
An Efficient Query Tree Protocol

for RFID Tag Anti-Collision

Ming-Kuei Yeh

National Taipei University of Business

Taipei City, Taiwan

Yung-Liang Lai

Taoyuan Innovation Institute of Technology

Jhongli City, Taiwan

Jehn-Ruey Jiang

National Central University

Jhongli City, Taiwan

Abstract—Anti-Collision is one of the most important

problems of the RFID technology. In this paper, we propose an

Efficient Query Tree (EQT) protocol to improve both the Query

Tree (QT) protocol and the Collision Tree (CT) protocol. The

main idea of the EQT protocol is to reduce as much as possible

the timeslots used to transmit bits between the reader and tags, so

that the time of tag identification procedure is shortened and the

energy consumption is lessened. In the EQT protocol, the

timeslots structure, the query and responses between the reader

and tags are carefully redesigned to allow tags to transmit fewer

bits. We analyze and simulate the EQT protocol and compare it

with the QT and the CT protocols. The simulation results show

the EQT protocol outperforms the other two protocols in terms

of the tag identification time.

Keywords—RFID; Query Tree (QT) protocol; Collision Tree

(CT) protocol; tag anti-collision

I. INTRODUCTION

Recently, the RFID (Radio Frequency IDentification)
technique [1][2] attracts a lot of attention, since it is able to
automatically identify many tags through wireless
communication. It is fundamental in realizing the IoT (Internet
of Things) vision, and many RFID-based applications are
developed in the real world, such as healthcare, logistic control,
supply chain management, and asset tracking, etc.

An RFID system consists of reader and tags. Tags store
unique IDs and are attached to objects; a reader recognizes an
object by issuing RF signals to interrogate the ID of the
attached tag. An active tag has its own power supply to respond
to the reader interrogation. However, a passive tag has no
power supply and it backscatters the reader signal to respond to
the interrogation. If there is only one tag response, the tag can
be identified successfully. However, when two or more tags
respond simultaneously, the backscattered signals collide and
no tag can be identified successfully, causing the tag collision
problem.

Several tag anti-collision protocols are proposed to solve
the tag collision problem. They can be classified into two
categories: ALOHA based [3][4][5][6] and tree based [7][8]
[9][10]. This paper focuses on tree-based protocols, which are
simple and efficient. The main concept of tree-based protocols
is to split the collided tags into many subsets iteration-by-
iteration, until only one tag exits in a subset to be successfully
identified. The Query Tree (QT) protocol [9] is probably one of
the most well-known tree based protocols. In the QT protocol,
a reader first broadcasts a request string S of a specified length;

the tag with an ID whose prefix matches with S will respond its
whole ID to the reader. If multiple tags respond simultaneously,
the reader appends string S with bit 0 and 1 and broadcasts
again the longer bit strings (i.e., S0 or S1) later on. In this
manner, the colliding tags are divided into two subsets.

The Collision Tree (CT) protocol [10] is an extension of the
QT protocol. The CT protocol assumes tag ID is encoded by
the Manchester code, which allows the reader to detect the
collided bits. The CT protocol splits tags into subsets according
to the first collided bit to speed up the identification process.

In this paper, we propose a protocol, called the Efficient
Query Tree (EQT) protocol, to improve both the QT and the
CT protocol. The main novelty of the EQT protocol is to
carefully design the timeslots structure, as well as the query
and response between the reader and tags, so that the tags can
transmit fewer bits. In our design, the tags only have to
transmit a small number of bits, such that the time of responses
is shortened and the energy consumption is reduced. We
simulate the proposed protocol and compare it with the QT
protocol and the CT protocol. The simulation results show the
proposed protocol outperforms the other protocols.

The rest of this paper is organized as follows. We describe
related work in Section II. The proposed protocol is elaborated
in Section III. Its performance is evaluated by simulation and is
compared with those of related ones in Section IV. And finally,
conclusions are drawn in Section V.

II. REALTED WORK

In this section, we introduce two related protocols, namely
the QT protocol [9] and the CT protocol [10]. In the QT
protocol, the reader first pushes two query strings “1” and “0”
into the stack, then pops up a query string S from the stack and
broadcasts it to tags to start a round or an iteration of the
identification procedure. The tag with the ID prefix matching
the query string S, responds to the reader with its ID remainder.
If only one tag responds, it will be identified successfully;
otherwise, tag signals collide and no tag can be identified. In
the case of multiple tag responses, the reader pushes two longer
query strings, “S1” and “S0”, into the stack so that the tags
encountering signal collisions can be split into two subgroups
in the following rounds. The reader then pops every query
string from the stack to continue the identification procedure
for identifying all tags until the stack is empty. The QT
protocol is a memory-less protocol because it does not require
tags to be equipped with additional writable on-chip memory.

