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Abstract — One of the fundamental operations in the wireless 

network is broadcasting, which is widely used to disseminate 

information throughout the network. Flooding is a simple 

method to realize broadcasting. However, flooding will incur a 

large number of redundant retransmissions, leading to low 

transmission efficiency. In this paper, we propose an optimized 

broadcast protocol (OBP) to improve the transmission 

efficiency. In OBP, each node calculates the retransmission 

locations based on a hexagon ring pattern in order to minimize 

the number of retransmissions. Only the nodes nearest to the 

calculated locations need to retransmit the packet. As shown 

by analysis, the transmission efficiency bound of OBP is 0.55, 

which approximates the theoretical optimal bound 0.61 by a 

ratio of 90%. We also compare OBP with a related protocol 

called OFP in terms of transmission efficiency and reachability. 

Keywords: broadcasting; flooding; covering problem; hexagon 

lattice; transmission efficiency; wireless network 

I.  INTRODUCTION 

Broadcasting is one of the fundamental operations to 
disseminate information throughout a wireless network. The 
operation has many applications; for example, many routing 
protocols rely on broadcasting packets to find routing paths. 
Flooding is an intuitive approach in the implementation of 
broadcasting, in which each node retransmits a packet when 
receiving it at the first time. Flooding is simple and is highly 
reliable; however, it may cause the broadcast storm problem 
[9] and has low transmission efficiency due to redundancy of 
retransmissions. As shown in [7], the theoretical upper 
bound of transmission efficiency is 0.61. To take two 
communicating nodes A and B in Fig. 1 as an example, the 
transmission efficiency is the ratio of the effective 
communication area (the area covered by circles CA or CB, 

i.e., |CACB|) over the total communication area (the 

summation of areas of CA and CB, i.e., |CA|+|CB|), where CA 
and CB are the circles centered respectively at A and B with 
the radius of R, the transmission range. When the distance 
between nodes A and B equals to the transmission range R, 
the transmission efficiency reaches the theoretical upper 
bound 0.61. 

Some broadcast protocols for wireless networks have 
been proposed in the literature [2-3, 7, 9, 11-13]. Among 
them, geometry-based protocols, which assume that each 

node is aware of its own location to make retransmission 
decisions, have good transmission efficiency. For example, 
the Optimal Flooding Protocol (OFP)

1
 [11] has transmission 

efficiency of 0.41, which is about 67% of the theoretical 
upper bound. The idea of OFP is based on a regular 
hexagonal partition of the network with the side length of R, 
where only the nodes nearest to hexagon vertexes need to 
retransmit the broadcast packet sent by the source node S 
(please refer to Fig. 2). 

 
 

 
Figure 1.  Illustration of optimal transmission efficiency 

In this paper, we propose a more efficient geometry-
based broadcast protocol, called Optimized Broadcast 
Protocol (OBP), to optimize the transmission efficiency by 
keeping as few as possible retransmissions. In OBP, a node 
counts on hexagon rings centered at the source node S to 
decide if it should rebroadcast a packet when receiving the 
packet at the first time. Fig. 3 shows the hexagon rings 
centered at the source node S, where only nodes nearest to 

hexagon centers (represented as ●) and specific hexagon 

vertexes (represented as ▲) need to rebroadcast the packet. 

As we will show, OBP’s transmission efficiency can reach 
0.55, which is about 90% of the theoretical upper bound. 

The rest of this paper is organized as follows. In Section 
II, we introduce some related work. In Section III, we 
propose OBP. The transmission efficiency analysis is given 
in Section IV and performance comparison is described in 
Section V. At last, some concluding remarks are drawn in 
Section VI. 
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A similar protocol called Hexagon Flooding is proposed in [7]. 

Yet another similar protocol called optimized Broadcast Protocol 

for Sensor networks (BPS) is proposed in [3]. 
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Figure 2.  Broadcasting via hexagon vertexes in OFP  

 
Figure 3.  Broadcasting via hexagon centers and vertexes in OBP  

II. RELATED WORK 

Flooding is an intuitive method to broadcast a packet 
throughout the entire network. In the flooding protocol, each 
node retransmits a packet when receiving it at the first time. 
The flooding protocol is simple, but may lead to a large 
number of redundant forwarding packets, which consumes 
much energy and raises the possibility of packet collision. 
Many broadcast protocols [2-3, 7, 9, 11-13] are proposed to 
improve the flooding protocol. They can be generally 
classified as the Connected Dominating Set (CDS) 
approaches and the geometry approaches. 

The CDS approaches select a number of nodes for 

retransmitting a packet to reach all nodes on the basis of unit 

disk graph, where two nodes have an edge between them if 

they are within each other’s transmission range. Given a 

graph G(V,E), where V is a node set and E is an edge set, a 

CDS is a subset V'V such that each node in VV' (i.e., in 

V but not in the V') connects to at least one node in V', 

while V' is connected. To find a CDS for any given graph is 

proved to be an NP-hard problem in [4]. Even in a unit disk 

graph, to find a minimum CDS (or MCDS), the CDS with 

the minimum number of nodes, is also NP-hard [8]. 

