,
 (ui')

')) (by De Morgan's law)

= (
i m1,...,

 ui)  (f
l

'
R()

 (X')  (
i m1,...,

 ui)) (by involution law, i.e., (ui')
' = ui)

39

= (
i m1,...,

 ui)  (f
l

d

R()
  (

i m1,...,
 ui)) (since f

l

d

R()
= f

l
'

R()
(X') by definition)

= (
i m1,...,

 ui)  (fW(l)  (
i m1,...,

 ui)) (since f
W ()l

= f
l

d

R()
 by hypothesis)

= ((
i m1,...,

 ui)  fW(l))  ((
i m1,...,

 ui)  (
i m1,...,

 ui)) (by distributive law)

= ((
i m1,...,

 ui)  fW(l))  (
i m1,...,

 ui) (since (
i m1,...,

ui)  (
i m1,...,

ui) = (
i m1,...,

ui))

= (
i m1,...,

 ui)  ((
i m1,...,

 ui)  fW(l)) (by commutative law)

= (
i m1,...,

 ui)  (
i m1,...,

 ui fW(l)) (by distributive law)

=fW(l+1)

Therefore, by the induction principle, we have f
W()k

= f
k

d

R()
 for any l, l1. •

Theorem 3.4. (W(l),R(l)) is a nondominated wr-coterie for any l, l1.

Proof: This is a direct consequence of Theorem 3.3, Lemma 3.1, and Corollary 3.1.

 •

3.5 Analysis and comparison

In this section we analyze and compare the quorums under Coh(l) with some

other types of quorums in terms of availability and quorum size. Below, we assume

that all data replicas have the same up-probability p, the probability that a single

replica is up (i.e., accessible). We also use Si to denote Ci for 1il, where Ci is the

ith cohort of Coh(l)=(C1,...,Cl).

3.5.1 Availability

The read (resp., write) availability is defined to be the probability of a read (resp.,

write) quorum being successfully formed in an error-prone environment. For l>1, if

all replicas in Cl are up, then a read (or write) quorum under Coh(l) can be formed.

On the other hand, if at least one replica but not all replicas in Cl are up, then one of

the up replicas together with a read (resp., write) quorum under Coh(l1) can form a

read (resp., write) quorum under Coh(l). Let AVR(l) denote the availability of read

40

quorums under Coh(l), and AVW(l), the availability of write quorums under Coh(l).

For l>1, we have

AVR(l) = Prob.(all replicas in Cl are up) +

 Prob.(at least one replica but not all replicas in Cl are up)  AVR(l1)

 = pSl + (1 pSl  (1p)Sl)AVR(l1) (3.1)

AVW(l) = Prob.(all replicas in Cl are up) +

 Prob.(at least one replica but not all replicas in Cl are up)  AVW(l1)

 = pSl + (1 pSl  (1p)Sl)AVW(l1) (3.2)

For l=1, if at least one replica in C1 is up, then a read quorum under Coh(1) can be

formed. And all replicas in C1 are required to be up to form a write quorum under

Coh(1). Thus, we have AVR(1)=(1(1p)S1) and AVW(1)=pS1 .

A fixed number of replicas can be arranged as a variety of Cohorts structures. To

reduce the number of analysis cases, we limit all cohorts to have the same size s; that

is, we assume C1=...=Cl=s (i.e., S1=...=Sl=s) for Coh(l)=(C1,...,Cl). Below, we use

Coh(l,s) to denote such a structure.

When Coh(l,s) is considered, the recursive equations (3.1) and (3.2) can be

regarded as first-order linear difference equations [DOSE86]*, which can be solved

analytically. We have

AVR(l)=(1ps(1p)s)l1(1(1p)sps/(ps+(1p)s)) + (ps/(ps+(1p)s)) (3.3)

AVW(l)=(1ps(1p)s)l1(psps/(ps+(1p)s)) + (ps/(ps+(1p)s)) (3.4)

We first apply equations (3.3) and (3.4) to investigate the influence of cohort

sizes under a fixed number of replicas. We assume the following Cohorts structures

for a 30-replica system: Coh(15,2), Coh(10,3), Coh(6,5), Coh(5,6), Coh(3,10) and

Coh(2,15). The read availabilities corresponding to those structures are depicted in

* A first-order linear difference equation of the form Xk=aXk1+b for k2 with X1 being the first term

has as its kth term Xk=ak1(X1+b/(a1))(b/(a1)) if a1.

41

Figure 3.2, which reveals that larger cohort sizes usually render the read availability

higher (because they make the construction of type-1 read quorums easier). The write

availabilities corresponding to those structures are depicted in Figure 3.3, which

reveals that smaller cohort sizes usually render the write availability higher (because

they make the construction of write quorums easier).

There are trade-offs between the read availability and the write availability.

However, one can choose a proper cohort size according to practical situations, such

as the fractions of read and write operations, and the constraints on the lowest read or

write availabilities, etc. Since the read availabilities are on the upper side and the

write availabilities are on the lower side, we suggest adopting small cohort sizes, say

3 or 5, so that both the read and write availabilities are comparably high. We do not

suggest adopting the cohort size of 2, which leads to lower write availabilities than

those resulting from sizes of 3 and 5 for large up-probability p (e.g., for p>0.75).

Note that most practical systems have large up-probability p, under which the cohort

size of 2 causes a relatively large probability of no replica in a cohort being up,

which prohibits the construction of any quorum.

We now apply equations (3.3) and (3.4) to investigate the asymptotic value of

quorum availability. When l goes to infinity, the term (1ps(1p)s)l1 goes to 0, and

both AVR(l) and AVW(l) go to ps/(ps+(1p)s)=1/(1+((1p)/p)s). In other words, the

asymptotic availability of the quorums under Coh(l) is 1/(1+((1p)/p)s). For p=0.5,

the asymptotic availability is 0.5 whatever the cohort size is. For p<0.5, (1p)/p is

larger than 1 and thus ((1p)/p)s increases as s grows. It is easy to see that the smaller

s is, the larger the asymptotic availability is. For p>0.5, (1p)/p is less than 1 and

thus ((1p)/p)s decreases as s grows. It is easy to see that the larger s is, the larger the

42

asymptotic availability is. To sum up, smaller cohort sizes are preferable when p<0.5

and larger cohort sizes are preferable when p>0.5. However, we still suggest

adopting small cohort sizes because the asymptotic availability is high even for small

cohort sizes when p>0.5. For example, when s=3, the asymptotic availability is

0.998630, 0.984615 and 0.927027 for p=0.9, 0.8 and 0.7, respectively. When s=4, the

asymptotic availability is 0.999847, 0.996108 and 0.967365 for p=0.9, 0.8 and 0.7,

respectively.

3.5.2 Quorum size

In this section, we analyze the size of quorums under Coh(l,s). Both the smallest

read and write quorums under Coh(l,s), l>>s, are of size s; such quorums are formed

by including only all replicas in the last cohort. This is a desirable property since the

message cost for accessing replicated data is directly proportional to the quorum size.

However, the size of the largest quorums under Coh(l,s), l>>s, are of size O(n). The

largest read quorum, which is composed of one replica from each of C1,...,Cl, is of

size l=n/s. And the largest write quorum, which is composed of all replicas of C1 and

one replica from each of C2,...,Cl, is of size s+l1=s+n/s1.

Using the lower and the upper quorum size bounds to estimate data access cost

may be too optimistic and too pessimistic respectively. Below, we analyze the

expected quorum size as estimation of average cost for accessing replicated data. Let

ESR(l) and ESW(l) denote respectively the expected sizes of read and write quorums

under Coh(l). We apply parameter f, which is also adopted in the tree quorum

algorithm [AE91], to indicate the fraction of the quorums composed of only all

replicas in Cl (note that f is used in the tree quorum algorithm [AE91] to indicate the

fraction of quorums including the root node). For l>1, we have

43

ESR(l)=fSl+(1f)(1+ESR(l1))=(fSl+1f)+(1f)ESR(l1) (3.5)

ESW(l)=fSl+(1f)(1+ESW(l1))=(fSl+1f)+(1f)ESW(l1) (3.6)

The term fSl arises because there are f quorums of size Sl that are composed of

only all replicas in Cl. And the term (1f)(1+ESR(l1) (resp., (1f)(1+ESW(l1))

arises because there are (1f) quorums of size ESR(l1)+1 (resp., ESW(l1)+1) that

are composed of not all replicas of Cl, but one replica of Cl and one quorum under

Coh(l1). Since one arbitrary replica of C1 can form a read quorum under Coh(1),

and all replicas in C1 can form a write quorum under Coh(1), we have ESR(1)=1 and

ESW(1)=S1.

When Coh(l,s), l>>s, is considered, the case of f=1 corresponds to the lower

bound of the quorum size, which occurs when all the replicas in Cl are always

included in the quorum. On the other hand, the case of f=0 corresponds to the upper

bound of the quorum size, which occurs when a larger quorum is always chosen

instead of a smaller one. Note that the probability that all replicas in Cl are up (i.e., pS)

can reflect the value of f. For example, the value of f can be reflected by

0.653=0.274625 when p=0.65 and s=3.

Under Coh(l,s) where S1=...=Sl=s, the recursive equations (3.5) and (3.6) can be

regarded as first-order linear difference equations and can be solved analytically. For

f>0, we have

ESR(l)=(1f)l1(1(fs+1f)/f) + (fs+1f)/f (3.7)

ESW(l)=(1f)l1(s(fs+1f)/f) + (fs+1f)/f (3.8)

When l goes to infinity (and so does n), the term (1f)l1 goes to 0, and hence

both ESR(l) and ESW(l) go to (fs+1f)/f=s+(1/f)1, which is a constant. In other words,

the expected size of the quorum under Coh(l,s) remains constant when n grows. It is

44

easy to see that smaller s or larger f produces smaller asymptotic expected quorum

size. Take the following four cases for example: (case 1) f=0.5, s=3 (case 2) f=0.5,

s=5 (case 3) f=0.25, s=3 and (case 4) f=0.25, s=5. The asymptotic expected quorum

sizes for these four cases are 4, 6, 6 and 8, respectively.

3.5.3 Comparison

In this section we first describe some related algorithms [AE91, BG84, CAA92,

Kum91, KRS93, KC91, Nei92, Tho79] that generate quorums of a wr-coterie. We

then compare the cohort coterie (CC) with the wr-coteries corresponding to these

algorithms in terms of quorum size, quorum availability and the nondominance

property.

The simplest replica control scheme is the read-one-write-all algorithm (ROWA)

[BG84], in which any replica can form a read quorum and all the replicas can form a

write quorum. ROWA can be regarded as a special case of our proposed method—

when the Cohorts structure with only one cohort containing all the replicas is applied.

The wr-coterie corresponding to ROWA (referred to as ROWAC later) is thus ND.

The majority quorum algorithm [Tho79] requires both the read and the write

quorums to have over half (i.e., at least (n+1)/2) replicas; thus, its quorum size is

O(n). The wr-coterie corresponding to the majority quorum algorithm (denoted as

MC) has been shown to be ND if n is odd [GB85]

Some algorithms [AE91, Kum91] form quorums with the aid of tree structures.

By placing replicas in leaves of a mutilevel tree with non-leaf nodes being logical,

the hierarchical quorum algorithm [Kum91] achieves O(n0.63) quorum size. Its

quorum forming is hierarchical: a quorum of a node at level i is formed if enough

(over half) quorums of its child nodes at level i+1 are formed. Thus, any two

45

quorums formed at the root have a non-empty intersection and can be used as a write

(or read) quorum. Although not explicitly stated, the wr-coterie corresponding to the

hierarchical quorum algorithm (referred to as HC later) can be proved to be ND with

some remarks in [NM92]. It is ND if each non-leaf node has odd number of child

nodes in the multilevel tree.

Assuming replicas are logically organized as a binary tree, the tree quorum

algorithm [AE91] has log n quorum size in the best case. Its quorum forming (for

both read and write quorums) is recursive and can be regarded as attempting to

obtain replicas from nodes along a root-to-leaf path. If the root fails, then the

obtaining should follow two paths: one root-to-leaf path on the left subtree and one

root-to-leaf path on the right subtree. The largest quorum is composed of all leaf

nodes and is of size (n+1)/2; however, it has been shown in [AE91] that the tree

quorum algorithm has O(log n) quorum size for most practical environments. The

wr-coterie corresponding to the tree quorum algorithm (referred to as TC later) has

been shown to be ND in [MN92].

In the grid algorithm [CAA92], replicas are organized as a rectangular grid of l

rows and m columns, where lm=n (the number of replicas). A column-cover, which

contains one replica of each column, can form a read quorum, and a column-cover

along with all replicas of some column can form a write quorum. Thus, a read

quorum contains m replicas and a write quorum contains l+m1 replicas. If a square

grid is assumed, i.e., l=m= n , then both the read and write quorums have O(n)

size.