The CT protocol improves the QT protocol and shortens the
identification time with two schemes: (1) Manchester encoding
and (2) precise response slot timing of tags. Based on the above
two schemes, the reader can detect collided response bits and
splits tags into subsets according to the first collided response
bit to speed up the identification process. For example, when
the reader pops up a query string S from the stack and
broadcasts it to tags to start a round of the identification
procedure, the reader push strings Sr1…rn0 and Sr1…rn1 into
stacks to split tags into two subsets, where r1…rn are n
response bits that are free of collisions (i.e., rn+1 is the first
collided response bit). It can easily see that the query strings S0,
S1, Sr10, Sr11,…, Srn-10, Srn-11 are transmitted in the QT
protocol, but they are not transmitted in the CT protocol. The
identification procedure is thus accelerated.

III. PROPOSED PROTOCOL

The reader in the CT protocol can precisely detect the first
collided bit and split the tags into subsets accordingly to speed
up the identification procedure. However, when the reader
detects the first collided response bit, it does not stop the tags
from replying with remaining bits, which wastes much time.
This motivates us to improve both the QT protocol and the CT
protocol to achieve better identification performance.

Below we propose the EQT protocol for improving the QT
protocol and the CT protocol. The basic idea is to reduce the
number of the tag’s response time slots by preventing the tag
from sending unnecessary bits which follow the collided bit.
The identification procedure can thus be accelerated. It is
remarkable that the EQT protocol can save the power
consumption of active tags since unnecessary bits are not
transmitted.

Similar to the CT protocol, the EQT protocol adopts
Manchester Encoding to encode tag signals so that the reader
can detect collided bits. The EQT protocol also assumes the
reader and the tags have precise response slot timing. It has
three types of timeslots, as shown in the following subsection.

Fig. 1. The illustration of the proposed EQT protocol with R=5.

A. Structure of Timeslots

The timeslots are classified into three types: (1) command
timeslot, (2) response timeslot, and (3) control timeslot. In
general, several command timeslots precede R response
timeslots, followed by a control timeslot, where R is a pre-
specified parameter standing for the number of response
timeslots. We below describe each type of timeslots one by one.

[Command Timeslot]

The command timeslot is used for the reader to transmit the
interrogation command along with the query string. There are
two types of commands: Command-A and Command-B.
Command-A will lead to a novel adaptive identification
procedure proposed by us in the EQT protocol, while
Command-B will lead to the same identification procedure
used in the CT protocol. Note that the number of command
timeslots depends on the length of the query string and varies at
every iteration.

[Response Timeslot]

The response timeslot is used for the tag to transmit the bit
of the ID remainder to the reader. In response to Command-A,
the tag responds according to the proposed EQT protocol. To
be more precise, the tag will respond with nothing if the bit is
the same as the previous bit; the tag will respond with the bit
only when it is different from the previous bit. Note that the
first bit (whether it is 0 or 1) is assumed to be identical to its
previous bit. We will elaborate the details of the rules later. In
response to Command-B, the tag responds according to the CT
protocol.

[Control Timeslot]

The control timeslot is used for the tag to transmit the
control bit to the reader. To be more precise, the tag responds
with bit 1 (resp., bit 0) if the first R bits of the tag ID remainder
are all 0 (resp., 1). Note that the control timeslot is used for
dealing with the situation in which all tags have tag ID
remainder of long consecutive bits of 0 or 1. Without the newly
designed control timeslot, the reader should wait for many
timeslots to receive the first tag response for such a situation.
With the control timeslot, all tags should respond in the control
timeslot following R response timeslots even when their tag
remainders have long consecutive 0 or 1. This will reduce the
time of the reader waiting for tag responses.