The wr-coterie corresponding to the grid algorithm (referred to as GC later) is

dominated by CC (the cohort coterie), which means that if a quorum can be formed

46

in GC then a quorum can be formed in CC. Below, we verify the last statement.

Consider the Cohorts structure Coh(l,s), which is exactly a l-column, s-row grid

structure. Under such a structure, a write quorum of GC is a super set of some write

quorum under Coh(l,s) (by the definitions of the two quorums discussed), and a read

quorum of GC is actually a type-1 read quorum under Coh(l,s) (and CC still has type-

2 read quorums). Therefore, we can conclude that GC is dominated by CC.

In the hierarchical grid algorithm [KC91], a hierarchical grid structure is used in

which nodes at the lowest level 0 are physical replicas and nodes at level i (i>0) are

defined as a square grid of level i1 nodes. The quorum forming is recursive and is

identical to that of the grid algorithm if viewed at a single level. The read (resp.,

write) quorum formed at the top level allows a read (resp., write) operation to

proceed. If a square grid structure is assumed in each level, the hierarchical grid

algorithm also owns O(n) quorum size for both write and read quorums. The

hierarchical grid algorithm has the property that its quorum availability increases

asymptotically when more replicas are used, a property not owned by grid algorithm.

The wr-coterie corresponding to the hierarchical grid algorithm (referred to as HGC

later) is dominated since GC is dominated.

The general grid algorithm [KRS93] improves the grid algorithm by regarding

either a column-cover or a full column of replicas as a read quorum (this

improvement was also suggested independently in [Nei92]) and by allowing the

existence of empty (hollow) grid positions that correspond to no data replica. It has

been shown in [KRS93] that empty grid positions usually make quorum availability

higher. The wr-coterie corresponding to the general grid algorithm (referred to as

GGC later) has been shown to be ND in [KRS92]. GGC has the same write quorum

47

size as GC and any GGC's write quorum is a super set of some CC's write quorum.

However, any CC's read quorum is a super set of some GGC's read quorum.

A summary of quorum sizes of some of the discussed wr-coteries appears in

Table 3.1. Availability comparisons of CC, ROWAC, MC and TC for 15- and 31-

replica systems appear in Figures 3.4 and 3.5. When CC is concerned, we assume

that replicas are arranged as Coh(5,3) in the 15-replica system, and as

Coh(10)=(C1,...,C10), where C1 =...= C9 =3 and C10 =4, in the 31-replica system

(recall that we suggest adopting small cohort sizes except 2). The formulas for

calculating the availabilities of ROWAC, MC and TC are discussed below.

It is easy to see that ROWAC's read and write availabilities are 1(1p)n and pn,

respectively. MC does not differentiate read quorums from write quorums. Its

availability is given in [AE91] as

Prob.(h replicas are up) + Prob.(h+1 replicas are up) + ... + Prob.(n replicas are up)

= []C(,) [(1)]()n i p pi n i

i h

n

   



 , where h=(n+1)/2.

Assuming data replicas are organized as a binary tree T, TC's availability is given in

[AE91] as

Availability(T) =

Prob.(T's root is up)Availability(T's left subtree)Unavailability(T's right subtree)

+

Prob.(T's root is up)Unavailability(T's left subtree)Availability(T's right subtree)

+

Prob.(T's root is up)  Availability(T's left subtree)  Availability(T's right subtree)

+

Prob.(T's root is not up)  Availability(T's left subtree)  Availability(T's right

subtree).

48

Figures 3.4 and 3.5 reveal that the read availability and the write availability of

ROWAC are almost bounds of those of other wr-coteries. The availability of TC is

better (resp., worse) than that of MC when up-probability is smaller (resp., larger)

than 0.5. For a wide range of up-probabilities, the read (resp., write) availability of

CC is a little better (resp. worse) than the availability of TC.

3.6 Summary

In this chapter, we have devised a method to construct quorums of an ND wr-

coterie; the method survives network partitioning and can easily be extended to

maintain replicated data consistency. With the aid of a logical structure named

Cohorts, the method constructs quorums of constant size in the best case. When

some replicas are inaccessible, the quorum size increases gradually and may be as

large as O(n), where n is the number of replicas. However, the expected quorum size

has been shown to remain constant as n grows. This is a desirable property since the

message cost for accessing the replicated data is directly proportional to the quorum

size. In addition, the availability of the constructed quorum has been shown to be

asymptotically high. With the two propertiesconstant expected quorum size and

asymptotically high availability, the proposed method is thus applicable to systems

possessing an increasing number of replicas. We have also analyzed and compared

the constructed quorums with others in terms of availability and quorum size.

49

49

 MC HC TC GC HGC CC

Lower

Bound (n+1)/2
 O(n

0.63
) log n

 O(n
0.5

) O(n
0.5

) s

Upper

Bound (n+1)/2
 O(n

0.63
) (n+1)/2

 O(n
0.5

) O(n
0.5

) O(n)

MC: The wr-coterie corresponding to the majority quorum algorithm [Tho79].

HC: The wr-coterie corresponding to the hierarchical quorum algorithm [Kum91].

TC: The wr-coterie corresponding to the tree quorum algorithm [AE91].

GC: The wr-coterie corresponding to the grid algorithm [CAA92].

HGC: The wr-coterie corresponding to the hierarchical grid algorithm [KC91].

CC: The cohort coterie (under Coh(l,s), where l>>s).

Table 3.1 Bounds on quorum sizes for various wr-coteries.

50

50

Function Get_Write_Quorum(Coh(l)=(C1,...,Cl): Cohorts Structure): Set;

Var S: Set;

 If l < 1 Then Exit(failure); // Illegal function call, claim failure //

 S = wlock(Cl);

 If S = Cl Then Return(S);

 If S = 1 Then Return(SGet_Write_Quorum(Coh(l1)=(C1,...,Cl1));

 If S =  Then Exit(failure); // Unable to form a write quorum, claim failure //

End Get_Write_Quorum

Function Get_Read_Quorum(Coh(l)=(C1,...,Cl): Cohorts): Set;

Var S: Set;

 If l < 1 Then Exit(failure); // Illegal function call, claim failure //

 S = rlock(Cl);

 If S = Cl Then Return(S);

 If S = 1 and l > 1 Then Return(SGet_Read_Quorum(Coh(l1)=(C1,...,Cl1));

 If S = 1 and l = 1 Then Return(S);

 If S =  Then Exit(failure); // Unable to form a read quorum, claim failure //

End Get_Read_Quorum

Figure 3.1 Functions that can generate read and write quorums under Coh(l).

51

51

Up-probability

A
v
a
i
l
a
b
i
l
i
t
y

0

0 .1

0 .2

0 .3

0 .4

0 .5

0 .6

0 .7

0 .8

0 .9

1

0 0 .1 0 .2 0 .3 0 .4 0 .5 0 .6 0 .7 0 .8 0 .9 1

Coh(15,2)

Coh(10,3)

Coh(6,5)

Coh(5,6)

Coh(3,10)

Coh(2,15)

Figure 3.2 The availability of read quorums under various Cohorts structures.

52

52

Up-probability

A
v
a
i
l
a
b
i
l
i
t
y

0

0 .1

0 .2

0 .3

0 .4

0 .5

0 .6

0 .7

0 .8

0 .9

1

0 0 .1 0 .2 0 .3 0 .4 0 .5 0 .6 0 .7 0 .8 0 .9 1

Coh(15,2)

Coh(10,3)

Coh(6,5)

Coh(5,6)

Coh(3,10)

Coh(2,15)

Figure 3.3 The availability of write quorums under various Cohorts structures.

53

53

Up-probability

A
v
a
i
l
a
b
i
l
i
t
y

0

0 .1

0 .2

0 .3

0 .4

0 .5

0 .6

0 .7

0 .8

0 .9

1

0 0 .1 0 .2 0 .3 0 .4 0 .5 0 .6 0 .7 0 .8 0 .9 1

ROWAC(Read)

ROWAC(Write)

MC

TC

CC(Read)

CC(Write)

Figure 3.4 The availability comparison of various wr-coteries
for the 15-replica system.

54

54

Up-probability

A
v
a
i
l
a
b
i
l
i
t
y

0

0 .1

0 .2

0 .3

0 .4

0 .5

0 .6

0 .7

0 .8

0 .9

1

0 0 .1 0 .2 0 .3 0 .4 0 .5 0 .6 0 .7 0 .8 0 .9 1

ROWAC(Read)

ROWAC(Write)

MC

T C

CC(Read)

CC(Write)

Figure 3.5 The availability comparison of various wr-coteries
for the 31-replica system.

55

Chapter 4

Constructing k-coteries

of constant expected quorum size

1. Introduction

A distributed system is a collection of sites that may communicate with each

other by exchanging messages. K-mutual exclusion algorithms concern themselves

with controlling the sites such that at most k sites can simultaneously access their

critical sections. Such algorithms can be used to coordinate the sharing of a resource

that can be allocated to no more than k sites at a time. Several distributed k-mutual

exclusion algorithms [FYA91, HJK93, KFYA94, Nai93, Ray89, SR92] are proposed

in the literature; some of them [FYA91, HJK93, KFYA94] rely on the concept of k-

coteries. A k-coterie [FYA91, HJK93] is a family of sets (called quorums) in which

any (k+1) quorums contain at least a pair of quorums intersecting each other. The

concept of k-coteries is an extension of that of coteries [GB85]; that is, an 1-coterie

(the value of k is taken as 1) is exactly a coterie. K-mutual exclusion algorithms using

k-coteries require a site to collect enough permissions (votes) to form a quorum

before accessing the critical section; they are fault-tolerant in the sense that a quorum

may still be formed even when network partitioning [DGS85] occurs and makes

some sites unavailable.

56

In this chapter, we propose a method for constructing k-coteries; the method can

easily be extended to be a solution to distributed k-mutual exclusion. The solution

utilizes a logical structure named Cohorts to construct quorums of O(k) (k is a

constant independent of n) size in the best case. When some sites are inaccessible,

the quorum size increases gradually and may be as large as O(n), where n is the

number of sites. However, the expected quorum size is shown to remain constant as

n grows. This is a desirable property since the message cost for accessing the critical

section is directly proportional to the quorum size. We have also analyzed the

availability of the constructed quorums and find that the availability of the

constructed quorums is comparably high in comparison with those of relevant ones.

The remainder of this chapter is organized as follows. In section 4.2, we elaborate

the concept of k-coteries. Then, in Section 4.3, we introduce the Cohorts structure

and show how to construct quorums with its aid. In Section 4.4, we show that the

collection of the constructed quorums is an k-coterie. In Section 4.5, we analyze and

compare the constructed quorums with others in terms of availability and quorum

size. At last, we conclude this chapter with Section 4.6

4.2 Preliminaries of k-coteries

A k-coterie [FYA91] C is a family of non-empty subsets of an underlying set U,

which is a set containing all system sites u1,...,un. Each member Q in C is called a

quorum, and the following properties should hold for the quorums. The reader should

note that an 1-coterie (the value of k is taken as 1) is exactly a coterie [GB85]

introduced in Chapter 2.

57

Non-intersection Property:

For any h (< k) pairwise disjoint quorums Q1, ... , Qh in C, there exists one quorum

Qh+1 in C such that Q1, ..., Qh+1 are pairwise disjoint.

Intersection Property:

There are no m, m > k, pairwise disjoint quorums in C (i.e., there are at most k

pairwise disjoint quorums in C).

Minimality Property:

There are no two quorums Q1 and Q2 in C such that Q1 is a super set of Q2.

For example, {{u1, u3}, {u1, u4}, {u2, u3}, {u2, u4}} is a 2-coterie under

U={u1,...,u4} because it satisfies all the properties of a 2-coterie—given one quorum

Q1, we can always find another quorum Q2 such that Q1 and Q2 are disjoint; there are

at most two pairwise disjoint quorums; and every quorum is not a super set of

another quorum.

By the intersection and the non-intersection properties, the k-coterie can be used

to develop algorithms to achieve k-entry critical sections. To enter the critical section,

a site is required to receive permissions from all the members of some quorum in the

system. By the intersection property, no more than k sites can form quorums

simultaneously, so no more than k sites can access the critical section at the same

time. The non-intersection property assures that if there exists one unoccupied entry

of the critical section, then some site that waits for entering the critical section can

proceed. Again, the minimality property for the k-coterie is for the enhancement of

efficiency.

4.3 Construction of quorums

58

In this section, we present the Cohorts structure and propose an algorithm

(function Get_Quorum in Figure 4.1) that can generate quorums with its help.