Fig. 1 illustrates the process of the proposed EQT protocol
for the situation of 3 tags with R set as 5. After the reader
transmits the query string in the Command timeslot, the three
tags respond with their ID remainders to the reader. The three
tags are assumed to have the following ID remainders: Tag-1 is
with 001…, Tag-2 is with 0001…, and Tag-3 is with
0000000000… According to the EQT protocol, Tag-1
transmits the bit 1 in timeslot 3, Tag-2 transmits the bit 1 in
timeslot 4, and Tag-3 transmits the bit 1 in timeslot 6, which is
a Control timeslot. The rules of deciding the transmitted bit
values will be described in the following context.

B. The Rules for the Tag

There are three rules for the tag, Rule A-1, Rule A-2 and
Rule B. When the tag receives Command-A, it will follow

time Reader

Tag-1

Response timeslot

Control timeslot

Tag-2

…

1 2 3 4 5 6 7 8 10 11

Command timeslot Reader transmits query string

Tag transmits response bit

Tag transmits control bit

Tag-3

1

1

R

1

R

Rule A-1 and Rule A-2. When the tag receives Command-B, it
will follow Rule B. Below, we describe the three rules.

Rule A-1: When a tag responds to Command-A with its ID
remainders, it only transmits the bit which is different from the
previous bit, and it then stops transmitting any other bits. Note
that the first bit (whether it is 0 or 1) is assumed to be identical
to its previous bit, so it will never be transmitted.

Rule A-2: When a tag responds to Command A with its ID
remainders, it transmits 1 (resp., 0) in the control time slot for
the case where the first R bits of the ID remainder are all 0
(resp., 1), and it then stops transmitting any other bits.

Rule B: When a tag responds to Command B with its ID
remainders, it transmits all the bits of the ID remainder, as in
the CT protocol.

C. The Rules for the Reader

Below we describe the rules for the reader to follow. To
initiate the identification procedure, the reader first sends
Command-A along with a null query string S to all tags. Then
the reader waits for R response timeslots and one control
timeslot to receive possible tag responses. Depending on the
number n of timeslots in which at least one tag responds, the
reader follows the rules below to complete the identification
procedure.

Rule C-1: If n 1, then the reader can infer that there exist few
tags responding, which need one or few iterations to be
identified. If the reader has received all bits of a tag’s ID
remainder, then the tag is identified successfully and no query
string is pushed into the stack. Otherwise, the reader pushes
one or two strings into the stack according to Rule C-3. The
reader then sends Command-B to tags along with the query
string popped from the stack, and the protocol thus works as
the CT-protocol does.

Rule C-2: If n > 1, then the reader can infer that there exist two
or more tags, which need several iterations to be identified. The
reader pushes one or two strings into the stack according to
Rule C-3. The reader then sends Command-A to tags along
with the query string popped from the stack.

Rule C-3:

 The reader receives at most R+1 tag response bits during
the waiting period of R response timeslots and one control

timeslot. For the k
th
 response bit b received, 1kR+1, where b

may be 0, 1, or X (representing the collision bit), the reader
follows the following logic to push a new query string or two
query strings into the stack. Note that the reader first processes
the (R+1)

th
 response bit, and then the R

th
 bit, …, and at last the

1
st
 bit.

If kR, then Switch to one case

Case 1: b=0

 S S || (1)
k-1

 || 0

 Push S into stack

Case 2: b=1

 S S || (0)
k-1

 || 1

 Push S into stack

Case 3: b=X

 S S || (1)
k-1

 || 0

 Push S into stack

 S S || (0)
k-1

 || 1

 Push S into stack

Else If k=R+1, then Switch to one case

Case 1: b=0

 S S || (1)
k

 Push S into stack

Case 2: b=1

 S S || (0)
k

 Push S into stack

Case 3: b=X

 S S || (0)
k

 Push S into stack

 S S || (1)
k

 Push S into stack

Below, we illustrate the identification procedure of the
EQT protocol by using an example of 8 tags, whose ID are
00000, 00001, 00101, 00110, 01000, 01010, 11011, and 11101,
with R=3. The iterations of the identification procedure are
shown in Table I and explained below.

At iteration 1, the reader sends Command-A along with a

null query string to all tags to start the identification procedure.