A Cohorts structure Coh(k,l)=(C1,...,Cl) is a list of pairwise disjoint sets; each set

Ci is called a cohort. The Cohorts structure should observe the following two

properties:

(P1) C1=k.

(P2) i : 1<il: Ci>max(2k2,k), where max(a,b)=a, if ab; otherwise, max(a,b)=b.

 (Note that max(2k2, k)=2k2 when k >1; max(2k2, k)=k when k=1.)

To sum up, a Cohorts structure Coh(k,l) has l pairwise disjoint cohorts with the

first cohort having k members and the other cohorts having more than 2k2 members

(or more than one member when k=1). For example, ({u1, u2}, {u3, u4, u5}, {u6, u7, u8,

u9, u10}) is Coh(2,3) since it has three pairwise disjoint cohorts with the first cohort

and the other cohorts having 2 (=k) and more than 2 (=2k2) members, respectively.

In this chapter, a member of a cohort is assumed as a physical site in the system,

and henceforth, the words "site" and "member" are used exchangeably.

A set Q is said to be a quorum under Coh(k,l) if some cohort Ci in Coh(k,l) is

Q's primary cohort, and each cohort Cj, j > i, is Q's supporting cohort, where

(D1) a cohort C is Q's primary cohort if QC=C(k1) (i.e., Q contains all except

k1 members of C), and

(D2) a cohort C is Q's supporting cohort if QC=1 (i.e., Q contains exactly one

member of C).

For example, the following sets are quorums under Coh(2,2)=({u1,u2},

{u3,u4,u5}):

Q1={u3, u4}, Q2={u3, u5}, Q3={u4, u5},

59

Q4={u1, u3}, Q5={u1, u4}, Q6={u1, u5},

Q7={u2, u3}, Q8={u2, u4}, Q9={u2, u5}.

Quorums Q1,...,Q3 take {u3, u4, u5} as their primary cohort and no supporting cohort

is needed, and quorums Q4,...,Q9 take {u1, u2} as their primary cohort and {u3, u4, u5}

as their supporting cohort. It is easy to check that these nine sets constitute a 2-

coterie.

Note that for a quorum Q under Coh(k,l), the larger Q's primary cohort's index

(subscript) is, the fewer the number of Q's supporting cohorts is. No supporting

cohort is necessary when Cl is selected as Q's primary cohort.

A function called Get_Quorum, which can produce quorums under Coh(k,l), is

shown in Figure 4.1. Function Get_Quorum can be modified and extended to solve

the distributed k-mutual exclusion problem. In such a case, as in other quorum-based

algorithms, a site is allowed to access the critical section after obtaining permissions

from all sites of a quorum; a site is to return all its obtained permissions on leaving

the critical section. Since a site may hold some permissions while waiting for other

permissions, deadlock may thus occur. Mechanism proposed in [Mae85] or [San87]

or [KFYA94] may be incorporated to avoid deadlock (and starvation); however, the

details are not our focus and are thus omitted.

4.4 Correctness

In this subsection, we prove that the collection of quorums under Coh(k,l) is a k-

coterie. Below, we will refer to such a k-coterie as cohort coterie.

Theorem 4.1. The collection of quorums under Coh(k,l) is a k-coterie for any l, l1.

Proof: (by induction on the value of l)

60

Basis: l=1.

Consider Coh(k,1)=(C1). Let C1 be {u1,...,uk} (note that by (P1) C1=k). Then, all

the quorums under Coh(k,1) are {u1},...,{uk}. Those quorums obviously satisfy the

non-intersection, the intersection, and the minimality properties of a k-coterie; hence,

the theorem holds for the basis case.

Induction Hypothesis:

Assume the collection of quorums under Coh(k,l1) is a k-coterie, i.e., quorums

under Coh(k,l1) satisfy the non-intersection, the intersection, and the minimality

properties.

Induction Step:

On the basis of the induction hypothesis, we show below that quorums under

Coh(k,l) satisfy the non-intersection, the intersection, and the minimality properties

of a k-coterie.

Let Cl={u1,...,us}, where s=Cl>max(2k2, k) (by (P2)). Then, a quorum under

Coh(k,l) may be of the form: either (form-1) a set of s(k1) members of Cl, or

(form-2) {ui}  a quorum under Coh(k,l1), 1is. Note that Cl serves as the

primary cohort for a form-1 quorum, and serves as a supporting cohort for a form-2

quorum.

 Satisfaction of the non-intersection property:

Suppose there are h, h<k, pairwise disjoint quorums Q1,...,Qh under Coh(k,l). We

show that there still exists one quorum Qh+1 under Coh(k,l) such that Q1,...,Qh+1 are

pairwise disjoint. There are two cases to consider: (1) all h quorums are of form-2,

and (2) one quorum is of form-1 and h1 quorums are of form-2. Note that at most

one of the quorums Q1,...,Qh can be of form-1, for any two quorums of form-1 are not

disjoint because s(k1)+s(k1)>s (by s>max(2k2, k)).

61

(1) All h quorums Q1,...,Qh are of form-2:

It follows that Q1,...,Qh take totally h (h<k) sites from Cl with sh sites left. Note

that sh>sks(k1). Let Qh+1 be a set that involves sk+1 sites left in Cl. It is

obvious that Qh+1 is a quorum under Coh(k,l) and Q1,...,Qh+1 are pairwise disjoint.

(2) One quorum (say Qh) is of form-1, and h1 quorums (say Q1,...,Qh1) are of

form-2:

It follows that Qh takes s(k1) sites from Cl and each of Q1,...,Qh1 takes one site

from Cl. So, there are s(s(k1)+(h1))=kh (> 0, by h<k) sites left in Cl. Suppose

that each form-2 quorum Qi, 1ih1, contains a quorum Ri under Coh(k,l1), where

R1,...,Rh1 are pairwise disjoint. Then, by hypothesis, we can find a quorum R under

Coh(k,l1) such that R1,...,Rh1 and R are pairwise disjoint. Let Qh+1 = R  the set of

one arbitrary site left in Cl. It is obvious that Qh+1 is a quorum under Coh(k,l) and

Q1,...,Qh+1 are pairwise disjoint.

 Satisfaction of the intersection property:

Assume that there are m, m>k, pairwise disjoint quorums under Coh(k,l). There

are three cases to consider: (1) all m quorums are of form-2, (2) one quorum is of

form-1 and m1 quorums are of form-2, and (3) at least tow quorums are of form-1.

For each case, we show that a contradiction occurs to conclude that there are at most

k pairwise disjoint quorums under Coh(k,l).

(1) All m quorums are of form-2:

This means that there are m, m>k, pairwise disjoint quorums under Coh(k,l1),

which is a contradiction because, by hypothesis, there are at most k pairwise disjoint

quorums under Coh(k,l1).

62

(2) One quorum (say Qm) is of form-1, and m1 quorums (say Q1,...,Qm1) are of

form-2:

This means that Qm obtains s(k1) sites from Cl, and Q1,...,Qm1 obtain totally

m1 sites from Cl. This is a contradiction since s(k1)+m1=s+(mk)>s (by m>k).

(3) At least two quorums are of form-1:

Let Q1 and Q2 be two of the quorums of form-1. Then either of Q1 and Q2 takes

s(k1) sites of Cl. This is a contradiction because s(k1)+s(k1)>s (by s>

max(2k2, k)).

 Satisfaction of the minimality property:

Any form-1 quorum is not a super set of any form-2 quorum because a quorum

under Coh(k,l1) is not contained in any set with sk+1 sites of Cl. Also, any form-2

quorum is not a super set of any form-1 quorum because sk+1>1 (by s>max(2k2,

k)). And it is obvious that any form-1 quorum is not a super set of another form-1

quorum, and any form-2 quorum is not a super set of another form-2 quorum (note

that by hypothesis any quorum under Coh(k,l1) is not a super set of another quorum

under Coh(k,l1)).

By now, on the basis of induction hypothesis, we have shown that the collection

of quorums under Coh(k,l) is a k-coterie. Therefore, by the induction principle, the

theorem holds for any l, l1. •

4.5 Analysis and comparison

In this section we analyze and compare quorums under Coh(k,l) with some other

types of quorums in terms of availability and quorum size. Below, we assume that all

sites have the same up-probability p, the probability that a single site is up (i.e.,

63

accessible). We also use Si to denote Ci  for 1il, where Ci is the ith item of

Coh(k,l)=(C1,...,Cl). And we use PR(s, a, b) to denote
i a

b


 [C(s, i)  pi  (1p)si], the

probability that there exist a or a+1 or ... or b up members in a cohort with s

members.

4.5.1 Availability

The availability of a coterie is defined as the probability that a quorum can be

successfully formed. Since up to k pairwise disjoint quorums can be simultaneously

formed in a k-coterie, we should discuss up to k cases for the availability of a k-

coterie: the probability of a quorum being formed successfully, the probability of two

pairwise quorums being formed successfully,..., and the probability of k pairwise

disjoint quorums being formed successfully. The (k,h)-availability, 1hk, [KFYA93]

is defined to be the probability that h pairwise disjoint quorums of a k-coterie can be

formed successfully; it is used as a measure for the fault-tolerant ability of a solution

using k-coterie.

Let AV(h,l) be the function evaluating the probability that h pairwise disjoint

quorums under Coh(k,l) can be formed simultaneously. Function AV(h,l) has the

following two boundary conditions:

(1) AV(0,l) = 1.

(2) AV(h,1) = PR(S1, h, S1). (Note that a quorum takes only one member from the

first cohort to make it the primary cohort because S1k+1=kk+1=1).

There are two possibilities for h quorums under Coh(k,l) to be (recursively)

constructed:

(1) One quorum is constructed with Slk+1 up sites of Cl (Cl thus serves as the

primary cohort), and each of the other h1 quorums is constructed with a quorum

64

under Coh(k,l1) and an up site in Cl (Cl thus serves as a supporting cohort). Note

that no two pairwise disjoint quorums can take Cl as their primary cohort, for (P2)

Sl>max(2k2, k) implies 2(Slk+1)>Sl.

(2) Each of the h quorums is constructed with a quorum under Coh(k,l1) and an up

site in Cl (Cl thus serves as a supporting cohort).

For the first case, Cl should have at least (Slk+1)+(h1)=Slk+h up members to

be the primary cohort for one quorum and supporting cohorts for the remaining h1

quorums. And for the second case, Cl should have at least h up sites to be supporting

cohorts for the h quorums. However, the possibility of Cl having at least Slk+h up

members should be ruled out from the second case since it has already been

considered in the first case. Hence, we have

AV(h, l)= AV(h1, l1)  PR(Sl, Slk+h, Sl) +

 AV(h, l1)  PR(Sl, h, Slk+h1) (4.1)

4.5.1 Quorum size

In this section we analyze the size of the quorums under Coh(k,l). As mentioned

earlier, for a quorum Q under Coh(k,l), the larger Q's primary cohort's index

(subscript) is, the fewer the number of Q's supporting cohorts is. No supporting

cohort is necessary when Cl is selected as Q's primary cohort. In such a case, Q has

size S, S=Sl(k1). For l=1, we have S=C1k+1=1 since by (P1) C1=k. For l>1, we

have S>max(2k2, k)(k1) since by (P2) Sl>max(2k2, k). If k=1, max(2k2, k)=k;

thus, we have S>max(2k2, k)(k1)=k(k1)=1 (i.e., S2). If k>1, then max(2k2,

k)=(2k2); thus, we have S>max(2k2, k)(k1)=2k2(k1)=k1 (i.e., Sk). To sum

up, the lower bound of the sizes of quorums under Coh(k,l) is k if l>1 and k>1, is 2 if

65

l>1 and k=1. As for the upper bound of the size of quorums under Coh(k,l), it

depends on the structure of Coh(k,l); it may be of O(n), however. For example, under

Cohorts structure Coh(2, (n2)/3)=({u1, u2}, {u3, u4, u5}, {u6, u7, u8},...,{un2, un1,

un}), the largest quorum is of size O(n). Such a case occurs when C1 is chosen as the

primary cohort with others being supporting cohorts.

The lower bounds and upper bounds of the quorum sizes of the cohort coterie and

the k-majority coterie are shown in Table 4.1.

The lower and upper bounds of the sizes of quorums under Coh(k,l) may be too

optimistic and too pessimistic, respectively. Below, we analyze the expected size of

quorums under Coh(k,l).

We apply the parameter f, as also used in [AE91], to indicate the fraction of

quorums that take the last cohort as the primary cohort. Thus, 1f is the fraction of

quorums that take the last cohort as a supporting cohort rather than the primary

cohort.

Let ES(l) denote the expected size of quorums under Coh(k,l). When l > 1, we

have

ES(l)= f(Slk+1)+ (1f)(1+ES(l1)) (4.2)

The term f(Slk+1) arises because there are f quorums of size (Slk+1); such quorums

take Cl as the primary cohort and are composed of (Slk+1) sites of Cl. And the term

(1f)(1+ES(l1) arises because there are (1f) quorums of size ES(l1)+1 that are

composed of one site of Cl and one quorum under Coh(k,l1). Since C1 contains k

site, a quorum under Coh(k,1) has size C1k+1=kk+1=1. That is, ES(1)=1.

66

If we further restrict cohorts C2,...,Cl to have an equal size s (i.e., S2=...=Sl=s),

equation (4.2) can be regarded as a first-order linear equation [DOSE86]* and be

solved analytically. Note that below we use Coh(k,l,s) to denote such Cohorts

structure. For l>1 and f>0, we have

ES(l)=(1f)l1(1s+k(1/f)) + (sk+(1/f)) (4.3)

When l goes to infinity (and so does n), the term (1f)l1 goes to 0, and hence ES(l)

goes to sk+(1/f), which is a constant. In other words, the expected size of the

quorum under Coh(k,l,s) remains constant when n grows. It is easy to see that smaller

s or larger f produces smaller asymptotic expected quorum size. Take the following

four cases for example: (case 1) f=0.5, s=3 (case 2) f=0.5, s=5 (case 3) f=0.25, s=3

and (case 4) f=0.25, s=5. When k=2, the asymptotic expected quorum sizes for these

four cases are 3, 5, 5 and 7, respectively.

When Coh(k,l,s), l>>s, is considered, the case of f=1 corresponds to the lower

bound of the quorum size, which occurs when Cl is always chosen as the primary

cohort. On the other hand, the case of f=0 corresponds to the upper bound of the

quorum size, which occurs when a larger quorum is always chosen instead of a

smaller one. Note that the probability that at least Clk+1 sites in Cl are up (i.e.,

PR(s,sk+1,s)) can reflect the value of f. For example, the value of f can be reflected

by PR(3,2,3)=0.71825 when s=3, k=2 and p=0.65.

4.5.3 Comparison

* A first-order linear difference equation of the form Xk=aXk1+b for k2 with X1 being the first term

has as its kth term Xk=ak1(X1+b/(a1))(b/(a1)) if a1.

67

In this subsection we compare the cohort coterie with the k-majority coterie

[KFYA93] and the k-singleton coterie [KFYA93] in terms of quorum size and

availability.

A k-singleton coterie is a family {{u1},...,{uk}}, where uiU, 1ik, and ui's are

distinct. It can be regarded as a special type of cohort coteries if we assume Cohorts

structure Coh(k,1)=({u1},...,{uk}) when generating quorums. Any set of

(n+1)/(k+1) sites can constitute a quorum of the k-majority coterie. Therefore, the

quorum size of the k-majority coterie is (n+1)/(k+1), which is of O(n). If there are

at least h(n+1)/(k+1), 1hk, up sites, then h quorums of the k-majority coterie

can be formed simultaneously. Let H=h(n+1)/(k+1). The (k,h)-availability of k-

majority quorums is then

Probability(H sites are available) +

Probability(H+1 sites are available) + ... +

Probability(n sites are available)=

[]C(,) [(1)]()n i p pi n i

i H

n

   





Figure 4.2 illustrates the (k,h)-availability, k=1,...,4 and h=1,..,k, of cohort coterie

for 53-site system. Note that we choose the 53-site system so that the Cohorts

structure Coh(k, l, 2k1), for k>1, or Coh(1, l, 2), for k=1, may fit for the system size.

The curves for the k-majority coterie are also depicted for comparison. When k=1,

the availability (i.e., (1,1)-availability) of cohort coterie is better (resp., worse) than

that of the k-majority coterie when up-probability p is smaller (resp., larger) than 0.5.

And when k>1, cohort coterie are better than k-majority coterie for almost every up-

68

probability in (3,3)-, (3,4)-, and (4,4)-availability (i.e., when both k and h are large).

The cohort coterie are better (resp., worse) than the k-majority coterie in (2,1)-, (2,2)-,

(3-1), and (3,2)-availability (i.e., when either k or h is small) if p is smaller (resp.,

larger) than a specific value (e.g., for k=3 and h=2, the specific value is about 0.5).

4.6 Summary

In this chapter, we have devised a method to construct quorums of a k-coterie; the

method survives network partitioning and can easily be extended to be a solution to

distributed k-mutual exclusion. With the aid of a logical structure named Cohorts, the

method constructs quorums of constant size in the best case. When some sites are

inaccessible, the quorum size increases gradually and may be as large as O(n), where

n is the number of sites. However, the expected quorum size has been shown to

remain constant as n grows. This is a desirable property since the message cost to

access the critical section is directly proportional to the quorum size. We have also

analyzed the availability of the constructed quorums and found that the availability of

the constructed quorums is comparably high.

69

k-majority coterie

cohort coterie

(under Coh(k,l), l>1)

Quorum size

(Lower Bound) (n+1)/(k+1)
2 (if k=1)

k (if k>1)

Quorum size

(Upper Bound) (n+1)/(k+1) O(n)

Table 4.1 Bounds on quorum sizes for the cohort coterie

 and the k-majority coterie.

Function Get_Quorum(Coh(k,l)=(C1,...,Cl): Cohorts Structure): Set;

VAR S: Set;

 If l < 1 Then Exit(failure); // Illegal function call, claim failure //

 S = Obtain(Cl);

 If S = Cl(k1) Then Return(S); // Cl can be the primary cohort //

 If S = 1 Then Return(SGet_Quorum(Coh(k,l1)=(C1,...,Cl1)));
 // Cl can be a supporting cohort but not the primary cohort //

 If S =  Then Exit(failure); // Unable to form a quorum, claim failure //

End Get_Quorum

Figure 4.1 A function that can generate quorums under Coh(k,l).

70

CC(h =1)

k -M C(h =1)

CC(h =2)

k -M C(h =2)

CC(h =3) CC(h =4)

k -M C(h =4)k -M C(h =3)

Up-probability

A
v
a
i
l
a
b
i
l
i
t
y

0

0 .1

0 .2

0 .3

0 .4

0 .5

0 .6

0 .7

0 .8

0 .9

1

0 0 .1 0 .2 0 .3 0 .4 0 .5 0 .6 0 .7 0 .8 0 .9 1

k=1

 Up-probability

A
v
a
i
l
a
b
i
l
i
t
y

0

0 .1

0 .2

0 .3

0 .4

0 .5

0 .6

0 .7

0 .8

0 .9

1

0 0 .1 0 .2 0 .3 0 .4 0 .5 0 .6 0 .7 0 .8 0 .9 1

k=2

Up-probability

A
v
a
i
l
a
b
i
l
i
t
y

0

0 .1

0 .2

0 .3

0 .4

0 .5

0 .6

0 .7

0 .8

0 .9

1

0 0 .1 0 .2 0 .3 0 .4 0 .5 0 .6 0 .7 0 .8 0 .9 1

k=3

 Up-probability

A
v
a
i
l
a
b
i
l
i
t
y

0

0 .1

0 .2

0 .3

0 .4

0 .5

0 .6

0 .7

0 .8

0 .9

1

0 0 .1 0 .2 0 .3 0 .4 0 .5 0 .6 0 .7 0 .8 0 .9 1

k=4

Figure 4.2 The (k,h)-availability comparison of the the cohort coterie (CC) and
 the k-majority coterie (k-MC) for the 53-site system.

71

Chapter 5

Constructing ND k-coteries

from known ND k-coteries

1. Introduction

A distributed system is a collection of sites that may communicate with each

other by exchanging messages. K-mutual exclusion algorithms concern themselves

with controlling the sites such that at most k sites can simultaneously access their

critical sections. Such algorithms can be used to coordinate the sharing of a resource

that can be allocated to no more than k sites at a time. Several distributed k-mutual

exclusion algorithms [FYA91, HJK93, KFYA94, Nai93, Ray89, SR92] are proposed

in the literature; some of them [FYA91, HJK93, KFYA94] rely on the concept of k-

coteries. A k-coterie [FYA91, HJK93] is a family of sets (called quorums) in which

any (k+1) quorums contain at least a pair of quorums intersecting each other. The

concept of k-coteries is an extension of that of coteries [GB85]; that is, an 1-coterie

(the value of k is taken as 1) is exactly a coterie. K-mutual exclusion algorithms using

k-coteries require a site to collect enough permissions (votes) to form a quorum

before accessing the critical section; they are fault-tolerant in the sense that a quorum

may still be formed even when network partitioning [DGS85] occurs and makes

some sites unavailable.

72

A k-coterie is said to dominate another k-coterie if and only if every quorum in

the dominated one is a super set of some quorum in the dominating one. The

dominating one obviously has more chance than the dominated one for a quorum to

be formed successfully in an error-prone environment. Thus, we should always

concentrate on nondominated (ND) k-coteries that no k-coterie can dominate.

Theorem 2.1 in [GB85] can be used to check the nondominance of coteries (1-

coteries). On the basis of this theorem, many coteries proposed in the literature have

been shown to be ND, such as the majority coterie (proposed in [Tho79] and shown

to be ND for some special cases in [GB85]), the tree coterie (proposed in [AE91] and

shown to be ND in [NM92]), the composite coterie (proposed and shown to be ND in

[NM92]), the level coterie (proposed and shown to be ND in [SW93a]), the Lovasz

coterie (proposed and shown to be ND in [Nei93]), and so on. Several k-coteries have

been proposed in the literature, such as the cohorts coterie [HJK93], the k-majority

coterie [KFYA93], and the k-singleton coterie [KFYA93]. The cohorts coterie is

dominated (as shown in [NM94]), the k-majority coterie is ND for some special cases,

and the k-singleton coterie is ND. The nondominance of the last two k-coteries will

be addressed later.

In this chapter, we first introduce a theorem for checking the nondominance of k-

coteries. Then, we define a special type of ND k-coteries—strongly nondominated

(SND) k-coteries, and propose two operations—union and join—for generating new

SND k-coteries from known SND k-coteries. An SND k-coterie is also an ND one, but

not vice versa. We further show that every ND 1-coterie and every ND 2-coterie are

SND. Thus, known ND 1-coteries and ND 2-coteries can be directly applied to the

union or join operation to generate new SND k-coteries. We also show that the k-

73

singleton coterie is SND and that under some special conditions, the k-majority

coterie is SND as well. An independently developed paper [NM94] also discussed

properties of ND k-coteries; it introduced a theorem about ND k-coteries and two

methods to generate ND k-coteriesthe weighted voting (similar to the construction

method of the k-majority coterie) and the composition (the same as the union

operation). However, only part of the theorem introduced in [NM94] is proved

correctly, thus, only part of the theorem can be assumed to be tenable. Later, we will

point out the mistakes of [NM94] at proper places.

The remainder of this chapter is organized as follows. In Section 5.2, we

introduce some related work. Then, in Section 5.3, we discuss ND k-coteries: we

present a theorem for checking the nondominance of k-coteries, give the definition of

SND k-coteries, and investigate some properties of SND k-coteries. Next, in Section

5.4, we introduce the two operations, union and join. The correctness of the two

operations is also verified in this section. And finally, we conclude this chapter with

Section 5.5.

5.2 Related Work

In this section, we review some related work about ND k-coteries. Since k-

coteries are extended from coteries, below we first introduce the concept of coteries.

In the following context we let U be the underlying set of all system sites. Note that

we may not specify U wherever there is no ambiguity.

The concept of coteries was first proposed by Garcia-Molina and Barbara [GB85].

A coterie [GB85] C under U is a family of non-empty subsets of U; each member of

74

C is called a quorum. The following properties should hold for the quorums in a

coterie:

Intersection Property:

 There are no two quorums Q1 and Q2 in C such that Q1  Q2 = 

Minimality Property:

 There are no two quorums Q1 and Q2 in C such that Q1 is a proper subset of Q2.

For example, C ={{1, 2}, {2, 3}, {2, 3}} is a coterie under U={1, 2, 3} because

every pair of quorums have a non-empty intersection, and no quorum is a proper

subset set of another quorum.

By the intersection property, the coterie can be used to develop mutual exclusion

(1-mutual exclusion) algorithms in distributed systems. To enter the critical section, a

site is required to receive permissions from all sites of some quorum. Since any pair

of quorums have at least one member in common, mutual exclusion is then

guaranteed. The reader should note that the minimality property is not necessary for

the correctness of mutual exclusion algorithm but is used to enhance efficiency.

Mutual exclusion algorithms using coteries are fault-tolerant because even in the

presence of inaccessible sites, quorums including no inaccessible sites may still be

found.