All tags responds to the command. The tag whose ID is 00000

(we use tag 00000 to stand for the tag for short) responds with

“_ _ _ 1” in the control timeslot, since the first 3 bits of the ID

are of the same value 0, where “_” stands for no response or

null response. The tag 00001 also responds with the same

pattern. Both the tag 00101 and the tag 00110 respond with “_

_ 1” in the 3
rd

 response timeslot, since the first 2 bits of the ID

are of the same value 0. Both the tag 01000 and the tag 01010

respond with “_ 1” in the 2
nd

 response timeslot, since the first

bit of the ID is of the value 0. The tag 11011 responds with “_

_ 0” in the 3
rd

 response timeslot, since the first 2 bits of the ID

are of the same value 1. The tag 11101 responds with “_ _ _ 0”

in the control timeslot, since the first 3 bits of the ID are of the

same value 1. The bits received by the reader is thus “_ 1 X X”,

which stands for there is no response bit in the 1
st
 response

timeslot, one recognizable bit 1 in the 2
nd

 response timeslot, a

collision bit in the 3
rd

 response timeslot, and a collision bit in

the control timeslot. According to Rule C-3, the reader pushes

the query strings 111, 000, 110, 001, and 01 into the stack.

At iteration 2, the reader pops string S=“01” from the stack

and sends Command-A along with S to all tags. Two tags,

namely 01000 and 01010, respond to the command. The tag

01000 responds with “_ _ _ 1” in the control timeslot, since the

first 3 bits of the ID reminder are of the same value 0. The tag

01010 responds with “ _ 1” in the 2
nd

 response timeslot, since

the first bit of the ID remainder is of the value 1. The bits

received by the reader is thus “_ 1 _ 1”, which stands for there

is no response bit in the 1
st
 response timeslot and the 3

rd

response timeslot, a recognizable bit 1 in the 2
nd

 response

timeslot, and a recognizable bit 1 in the control timeslot. Since

the tag 01000 has responded with all the tag ID remainder, the

reader can then identify the tag. Every identified tag is shown

in the result field of Table I with an asterisk put behind their ID.

According to Rule C-3, the reader recalculates S according to

S=S||0||1=0101 and pushes S into the stack.
Iterations 3 to 7 are similar to iterations 1 and 2. To save

space, we do not elaborate them. All the details are shown in
Table I, though.

TABLE I. AN EXAMPLE OF THE EQT PROTOCOL

Stack Query

String

Tag

ID

ID

Remainder

Bits

Responded

Bits

Received

Result

1 Ø Null 00000

00001

00101

00110

01000

01010

11011

11101

00000

00001

00101

00110

01000

01010

11011

11101

_ _ _ 1

_ _ _ 1

_ _ 1

_ _ 1

_ 1

_ 1

_ _ 0

_ _ _ 0

_ 1 X X

2 01

001

110

000

111

01 01000

01010

000

010

_ _ _ 1

_ 1

_ 1 _ 1 01000*

3 0101

001

110

000

111

0101

01010 0 _ 1 _ 1 01010*

4 001

110

000

111

001 00101

00110

01

10

_ 1

_ 0

_ X 00101*

00110*

5 110

000

111

110 11011 11 _ _ 0 _ _ 0 11011*

6 000

111

000

00000

00001

00

01

_ _ 1

_ 1

_ 1 1 00000*

00001*

7 111 111 11101 01 _ 1 _ 1 11101*

IV. SIMULATIONS

To evaluate the performance of our proposed protocol, we
conduct the simulations for comparing the proposed EQT
protocol, the QT protocol, and the CT protocol. The parameters
used in the simulations are as follows. The length of tag ID is
64 bits, the R value is 10, and the numbers of tags are 100, 200,
300, …, and 2000. The distribution of tag IDs is assumed to be
uniform. Each simulation is conducted for 1000 times, and the
values reported in this section are calculated by averaging the
results.

First, we evaluate the average number of iterations to
identify a tag, where an iteration stands for the time period for
the reader to transmit its query string and then to successfully
receive response bits from tags. The evaluation result is shown
in Fig. 2, by which we can observe that the average numbers of
iterations needed to identify a tag are 2.876, 2.3, and 1.99 in the
QT protocol, our proposed EQT protocol, and the CT protocol,
respectively.

Fig. 2. The comparision of the number of iterations needed to identify a tag

Second, we evaluate the average number of timeslots to
identify a tag, which is the number of timeslots used by the
reader to transmit query strings plus the number of timeslots
for tags to respond. The results are shown in Fig. 3, by which
we can observe that the average numbers of timeslots needed to
identify a tag are 184, 127, and 90 in the QT protocol, the CT
protocol, and our proposed EQT protocol, respectively. Based
on the above results, we have that the EQT protocol uses the
minimum number of timeslots among three protocols.
Compared with other two protocols, the EQT protocol requires
only 48% of timeslots used in the QT protocol, and requires
70% of timeslots used in the CT protocol.