Let C and D be two coteries. D is said to dominate [GB85] C if and only if (C 

D) and (RC SD, S  R). For example, coterie D = {{1, 2}, {1, 3}, {1, 4}, {2, 3,

4}} dominates coterie C = {{1, 2, 3}, {1, 2, 4}, {1, 3, 4}, {2, 3, 4}} because for

every quorum R in C, we can find a quorum S in D such that S is a subset of R.

75

Coterie D is more resilient to site and/or communication link failures than coterie C.

Assuming that a site or a communication link failure occurs to make both site 2 and

site 3 unavailable, then no quorum can be formed in C, but one quorum {1, 4} can

still be formed in D.

A coterie is said to be nondominated (ND) if no coterie can dominate it. A

dominating coterie, such as D in the last paragraph, is superior to a dominated coterie,

such as C in the last paragraph because if a quorum can be formed in the dominated

one, then a quorum can be formed in the dominating one. Thus, we should always

focus on the ND coteries. However, checking the nondominance of a coterie seems to

be a hard problem, as mentioned in [GB85].

The following Theorem 5.1 is actually Theorem 2.1 developed by Garcia-Molina

and Barbara in [GB85]. This theorem is useful in examining the nondominance of

coteries.

Theorem 5.1. Let C be a coterie under U. Then, C is dominated if and only if there

exists a set SU such that

L1. For any quorum RC, RS.

L2. For any quorum RC, RS=.

By Theorem 5.1, if there does not exist a set satisfying (L1) and (L2) for a coterie

C, then C is ND; otherwise, C is not ND (dominated).

There are many ND coteries proposed in the literature, such as the majority

coterie [Tho79], the tree coterie [AE91], the composite coterie [NM92], the level

coterie [SW93], the Lovasz coterie[Nei93], and so on. The majority coterie

corresponds to the majority quorum consensus algorithm [Tho79], in which each

76

quorum is required to have the majority (over half) of sites. This coterie is shown to

be ND when n is odd [GB85], where n is the cardinality of the underlying set U. The

quorum of the tree coterie is formed by the tree quorum algorithm [AE91]. By

organizing system sites into a binary tree, the tree-quorum algorithm forms a quorum

recursively; it attempts to obtain permissions from nodes along a root-to-leaf path. If

the root node fails, then the obtaining should follow two paths: one root-to-leaf path

on the left subtree and one root-to-leaf path on the right subtree. The tree coterie is

shown to be ND in [NM92]. The composite coterie [NM92] is generated by joining

two coteries. As shown in [NM92], if the coteries used for joining are both ND, then

the composite coterie is also ND (see Section 5.4.2 for more details of joining two

coteries). By logically organizing sites into different levels (except the last one, every

level should have more than one sites), a quorum of the level coterie [SW93a] is

formed by obtaining permissions from all sites in some level (say i) and one site in

each of levels i1, i2,...,1. The level coterie, as shown in [SW93a], is ND if the last

level has exactly one site. If the last level has more than one sites, then the following

steps should be taken to make the level coterie ND: (1) construct an ND coterie C

under the set of the last-level sites, and (2) when the last level is considered,

permissions from sites in any quorum of C (instead of all sites in the last level) and

one site in every level (except the last level) are enough to form a quorum of the level

coterie. The Lovasz coterie [Nei93] is based on a partition of the underlying set U.

Let P={P1, P2, ... , Pm} be a partition of U (i.e., Pi's are pairwise disjoint and
i

m




1

 Pi =

U) such that Pi  =i. A quorum in the Lovasz coterie is formed by obtaining

permissions from all the sites in Pi and one site from each Pj, where i<jm. The

Lovasz coterie has been shown to be ND in [Nei93]. Note that the Lovasz coterie can

77

be regarded as a special case of the level coterie (by reversing the indices of the

levels).

Below, we introduce the concept of k-coteries. Two different definitions of k-

coteries are given in the literature: the one by Fujita, Yamashita and Ae [FYA91],

and the one by Huang, Jiang and Kuo [HJK93]. The former is more restrictive than

the latter, and we adopt the more restrictive one (i.e., the one proposed by Fujita,

Yamashita and Ae [FYA91]), however.

A k-coterie [FYA91] C under U is a family of non-empty subsets of U; each

member Q in C is called a quorum. The following properties should hold for the

quorums in a k-coterie C.

Non-intersection Property:

For any h (< k) pairwise disjoint quorums Q1,...,Qh in C, there exists one quorum

Qh+1 in C such that Q1,...,Qh+1 are pairwise disjoint.

Intersection Property:

There are no m, m > k, pairwise disjoint quorums in C (i.e., there are at most k

pairwise disjoint quorums in C).

Minimality Property:

There are no two quorums Q1 and Q2 in C such that Q1 is a proper subset of Q2.

For example, {{1,2}, {3,4}, {1,3}, {2,4}} is a 2-coterie because it satisfies all the

properties of a 2-coterie—given one quorum Q1, we can always find another quorum

78

Q2 such that Q1 and Q2 are disjoint; there are at most two pairwise disjoint quorums;

and every quorum is not a proper subset of another quorum.

K-coteries can be used to develop k-mutual exclusion algorithms [FYA91,

HJK93, KFYA94]. To enter the critical section, a site is required to obtain

permissions from all sites of some quorum. By the intersection property, no more

than k sites can form quorums simultaneously, so no more than k sites can access the

critical section at the same time. The non-intersection property assures that if there

exists one unoccupied critical section entry, then some site that is not in the critical

section can enter the critical section. Again, the minimality property has nothing to

do with the correctness of k-mutual exclusion algorithms; it is only for the

enhancement of efficiency. K-mutual exclusion algorithms using k-coteries are fault-

tolerant in the sense that even though there are inaccessible sites in the system,

quorums not including inaccessible sites may still be found.

According to the definition of coterie nondominance [GB85], the nondominance

of k-coteries can also be defined identically. We will leave all of problems of ND k-

coteries to be discussed in the next section.

5.3 ND k-coteries

In this section, we address some properties about nondominated k-coteries. We

start by giving, according to the definition of coterie domination, the definition of

domination of k-coteries:

Definition 5.1.

79

Let C and D be two k-coteries. D dominates C if and only if (CD) and (RC S

D, SR).

(We say that S is the quorum that dominates R.)

For example, consider the following 2-coteries:

 A = { {1, 2}, {3, 4}, {1, 3}, {2, 4} }

 B = { {1, 2}, {3, 4}, {1, 3}, {2, 4}, {1, 4}, {2, 3} }

 C = { {1, 2}, {1, 3}, {2, 3}, {4} }

It is easy to see that A is dominated by both B and C, and B is dominated by C.

The dominating k-coterie (such as C) is superior to the dominated k-coterie (such

as A or B) since if a quorum can be formed in the latter then a quorum can be formed

in the former. Thus, we should always concentrate on the nondominated (ND) k-

coteries that no k-coteries can dominate. In the light of Theorem 5.1, we introduce

Theorem 5.2 for the examination of k-coterie nondominance. In comparison with

Theorem 5.1, Theorem 5.2 merely has "only if" part, and (L1) is the same as (L1),

and when k is taken as 1, (L2) is the same as (L2).

A theorem (Theorem 2.1 in [NM94]) similar to Theorem 5.2 has been

independently developed. Theorem 5.2 and Theorem 2.1 in [NM94] are identical

except that the latter has "if" and "only if" parts and the former just asserts the "only

if" part. The proof of the "if" part of Theorem 2.1 in [NM94] is not correct because it

depends on the following incorrect assertion that if there exists a set satisfying (L1)

and (L2) for a k-coterie C and there is no super set of S in C, then C{S} is a k-

coterie that dominates C. Note that C{S} indeed satisfies the intersection and the

minimality properties but it may not fulfill the non-intersection property and hence C

{S} may not be a k-coterie. For example, let C={{1, 2}, {3, 4}} be a 2-coterie.

80

Then, S={1, 3} is a set satisfying (L1) and (L2) for C, and there is no super set of S in

C. It is easy to see that C{S}={{1, 2}, {3, 4}, {1, 3}} is not a 2-coterie since it

violates the non-intersection property.

Theorem 5.2. Let C be a k-coterie under U. Then, C is dominated only if there exists

a set SU such that

L1. For any quorum RC, R  S.

L2. For any k pairwise disjoint quorums R1,...,RkC, R1,...,Rk and S are not pairwise

disjoint.

Proof:

Assume that C is dominated by D. We show that (L1) and (L2) hold by

considering two cases: C  D or C  D.

For the first case, C  D. Let S be one of the quorums in DC. We have SD and

SC. On one hand, since each quorum R in C is also a quorum in D, and SR (by S

D and SC), (L1) must hold or else D would violate the minimality property. On the

other hand, since quorums R1,...,Rk in C are also quorums in D, (L2) must hold or

else D would violate the intersection property.

For the second case, C  D. Let R be one of the quorums in CD. We have RC

and RD. Further, let S be the member in D that dominates R; i.e., SD and SR.

Hence, we have SR (by SD and RD) and therefore SR. On one hand, we

assume that (L1) is false for S; i.e., there exists an R' such that R'C and R'S. We

have R'SR, which concludes that C violates the minimality property. This is a

contradiction, and thus (L1) must hold for S. On the other hand, we assume that (L2)

does not hold for S; i.e., we can find pairwise disjoint quorums R1,...,Rk in C such

that R1,...,Rk and S are pairwise disjoint. Let Si, 1ik, be the quorum in D that

81

dominates Ri (i.e., SiD and Si  Ri). Then, we have that S1,...,Sk and S are pairwise

disjoint, which concludes that D violates the intersection property. This is a

contradiction, and thus (L2) must hold for S. 

The contrapositve of Theorem 5.2—if we can not find any subset of U that

satisfies both (L1) and (L2) for a k-coterie C, then C is not dominated—can be used

to examine the nondominance of k-coteries. However, the existence of a set

satisfying (L1) and (L2) for a k-coterie C does not mean that C is dominated (i.e., C

may still be nondominated). Below, we define a more strict type of ND k-coteries—

strongly nondominated (SND) such that if, and only if, we can not find any subset of

U that satisfies both (L1) and (L2) for a k-coterie C, then can C be called an SND k-

coterie.

Definition 5.2.

Let C be a k-coterie. C is strongly nondominated (SND) if and only if we cannot find

a set satisfying (L1) and (L2) for C.

Note that by Theorem 5.2 and Definition 5.2, an SND k-coterie is also an ND k-

coterie, but not vice versa. In Section 4, we will introduce two operations that can

generate new SND k-coteries from known SND k-coteries. Below, we discuss some

properties about SND k-coteries. We first show the relation between SND and ND k-

coteries for k=1 and 2, and then show that for some special cases the k-majority

coterie [KFYA93] is SND and that the k-singleton coterie [KFYA93] is SND, too.

Theorem 5.3. Every ND 1-coterie is SND.

Proof:

82

Let C be an 1-coterie. By Theorem 5.1, we have that if C is not dominated (i.e.,

nondominated), then we can not find a set satisfying (L1) and (L2) for C, which

means that C is SND. 

As we have shown earlier, there are many ND 1-coteries proposed: the majority

coterie [Tho79], the tree coterie [AE91], the composite coterie [NM92], the level

coterie [SW93a], the Lovasz coterie[Nei93], and so on. As Theorem 5.3 states, these

ND coteries are all SND; they can be used to generate new SND k-coteries with the

operations developed in Section 4.

Now, we discuss the relation between ND and SND 2-coteries. Consider a 2-

coterie C for which we can find a set S satisfying (L1) and (L2). The following

function Reduce can reduce S to S' (S'=Reduce(C, S)) such that S' still satisfies (L1)

and (L2) for C.

Function Reduce(C: 2-coterie, S: Set): Set;

For (every member s in S) Do

 For (every two disjoint quorums Q1 and Q2 in C) Do

 If (S(Q1Q2))={s} Then goto Skip;

 EndFor

 S=S{s};

 Skip:

EndFor
Return(S);

End Reduce

Function Reduce checks each element s in S one by one: if there exists a pair of

disjoint quorums Q1 and Q2 in C such that (S(Q1Q2))={s} then s is retained in S;

83

otherwise s is removed from S (i.e., s is removed from S if for all pairs of disjoint

quorums Q1 and Q2 in C, either s(S(Q1Q2)) or (s(S(Q1Q2)) and S(Q1

Q2)>1)). It is obvious that S', S'=Reduce(C,S), still satisfies (L1) and (L2) for C and

there exists a pair of disjoint quorums Q1 and Q2 in C such that S'(Q1Q2)=1.

With the aid of function Reduce, we can show the following Lemma 5.1, by

which we can show Theorem 5.4 — every ND 2-coterie is SND.

Lemma 5.1. Let C be a 2-coterie. If we can find a set S satisfying (L1) and (L2) then

C is dominated.

Proof:

Let S'=Reduce(S). Then, S' satisfies (L1) and (L2) and there exist a pair of

disjoint quorums Q1 and Q2 such that S(Q1Q2)=1. Since Q1Q2=, we have S'

Q1= or S'Q2=; i.e., we can find a set Q (Q=Q1 or Q=Q2) such that QS'=.

Below, we consider two cases: either (1) there are no super set of S in C or (2)

there are quorums Q1,...,Qh in C such that Q1,...,QhS'.

(1). There is no super set of S in C. Let D=C{S'}. D is a 2-coterie because C is a 2-

coterie, S' satisfies (L1) and (L2), and we can find a set Q in C such that QS'=. It

is obvious that D dominates C.

(2). There are quorums Q1,...,Qm in C such that Q1,...,QmS'. Let D=(C{Q1,...,Qm})

{S'}. D is a 2-coterie because C is a 2-coterie, S' satisfies (L1) and (L2), Q1,...,Qm

S' (hence, for any quorum R in C{Q1,...,Qm}, if RQi=, 1im, then RS'=),

and we can find a set Q in C such that QS'=. It is obvious that D dominates C.

 

84

For example, consider a 2-coterie C={{1, 3}, {1, 4}, {2, 5}}. We can find a set

S={3, 4} satisfying (L1) and (L2) for C. Let S'=Reduce(C, S)={3, 4} and D=C

{S'}={{1, 3}, {1, 4}, {2, 5}, {3, 4}}. It is obvious that D is a 2-coterie and D

dominates C. For another example, consider a 2-coterie C={{1, 2}, {3, 4}}. We can

find a set S={1, 3} satisfying (L1) and (L2) for C. Let S'=Reduce(C, S)={3} and

D=(C{3, 4}){S'}={{1, 2}, {3}}. It is obvious that D is a 2-coterie and D

dominates C.

Theorem 5.4. Every ND 2-coterie is SND.

Proof:

Let C be a 2-coterie. By Lemma 5.1, we have that if C is not dominated (i.e.,

nondominated), then we can not find a set satisfying (L1) and (L2) for C, which

means that C is SND. 

By now, we have shown that every ND 1-coterie and every ND 2-coterie are SND.

Thus, we can use the operations provided in Section 5.4 to generate new SND k-

coteries from known ND 1-coteries and ND 2-coteries. However, the problem of

whether any ND k-coterie, k>2, is SND remains open.

Below, we show that the k-majority coterie is SND if (n+1) is a multiple of (k+1),

where n is the cardinality of U. Note that a k-majority coterie [KFYA93] is a k-

coterie that consists of quorums with (n+1)/(k+1) sites.

Theorem 5.5. Let C be a k-majority coterie. If (n+1) is a multiple of (k+1), then C is

SND.

Proof: (The proof is by contradiction)

85

Suppose C is not SND, then we can find a set S that satisfies (L1) and (L2). Let

R1,...,Rk be any pairwise disjoint quorums in C. We have

(1) (n+1)/(k+1) = (n+1)/(k+1) (since (n+1) is a multiple of (k+1))

(2) Ri = (n+1)/(k+1) for 1ik (by (1) and the k-majority coterie definition)

(3) S < (n+1)/(k+1) (by (L1))

(4) S > n(R1+...+Rk) (by (L2))

(5) S >nk(n+1)/(k+1)=(n+1)/(k+1)1 (by (2) and (4))

By (3) and (5), we have a contradiction. Therefore, C is SND. 

Below, we show that the k-singleton coterie [KFYA93] is also SND. Note that a

k-singleton coterie is a family {{u1},...,{uk}}, where uiU, for 1ik, and ui's are

distinct.

Theorem 5.6. Let C be a k-singleton coterie, then C is SND.

Proof:

Because we can not find a set satisfying (L1) and (L2) for a k-singleton coterie, it

is SND by definition. 

By now, we have shown that both the k-majority coterie (for the case of (n+1)

being a multiple of (k+1)) and the k-singleton coterie are SND. Thus, they can both

be used to generate new SND k-coteries with the operations provided in Section 4.

5.4 The Join and Union Operations

86

In this section, we introduce two operations,  (union) and  (join), which can

generate new SND k-coteries from known SND k-coteries. We first introduce 

(union), and then  (join).

5.4.1 Coterie Union Operation

Let U1 and U2 be two non-empty sets of sites, where U1U2=. Also, let X be a

k1-coterie under U1, and Y be a k2-coterie under U2. The coterie union operation  is

defined as XY={QQX or QY}.

Paper [NM94] has also proposed the union operation (called composite operation

in [NM94]) to produce new k-coteries from known k-coteries. However, part of its

correctness prove is based on Theorem 2.1 in [NM94], which is incorrect as

mentioned earlier.

Let U=U1U2 and Z=XY. The following Theorem 5.7 and Theorem 5.8 are

about properties of Z.

Theorem 5.7. Z is a (k1+k2)-coterie under U.

Proof:

There are at most k1+k2 pairwise disjoint quorums in Z because there are at most

k1 pairwise disjoint quorums in X and there are at most k2 pairwise disjoint quorums

in Y. Further, every quorum in Z is not a proper subset of any quorum in Z because

every quorum in X is not a proper subset of any quorum in X, every quorum in Y is

not a proper subset of any quorum in Y, and by U1U2=, every quorum in X (resp.,

Y) is not a proper subset of any quorum in Y (resp., X).

Below, we show that for any h, h<k1+k2, pairwise disjoint quorums Z1,...,Zh in Z,

we can find a quorum Zh+1 in Z such that Z1,...,Zh+1 are pairwise disjoint. Since Z=X

87

Y, we may assume that among Z1,...,Zh, there are h1 quorums (say X1,...,Xh1
) coming

from X and h2 quorums (say Y1,...,Yh2
) coming from Y, where h=h1+h2. Since h<k1+k2,

we have (1) h1<k1 or (2) h2<k2 because if not so (i.e., h1k1 and h2k2), we have

h=h1+h2k1+k2, which contradicts to h<k1+k2.

Without loss of generality, let h1<k1. Then, we can find a quorum X in X such that

X and X1,...,Xh1
 are pairwise disjoint since X is a k1-coterie. Moreover, X and Y1,...,Yh2

are pairwise disjoint since U1U2=. Hence, X and Z1,...,Zh are pairwise disjoint.

Let Zh+1=X; we then have that Zh+1Z and Z1,...,Zh+1 are pairwise disjoint.

Z satisfies all the properties of a (k1+k2)-coterie and it is obvious that any quorum

in Z is non-empty and is contained in U. Hence, Z is a (k1+k2)-coterie under U. 

Theorem 5.7 states that if X is a k1-coterie and Y is a k2-coterie, then Z=X  Y is

a (k1+k2)-coterie. For example, let X be a 2-coterie {{a, b},{c, d}, {a, c}, {b, d}}

under {a, b, c, d}, and Y be a coterie {{1, 2}, {1, 3}, {2, 3}} under {1, 2, 3}, then

Z=X  Y={{a, b},{c, d}, {a, c}, {b, d}, {1, 2}, {1, 3}, {2, 3}} is a 3-coterie under {a,

b, c, d, 1, 2, 3}.

Below, we discuss the nondominance property of Z in Theorem 5.8.

Theorem 5.8. If X and Y are SND, then Z is SND.

Proof: (The proof is by contradiction)

Suppose Z is not SND, then we can find a set S, SU, satisfying (L1) and (L2) for

Z. Let S1=SU1 and S2=SU2. Then, S1S and S2S. Further, S=S1S2 since U=U1

U2 and SU. By (L1), we have RZ, RS. Thus, we have RZ, RS1 and RZ,

88

RS2 because S1S and S2S. Since XZ and YZ (by Z=XY), we have RX, R

S1 and RY, RS2; i.e., S1 satisfies (L1) for X and S2 satisfies (L1) for Y.

Let X1,...,Xk1
 be any k1 pairwise disjoint quorums in X, and Y1,...,Yk2

 be any k2

pairwise disjoint quorums in Y. Then, X1,...,Xk1
Z and Y1,...,Yk2

Z. Since U1U2=,

we have X1,...,Xk1
 and Y1,...,Yk2

 are k1+k2 pairwise disjoint quorums in Z. By (L2),

X1,...,Xk1
, Y1,...,Yk2

 and S are not pairwise disjoint, or equivalently, (S1S2)((X1...

Xk1
) (Y1 ...Yk2

)) (note that S=S1S2 and X1,...,Xk1
, Y1,...,Yk2

 are pairwise

disjoint). We have (S1(X1...Xk1
))(S2(Y1...Yk2

)) by S1U1, S2U2,

X1,...,Xk1
U1, Y1,...,Yk2

 U2, and U1U2=. Hence, we have (1) S1(X1...Xk1
)

or (2) S2(Y1...Yk2
).

Without loss of generality, let S1(X1...Xk1
). Then, S1 satisfies (L2) for X

since we assume that X1,...,Xk1
 are any k1 pairwise disjoint quorums in X. Thus, X is

not SND since S1 also satisfies (L1) for X. A contradiction occurs; therefore, Z is

SND. 

On the basis of Theorem 5.7 and Theorem 5.8, the following two corollaries

exhibit the extension of the coterie union operation combining more than two known

SND k-coteries to generate new SND k-coteries.

Corollary 5.1. Let Z=Z1 ... Zi, where Z1 is an SND k1-coterie under U1,...,Zi is an

SND ki-coterie under Ui, and U1...Ui=. Then, Z is an SND (k1+...+ki)-coterie

under U, where U=U1...Ui. 

89

Corollary 5.2. Let Z=Z1 ... Zi, where Z1 is an SND 1-coterie under U1,...,Zi is an

SND 1-coterie under Ui, and U1...Ui=. Then, Z is an SND i-coterie under U,

where U=U1...Ui. 

5.4.2 Coterie Join Operation

The coterie join operation, which was first proposed by Neilsen and Mizuno

[NM92], provides a way of combining known 1-coteries to construct new, larger 1-

coteries. In this subsection, we will show how to derive new k-coteries from known

k-coteries and 1-coteries by the coterie join operation.

Let U1 and U2 be two non-empty sets of sites, xU1 and U1U2=. Also, let

U=(U1{x})U2. The coterie join operation x is defined by

X x Y={CTx(X,Y) XX, YY}

where X is a family of subsets of U1, Y is a family of subsets of U2, and

CTx(X,Y)=

X

X x Y x X

otherwise (Type 2)

if (Type1)({ })  








Let X be an 1-coterie under U1, Y be an 1-coteries under U2, and Z=X x Y.

Neilsen and Mizuno [NM92] have shown that Z is an 1-coterie under U and also that

Z inherits some properties (e.g., nondominance and dominance properties) from X

and Y. Below, we discuss the properties of the join operation when its first operand

and second operand are a k-coterie and an 1-coterie, respectively.

Let X be a k-coterie under U1, Y be an 1-coterie under U2, and Z=X x Y. On the

basis of Theorem 3.1 and Theorem 3.3 in [NM92] by Neilsen, we introduce the

following Theorem 5.9 and Theorem 5.10 about properties of Z.

90

Theorem 5.9. Z is a k-coterie under U.

Proof:

First, it is obvious that Z and ZU for any quorum ZZ.

Next, we will show that Z satisfies the intersection property; i.e., there exist at

most k mutually disjoint quorums in Z. For any Z1,...,Zk+1 Z, we show that Z1,...,Zk+1

are not pairwise disjoint by considering the following three cases:

(1). Z1,...,Zk+1 are all of type 2; i.e., Z1=X1,...,Zk+1=Xk+1 for certain quorums X1,...,Xk+1

X.

Since X is a k-coterie, there are at most k pairwise disjoint quorums in X. Thus,

X1,...,Xk+1 are not pairwise disjoint. Therefore, Z1,...,Zk+1 are not pairwise disjoint.

(2). One of Z1,...,Zk+1 is of type 1 and the others are of type 2.

Without loss of generality, we let Zi=Xi, where 1ik, XiX and xXi, and let

Zk+1=(Xk+1{x})Y, where Xk+1X, xXk+1 and YY. Since X is a k-coterie, there are

at most k pairwise disjoint quorums in X. Thus, X1,...,Xk+1 are not pairwise disjoint.

Since xXi, for 1ik, and xXk+1, we have that x will not be in the intersection of

any pair of quorums among X1,...,Xk+1. Thus, X1,...,Xk and (Xk+1{x}) are not pairwise

disjoint. So, X1,...,Xk and (Xk+1{x}) Y are not pairwise disjoint. Hence, Z1,...,Zk+1

are not pairwise disjoint.

(3). More than one quorum of Z1,...,Zk+1 is of type 1 and the others are of type 2.