Fig. 3. Comparisons of timeslots needed to identify a tag

0

0.5

1

1.5

2

2.5

3

3.5

N
u

m
b

e
r

o
f

it
e

ra
ti

o
n

s
to

 id
e

n
ti

fy

a
ta

g
Number of Tags

EQT QT CT

0
20
40
60
80

100
120
140
160
180
200

N
u

m
b

e
r

o
f

tr
an

sm
is

si
o

n

ti
m

e
sl

o
ts

 t
o

 id
e

n
ti

fy
 a

 t
ag

Number of Tags

EQT QT CT

Even though the EQT protocol requires more iterations to
identify a tag than the CT protocol, it needs less timeslots to
identify a tag than the CT protocol and the QT protocol.
Overall, the EQT protocol spends less transmission time to
identify all tags than the CT protocol and the QT protocol. This
is because in the EQT protocol a tag transmits only partial
remaining bits, which can reduce significantly the number of
timeslots used to identify tags and thus shorten the
identification time.

V. CONCLUSIONS

In this paper, we proposed the Efficient Query Tree (EQT)
anti-collision protocol to improve both the QT protocol and the
CT protocol for enhancing the performance of identifying
RFID tags. The main novelty of the EQT protocol is to
carefully design the timeslots structure, rules for tags to
transmit fewer bits and rules for the reader to infer the ID bit
patters of responding tags.

The performance of proposed protocol is evaluated by
simulations and compared with those of the QT protocol and
the CT protocol. The simulation results show the proposed
EQT protocol outperforms the two related protocols in terms of
the average number of timeslots needed to identify a tag. That
is to say, the EQT protocol has the shortest identification time
among the three protocols compared.

In the future, we plan to design a more efficient timeslot
structure for the EQT protocol. For example, we can delete the
first response timeslot, since the tag never responds in the first
response timeslot. In that way, the total timeslots used by the
EQT protocol can be further reduced.

REFERENCES

[1] S. Evdokimov, B. Fabian, O. Gunther, L. Ivantysynova, and H. Ziekow.

RFID and the Internet of Things: Technology, Applications, and
Security Challenges. Now Publishers, 2011

[2] K. Finkenzeller, RFID handbook: Fundamentals and Applications in
Contactless Smart Cards and Identification, John Wiley & Sons, 2003.

[3] Jae-Ryong Cha and Jae-Hyun Kim, "Novel anti-collision algorithms for
fast object identification in RFID system", Proc. of the 11th International
Conf. Parallel and Distributed Systems (ICPADS'05), pp.63-67, 2005

[4] S. Lee, S. D. Joo, and C. W. Lee, "An enhanced dynamic framed slotted
aloha algorithm for RFID tag identification", Proc. of Mobiquitous 2005,
pp.166-172, 2005.

[5] T. W. Hwang et al., "Improved anti-collision scheme for high speed
identification in RFID system", Proc. of ICICIC, pp449-452, Aug. 2006.

[6] Girish Khandelwal et al., "ASAP: A MAC protocol for dense and time
constrained RFID systems", Proc. of IEEE International Conf.
Communications, ICC’06, Jun. 2006.

[7] Ming-Kuei Yeh, Jehn-Ruey Jiang and Shing-Tsaan Huang, "Adaptive
splitting and pre-signaling for RFID tag anti-collision", Computer
Communications, to appear.

[8] ISO/IEC, Information technology automatic identification and data
capture techniques – radio frequency identification for item management
air interface - part 6: parameters for air interface communications at 860-
960 MHz, Final Draft International Standard ISO 18000-6, Nov. 2003..

[9] C. Law, K. Lee, and K.-Y. Siu, "Efficient memoryless protocol for tag
identification (extended abstract)," presented at the Proceedings of the
4th international workshop on Discrete algorithms and methods for
mobile computing and communications, Boston, Massachusetts, USA,
2000.

[10] F. Zhou, D. Jin, C.L. Huang, M. Hao, Optimize the power consumption
of passive electronic tag for anti-collision schemes, in: Proceedings of
the Fifth International ASIC Conference, October,2003, pp. 1213–1217.