Without lost of generality, we let Z1=(X1{x})Y1, where X1X and Y1Y, and

let Z2=(X2  {x}) Y2, where X2 X and Y2Y (note that we leave Z3,...,Zk+1

unspecified). Since Y is a coterie, Y1 and Y2 are not disjoint. So, Z1 and Z2 are not

disjoint. Hence, Z1,...,Zk+1 are not pairwise disjoint.

91

Next, we will show that Z satisfies the non-intersection property. Let Z1,...,Zh,

h<k, be any pairwise disjoint quorums in Z. We show that we can still find a quorum

Zh+1 in Z such that Z1,...,Zh+1 are pairwise disjoint. Note that any pair of type 1

quorums are not disjoint because every type 1 quorum contains a quorum of Y, and

no two quorums of Y are disjoint. Thus, for pairwise disjoint quorums Z1,...,Zh+1, we

only have to consider the following two cases:

(1). All of Z1,...,Zh are of type 2; i.e., Zi=Xi, 1ih, for some quorum XiX.

Since X is a k-coterie, we can find a quorum Xh+1 such that X1,...,Xh+1 are pairwise

disjoint. If xXh+1, then we let Zh+1=(Xh+1{x})Y for some quorum Y in Y. Then

Zh+1Z. Since X1,...,Xh+1U1, YU2, U1U2=, and X1,...,Xh+1 are pairwise disjoint,

Z1,...,Zh+1Z are pairwise disjoint. On the other hand, if xXh+1, we let Zh+1=Xh+1.

Then Zh+1Z. Since X1,...,Xh+1 are pairwise disjoint, Z1,...,Zh+1 (Z1,...,Zh+1Z) are

pairwise disjoint.

(2). One of Z1,...,Zh is of type 1, and the others are of type 2.

Without loss of generality, we let Zi=Xi, where 1ih1, XiX and xXi, and let

Zh=(Xh{x})Y, where XhX, xXh and YY. Since Z1,...,Zh are pairwise disjoint,

X1,...,Xh1 and ((Xh{x})Y) are pairwise disjoint, hence X1,...,Xh1 and (Xh{x}) are

pairwise disjoint. Thus, X1,...,Xh are pairwise disjoint since xX1,...,xXh1. Since X

is a k-coterie, we can find a quorum Xh+1 in X such that X1,...,Xh+1 are pairwise

disjoint. Since xXh, we have that xXh+1 or else X1,....,Xh+1 would not be pairwise

disjoint. Let Zh+1=Xh+1. Then Zh+1Z. Thus, we have that Z1,...Zh+1Z and Z1,...,Zh+1

are pairwise disjoint because X1,...,Xh+1U1, YU2, U1U2= and X1,...,Xh+1 are

pairwise disjoint.

92

Finally, we will show that Z satisfies the minimality property. Let Z1, Z2Z. We

will show that Z1Z2. There are four cases to consider:

(1). Z1=X1 and Z2=X2, where X1X, X2X, xX1 and xX2.

Since X is a k-coterie, X1X2, and hence Z1Z2.

(2). Z1=X1 and Z2=(X2{x})Y, where X1X, xX1, X2X, xX2 and YY.

Since X is a k-coterie, we have X1X2. So, there must exists x'U1 such that x'

X1, and x'X2. By U1U2=, we have x'Y. Thus, x'Z2 because x'X2 and x'Y.

So, Z1Z2 because x'Z1(=X1), but x'Z2.

(3). Z1=(X1{x})Y and Z2=X2, where X1X, xX1, X2X, xX2 and YY.

Assume Z1Z2, i.e., (X1{x})YX2. Since (X1{x})U1, X2U1, YU2 and U1

U2=, we have Y=. This is a contradiction because Y is a coterie having non-

empty quorums. Therefore, we have Z1Z2.

(4). Z1=(X1{x})Y1 and Z2=(X2{x})Y2, where X1X, Y1Y, xX1, X2X, Y2Y,

xX2.

Assume Z1Z2; i.e., ((X1{x})Y1)  ((X2{x})Y2). Since X1{x}U1, X2{x}

U1, Y1U2, Y2U2, and U1U2=, we have either (a) X1{x}X2{x} or (b) Y1

Y2. For both cases, we show a contradiction to conclude that Z1Z2.

(a). X1{x}X2{x} means X1X2, which contradicts to the minimality property of

k-coterie X.

(b). Y1Y2 contradicts to the minimality property of coterie Y. 

Theorem 5.9 states that if X is a k-coterie and Y is an 1-coterie, then Z=X x Y is

a k-coterie. For example, let X be a 2-coterie {{a, b},{c, d}, {a, c}, {b, d}} under {a,

b, c, d}, and Y be an 1-coterie {{1, 2}, {1, 3}, {2, 3}} under {1, 2, 3}, then Z=X a

93

Y={{1, 2, b}, {1, 3, b}, {2, 3, b}, {c, d}, {1, 2, c}, {1, 3, c}, {2, 3, c},{b, d}} is a 2-

coterie under {b, c, d, 1, 2, 3}. However, if X is an 1-coterie and Y is a k-coterie, then

Z may or may not be k-coterie. For example, let X be an 1-coterie { {1, 2}, {1, 3}, {2,

3}} under {1, 2, 3}, and Y be a 2-coterie {{a, b},{c, d}, {a, c}, {b, d}} under {a, b, c,

d}, then Z=X 3 Y={{1, 2}, {1, a, b}, {1, c, d}, {1, a, c}, {1, b, d} {1, 3}, {2, a, b},

{2, c, d}, {2, a, c}, {2, b, d}} is not a 2-coterie.

Below, let us discuss the nondominance property of Z in Theorem 5.10.

Theorem 5.10. If X and Y are SND, then Z is SND.

Proof: (The proof is by contradiction)

Assume that Z is not SND; i.e., there exists a set SU such that ZS for any

quorum Z in Z, and Z1,...,Zk and S are not pairwise disjoint for any k pairwise disjoint

quorums Z1,...,Zk in Z.

We will consider the relation between S and the quorums in Y. There are two

cases to consider: either (1) YY, YS or (2) YY, YS=.

In either case, we show that we can obtain a contradiction.

(1). YY, YS.

Let S1=(S{x})U1 and X1,...,Xk be any k pairwise disjoint quorums in X. Below,

we want to show that X1,...,Xk and S1 are not pairwise disjoint. There are two cases to

consider: either (a) none of X1,...,Xk involves x or (b) only one quorum of X1,...,Xk

involves x (note that if more than one quorums of X1,...,Xk involves x, then X1,...,Xk

would not be pairwise disjoint).

(a). None of X1,...,Xk involves x.

94

Since xX1,...,xXk, we have X1,...,XkZ. So, X1,...,Xk and S are not pairwise

disjoint. Hence, X1,...,Xk and S1 are not pairwise disjoint.

(b). Only one quorum of X1,...,Xk involves x.

Without loss of generality, we suppose only X1 involves x. It is obvious that

X1,...,Xk and S1 are not pairwise disjoint, for S1X1{x}.

So, we have shown that X1,...,Xk and S1 are not pairwise disjoint for any pairwise

disjoint quorums X1,...,XkX. We conclude that there must exist a quorum X*X

such that X*S1 or else S1 would satisfy both (L1) and (L2), and X would not be SND.

Let S2=SU2. Then, we have YY, YS2; hence (L2) holds. Therefore, there

must exist a quorum Y*Y such that Y*S2 or else S2 would satisfy both (L1) and

(L2), and Y would not be SND.

By now, we have shown that (X*X, X*S1) and (Y*Y, Y*S2). We further

consider the following two cases: (a) xX* or (b) xX*. For case (a), let Z*=(X*{x})

Y* and for case (b), let Z*=X*. It is obvious that Z*Z and Z*S. A contradiction

occurs since we assume that ZS for any quorum Z in Z.

(2). YY, YS=.

Let S1=SU1 and X1,...,Xk be any pairwise disjoint quorums in X. We want to

show that X1,...,Xk and S1 are not pairwise disjoint. There are two cases to consider:

either (a) none of X1,...,Xk involves x or (b) only one quorum of X1,...,Xk involves x

(note that if more than one quorums of X1,...,Xk involves x, then X1,...,Xk would not be

pairwise disjoint).

(a). None of X1,...,Xk involves x.

Since xX1,...,xXk, we have X1,...,XkZ. Therefore, X1,...,Xk and S are not

pairwise disjoint. Hence X1,...,Xk and S1 are not pairwise disjoint.

95

(b). Only one quorum of X1,...,Xk involves x.

Without loss of generality, suppose xX1,xX2,...,xXk. Let Z1=(X1{x})Y

where YY and YS= (we can find such a Y because we have assumed YY,

YS=), and let Z2=X2,...,Zk=Xk. Then Z1,...,ZkZ. Since Z1,...,Zk and S are not

pairwise disjoint, (X1{x})Y and X2,...,Xk are not pairwise disjoint. Since YS=

, it follows that X1,...,Xk and S1 are not pairwise disjoint.

By now, we have shown that X1,...,Xk and S1 are not pairwise disjoint for any

pairwise disjoint quorums X1,...,XkX. We conclude that (X*X, X*S1) or else S1

would satisfy (L1) and (L2) for X and X would not be SND. Since SU, U=(U1{x})

U2 and S1=SU1, we have xS1. It follows that xX* because xS1 and X*S1. Let

Z*=X*. Then Z*Z. Since Z*=X*, X*S1 and S1S (by S1=SU1), it follows that Z*

S. A contradiction occurs since we assume that ZS for any quorum Z in Z.

Therefore, we have shown that a contradiction occurs for both cases of (1) YY,

YS and (2) YY, YS=. Hence, Z is SND. 

5.5 Concluding remarks

K-coteries can be used to develop k-mutual exclusion algorithms that are resilient

to site and/or communication link failures. A k-coterie is superior to any k-coterie it

dominates; thus, we should always concentrate on the ND k-coteries that no k-coterie

can dominate. In this paper, we have introduced a theorem for examining the

nondominance of k-coteries, and define a special type of ND k-coteries—SND k-

coteries. We have also shown that the k-singleton coterie is SND and that the k-

majority coterie is SND for some special cases. Further, we have shown that every

96

ND 1-coterie and every ND 2-coterie are SND. However, the problem of whether

there every ND k-coterie, k>2, is SND remains open.

We have also proposed two operations, union and join, by which we can generate

new SND k-coteries form known SND k-coteries, such as the k-singleton coterie

[KFYA93], the k-majority coterie [KFYA93], the tree coterie [AE91], the composite

coterie [NM92], the level coterie [SW93a], the Lovasz coterie [Nei93], and so forth.

It is obvious that by mixing and repeating union and join operations, we can generate

a large number of SND k-coteries.

97

Chapter 6

Conclusion and future work

6.1 Conclusion

This chapter concludes our research on constructing novel quorum structures—

coteries, wr-coteries and k-coteries—that are nondominated (ND) and/or of constant

quorum size. The constructing methods survive network partitioning and can easily

be extended to solve the problems of distributed mutual exclusion, replicated data

consistency or distributed k-mutual exclusion. The nondominance property of the

quorum structures is favorable since nondominated quorum structures are candidates

to achieve optimal availability, the probability that a quorum can be formed in an

error prone environment. On the other hand, constant quorum size of the quorum

structures is preferable because when those quorum-constructing methods are applied

to solve the problems mentioned, the message cost are directly proportional to the

quorum size.

In Chapter 2, we have devised a method to construct quorums of an ND coterie;

the method can easily be extended to be a solution to distributed mutual exclusion.

The method utilizes a logical structure named Cohorts to construct quorums of

constant size in the best case. When some sites are inaccessible, the quorum size

increases gradually and may be as large as O(n), where n is the number of sites.

98

However, the expected quorum size has been shown to remain constant as n grows.

In addition, the availability of the constructed quorum has been shown to be

asymptotically high. With the two propertiesconstant expected quorum size and

asymptotically high availability, the proposed method is thus applicable to systems

possessing an increasing number of sites. We have also analyzed and compared the

constructed quorums with others in terms of availability and quorum size.

In Chapter 3, we have devised a method to construct ND wr-coteries; the method

can easily be extended for maintaining replicated data consistency. The method

utilizes a logical structure named Cohorts to construct quorums of constant size in

the best case. When some replicas are inaccessible, the quorum size increases

gradually and may be as large as O(n), where n is the number of replicas. However,

the expected quorum size has been shown to remain constant as n grows. In addition,

the availability of the constructed quorums has been shown to be asymptotically high.

With the two propertiesconstant expected quorum size and asymptotically high

availability, the proposed solution is thus applicable to systems possessing an

increasing number of replicas. We have also analyzed and compared the constructed

quorums with others in terms of availability and quorum size.

In Chapter 4, we have devised a method to construct k-coteries; the method can

easily be extended to be a solution to distributed k-mutual exclusion. The solution

utilizes a logical structure named Cohorts to construct quorums of constant size in

the best case. When some sites are inaccessible, the quorum size increases gradually

and may be as large as O(n), where n is the number of sites. However, the expected

quorum size has been shown to remain constant as n grows. We have also analyzed

99

the availability of the constructed quorums and found that the availability of the

constructed quorums is comparably high in comparison with those of relevant ones.

In Chapter 5, we have proposed a theorem for checking the nondominance of k-

coteries. We have also defined a special type of ND k-coteries—strongly

nondominated (SND) k-coteries, and proposed two operations (methods)—union and

join—for generating new SND k-coteries from known SND k-coteries. We have

further shown that every ND 1-coterie (i.e., coterie) and every ND 2-coterie are SND.

Thus, known ND 1-coteries and ND 2-coteries can be directly applied to the union

operation or the join operation to generate new SND k-coteries. We have also shown

that the k-singleton coterie is SND and that under some special conditions, the k-

majority coterie is SND as well.

6.2 Future work

Since the problem of whether any ND k-coterie, k>2, is SND remains open. We

would like to contribute ourselves to this problem in the future. This may ends up as

two cases: either we show that any ND k-coterie is SND or we show that there is an

ND k-coterie that is not SND.

The quorums generated by the methods proposed in Chapters 2 and 3 have been

shown to have asymptotically high availability. However, more work is needed to

accomplish the asymptotic availability analysis for the quorums generated by the

method proposed in Chapter 4. Moreover, we would like to analyze the asymptotic

availability for other related methods, such as the tree quorum algorithm and the

100

majority quorum algorithm, etc. Thus, we may have a comparison of our constructing

methods and those quorum-based algorithms on the aspect of asymptotic availability.

In addition to the applications of quorum structures on solving distributed mutual

exclusion, replicated data control and distributed k-mutual exclusion, quorum

structures can also be applied to solve many other problems, such as those of

distributed atomic commitment [AE91, Ske82], replicated data security [MN91] and

distributed consensus [NM91], etc. We would also like to concentrate ourselves on

finding new applications of quorum structures in the future.

101

Bibliography

[AA89]

M. Ahamad and M. H. Ammar, "Performance characterization of quorum-

consensus algorithms for replicated data," IEEE Trans. on Software

Engineering, vol. 15, no. 4, pp. 492-496, April 1989.

[AE90]

D. Agrawala and A. El Abbadi, "Exploiting logical structures in replicated

databases," Inf. Process. Lett., vol. 33, no. 5, pp. 255-260, Jan. 1990.

[AE91]

D. Agrawala and A. El Abbadi, "An efficient and fault-tolerant solution for

distributed mutual exclusion," ACM Trans. Comp. Syst., vol. 9, no. 1, pp. 1-20,

Feb. 1991.

[AE92a]

D. Agrawala and A. El Abbadi, "The generalized tree protocol: an efficient

approach for managing replicated data," ACM Trans. Database. Syst., vol. 17,

no. 4, pp. 689-717, Dec. 1992.

[AE92b]

D. Agrawala and A. El Abbadi, "Resilient logical structures for efficient

management of replicated data," in Proc. of the 18th VLDB Conf., Canada,

pp. 151-162. 1992.

[AJ92]

G. Agrawal and P. Jalote, "An efficient protocol for voting in distributed

systems," in Proc. 12th IEEE Internat. Conf. on Dist. Comput. Systems, pp.

640-647, May 1992.

[BG84]

P. A. Bernstein and N. Goodman, "An algorithm for concurrency control and

recovery in replicated distributed databases," ACM Trans. on Database Syst.,

vol. 9, no. 4, pp. 596-615, 1984.

[BG86]

D. Barbara and H. Garcia-Molina, "The vulnerability of vote assignments,"

ACM Trans. Comp. Syst., vol. 4, no. 3, pp. 187-213, 1986.

102

[BG87]

D. Barbara and H. Garcia-Molina, "The reliability of voting mechanisms,"

IEEE Trans. on Computers, vol. C-36, no. 10, pp. 1197-1208, Oct. 1987.

[BHG87]

P. A. Bernstein, V. Hadzilacos and N. Goodman, Concurrency control and

recovery in database Systems, Addison-Wesley, 1987.

[CAA92]

S. Y. Cheung, M. H. Ammar and M. Ahamad, "The grid protocol: a high

performance scheme for maintaining replicated data," IEEE Trans. Knowledge

and Data Engineering, vol. 4, no. 6, pp. 582-592, Dec. 1992.

[Chu94]

S. M. Chung, "Enhanced tree quorum algorithm for replica control in

distributed database systems", Data and Knowledge Engineering, vol. 12, pp.

63-81, 1994.

[CY94a]

H.-K. Chang and S.-M. Yuan, "Message complexity of hierarchical quorum

consensus algorithm," Inf. Process. Lett., vol. 50, pp. 69-73, 1994.

[CY94b]

H.-K. Chang and S.-M. Yuan, "Message complexity of the tree quorum

algorithm," in Proc. 14th IEEE Internat. Conf. on Dist. Comput. Systems, 1994.

[DGS85]

S. B. Davidson, H. Garcia-Molina, and D. Skeen, "Consistency in partitioned

networks," ACM Comput. Surv., vol. 17, no. 3, pp. 341-370, Sept. 1985.

[DOSE86]

J. A. Dossey, A. D. Otto, L. E. Spence and C. V. Eynden, Discrete

Mathematics, Scott, Foresman and Company, 1986.

[FYA91]

S. Fujita, M. Yamashita and T. Ae, "Distributed k-mutual exclusion problem

and k-coteries," in Proc. 2nd Internat. Symp. on Algorithms, Lecture Notes in

Computer Science 557, Springer, Berlin, pp. 22-31, 1991.

[GB85]

H. Garcia-Molina and D. Barbara, "How to assign votes in a distributed

system," JACM., vol. 32, no. 4, pp. 841-860, Oct. 1985.

[Gif79]

D. K. Gifford, "Weighted voting for replicated data," in Proc. 7th ACM

103

SIGOPS Symp. Oper. Syst. Principles, Pacific Grove, CA, pp. 150-159, Dec.

1979.

[HJK93]

S. T. Huang, J. R. Jiang and Y. C. Kuo, "K-coteries for fault-tolerant k entries

to a critical section," in Proc. 13th IEEE Internat. Conf. on Dist. Comput.

Systems, pp. 74-81, May 1993.

[IK93]

T. Ibaraki and T. Kameda, "A theory of coteries: mutual exclusion in

distributed systems," IEEE Trans. Parall. and Distrib. Syst., vol. 4, no. 7, pp.

779-794, July 1993.

[Jia95]

J.-R. Jiang, "Fault-tolerant distributed mutual exclusion with O(1) message

overhead," in Proceedings of the 12th IASTED International Conference on

Applied Informatics, pp. 228-231, Feb. 1995.

[JH94]

J.-R. Jiang and S.-T. Huang, "Obtaining nondominated k-coteries for fault-

tolerant distributed k-mutual exclusion," in Proceedings of 1994 International

Conference on Parallel and Distributed Systems, HsinChu, Taiwan, pp. 582-

587, Dec. 1994.

[KC91]

A. Kumar and S. Y. Cheung, "A high availability n hierarchical grid protocol

for replicated data," Inf. Process. Lett., vol. 40, no. 6, pp. 311-316, Dec. 1991.

[KFYA93]

H. Kakugawa, S. Fujita, M. Yamashita, and T. Ae, "Availability of k-coterie,"

IEEE Trans. Comput., vol. 42, no. 5, pp. 553-558, May 1993.

[KFYA94]

H. Kakugawa, S. Fujita, M. Yamashita, and T. Ae, "A distributed k-mutual

exclusion algorithm using k-coterie," Inf. Process. Lett., vol. 49, pp. 213-218,

Mar. 1994.

[KRS92]

A. Kumar, M. Rabinovich and R. K. Sinha, "A performance study of a new grid

protocol and general grid structures for replicated data," Technical Report,

Cornell University, 1992.

[KRS93]

A. Kumar, M. Rabinovich and R. K. Sinha, "A performance study of general

104

grid structures for replicated data," in Proc. 13th IEEE Internat. Conf. on Dist.

Comput. Systems, pp. 178-185, May 1993.

[Kum91]

A. Kumar, "Hierarchical quorum consensus: A new algorithm for managing

replicated data," IEEE Trans. Comp., vol. 40, no. 9, pp. 996-1004, Sep. 1991.

[LG94]

T. V. Lakshman and D. Ghosal, "Performance evaluation of an efficient

multiple copy update algorithm," IEEE Trans. on Parall. and Distrib. Syst., vol.

5, no. 2, pp. 217-224, Feb. 1994.

[Lip79]

S. Lipschutz, Theory and problems of set theory and related topics, Schaum

Publishing Company, 1979.

[Mae85]

M. Maekawa, "A n algorithm for mutual exclusion in decentralized systems,"

ACM Trans. Comput. Syst., vol. 3, no. 2, pp. 145-159, May 1985.

[MN91]

M. Mizuno and M. L. Neilsen, "A secure quorum protocol," in National

Computer Security Conference, pp. 514-523, 1991.

[Nai93]

M. Naimi, "Distributed algorithm for k-entries to critical section based on the

directed graphs," Operating Systems Review, vol. 27, no. 4, pp. 67-75, Oct.

1993.

[Nei92]

M. L. Neilsen, "Quorum structures in distributed systems," Ph. D. Thesis,

Kansas State University, May 1992.

[Nei93]

M. L. Neilsen, "Measures of importance and symmetry in distributed systems,"

in 5th IEEE Symposium on Parallel and Distributed Computing, Dallas, TX,

Dec. 1993.

[NM91]

M. L. Neilsen and M. Mizuno, "Decentralized consensus protocol," in in Proc.

of 10th International Phoenix Conf. on Computers and Communications, pp.

257-262, 1991.

105

[NM92]

M. L. Neilsen and M. Mizuno, "Coterie join algorithm," IEEE Trans. on Parall.

and Distrib. Syst., vol. 3, no. 5, pp. 759-765, Sept. 1992.

[NM94]

M. L. Neilsen and M. Mizuno, "Nondominated k-coteries for multiple mutual

exclusion," Inf. Process. Lett., vol. 50, no. 5, pp. 247-252, June 1994.

[Ray89]

K. Raymond, "A distributed algorithm for multiple entries to a critical section,"

Inf. Process. Lett., vol. 30, no. 4, pp. 189-193, Feb. 1989.

[RJT93]

S. Rangarajan, P. Jalote and S. K. Tripathi, "Capacity of Voting Systems," in

IEEE Trans. on Soft. Engineering, vol. 19, no. 7, pp. 698-706, July 1993.

[RST92]

S. Rangarajan, S. Setia and S. K. Tripathi, "A Fault-Tolerant Algorithm for

Replicated Data Management," in Proc. 1992 Internat. Conf. on Data

Engineering, pp. 230-237, 1992.

[San87]

Sanders, B. A. "The information structure of distributed mutual exclusion

algorithms," ACM Trans. Comput. Syst., pp. 284-299, Apr. 1987.

[Ske82]

D. Skeen, "A quorum based commit protocol," in Proc. 6th Berkeley Workshop

on Distributed Data Management and Computer Networks, pp. 69-80. Feb,

1982.

[SR92]

P. K. Srimani and R. L. N. Reddy, "Another distributed algorithm for multiple

entries to a critical section", Inf. Process. Lett., vol. 41, no. 1, pp. 51-57, Jan.

1992.

[SW93a]

D. Shou and S. D. Wang, "An efficient quorum generating approach for

distributed mutual exclusion," Journal of Information Science and Engineering,

vol. 9, pp. 201-227, 1993.

[SW93b]

D. Shou and S. D. Wang, "A new transformation method for nondominated

coterie design," Information Sciences, pp. 223-246, 1993.

106

[Tho79]

R. H. Thomas, "A majority consensus approach to concurrency control," ACM

Trans. Database Syst., vol. 4, no. 2, pp. 180-209, June 1979.

[WB92]

G. Wu and G. G. Belford, "The Triangular Lattice Protocol: A Highly Fault

Tolerant and Highly Efficient Protocol for Replicated Data," in 11th Symp. on

Reliable Distributed Systems, 1992.

[Wu93a]

C. Wu, "A fault tolerant O(n) algorithm for distributed mutual exclusion," in

Proc. of 1993 International Phoenix Conf. on Computers and Communications,

pp. 175-180, 1993.

[Wu93b]

C. Wu, "Achieving high performance and fault tolerant for distributed mutual

exclusion," Technical Report, University of Illinois at Urbana-Champaign,

1993.