Assuming each node knows the global topology of the 

network, Das and Bhargavan in [2] proposed two global 

algorithms to find the MCDS based on Guha’s 

approximation algorithm in [5]. The two global algorithms 

work under the restriction that each node knows the entire 

topology of the network. To eliminate the restriction, Wu 

and Li in [13] proposed a localized distributed algorithm to 

find a CDS and then prune redundant nodes to approximate 

the MCDS. However, as reported in [1], the approximation 

ratio of the algorithm may not be so good in large networks. 
The geometry approaches assume that each node is aware 

of its own location to make retransmission decisions.  They 
usually have good transmission efficiency. For example, the 

Optimal Flooding Protocol (OFP) [11] has transmission 
efficiency of 0.41, i.e. 67% of the theoretical bound. To the 
best of our knowledge, OFP has the highest transmission 
efficiency among all existed geometry-based protocols. OFP 
is based on a regular hexagonal partition of the network and 
only the nodes nearest to hexagon vertexes need to 
rebroadcast the packet. As shown in Fig. 4, a source node in 
OFP first broadcasts a packet. And the node nearest to the 
vertex location (1) is responsible for rebroadcasting. Then, 
the node nearest to the location (11) is responsible for 
rebroadcasting. And then, the nodes nearest to the locations 
(111) and (112) are responsible for rebroadcasting, and so on. 
Similarly, the other nodes nearest to the vertex locations (2), 
(3),…, (6), (21), (211), (212), … are responsible for 
rebroadcasting. In this way, the broadcast packet can be 
delivered to all nodes in the network. 

 

 
Figure 4.  The illustration of transmissions in OFP 

 
Figure 5.  The illurstation of the covering problem 

The design idea of OFP is related to the covering problem 

[6], which asks “How to arrange circles such that the 

minimum number of circles can completely cover a given 

area?” To quantify the efficiency of the solutions to this 

problem, Kershner in [6] defined the covering efficiency 

ρ=AT/AE, where AT is the total summation of circles’ areas 

and AE is the effective covered area. Smaller ρ is preferred. 

If a solution uses fewer circles to cover the area, the 

summation of circles’ areas (AT) will become smaller, and ρ 

will thus become smaller. It is worth mentioning that if we 

assume that the center of each circle has a transmitting node 

with the circle being the transmission range, then the circles’ 

covering efficiency is the reciprocal of the nodes’ 

transmission efficiency. 
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As shown in [6], the lower bound of ρ is 2 3π/9  

(≈1.209), which is achieved by placing circles according to 

a regular hexagonal lattice, as shown in Fig. 5. It is 

remarkable that some uncovered regions exist near the 

boundary of the covered area. This is called the boundary 

effect. However, the uncovered regions approximate zero 

and the boundary effect can be ignored if the circle is small 

enough when compared with the covered area. 

III. THE OPTIMIZED BROADCAST PROTOCOL (OBP) 

A. Details of the Protocol 

The basic concept of OBP is simple and is described as 

follows. The entire area is partitioned into hexagon rings 

centered at the broadcast source node S, where hexagons are 

of the side length of R, the transmission range (see Fig. 6). 

If every node nearest to a hexagon center (below, we use 

center node to stand for such a node for short) is activated to 

forward the broadcast packet, then the entire network area is 

fully covered and all nodes can receive the broadcast packet. 

The hexagon rings have only one hexagon in the central 

(level-0) ring, and have six hexagons in the level-1 ring, and 

so on. In general, there are 6k hexagons in the level-k ring. 

A hexagon center in the level-k ring is denoted as Ck,i, where 

i is an index ranging from 0 to 6k-1. Centers indexed by 0 

lie on the horizontal axis staring from S towards right, while 

other centers are indexed counterclockwise. The relative 

location LCk,i of Ck,i relative to S can be derived handily by 

a geometric mapping(Ck,i)LCk,i. The geometric 

mapping will be well defined in subsection III-B. 

 In OBP, the source node S (associated with C0,0) should 

send the broadcast packet and activate six center nodes 

(associated with C1,0,…,C1,5) in the level-1 ring to forward 

the packet. And each center node associated with Ck,i in the 

level-k ring, k1, should either activate no node or activate 

two neighboring center nodes in the next level. Actually, for 

k1, 3(k+1) center nodes in the level-k ring need to activate 

2 neighboring center nodes in the level-(k+1) ring, while 

3(k-1) nodes need not to activate any node. For example, all 

6 level-1 center nodes need to activate 2 level-2 center 

nodes, and thus all 12 level-2 center nodes can be activated 

properly. For another example, 9 (resp., 3) out of 12 level-2 

center nodes need to (resp., need not to) activate 2 level-3 

center nodes, and thus all 18 level-3 center nodes can be 

activated properly. We devise a mapping called the 

activation target mapping (Ck,i) that outputs an empty set 

or a set {Ck+1,w, Ck+1,w+1} of two next-level neighboring 

center nodes for Ck,i, k1, to activate. Note that Ck+1,w (resp., 

Ck+1,w+1) must be a neighboring center node of Ck,i; i.e., the 

associated hexagons of Ck,i and Ck+1,w (resp., Ck+1,w+1) must 

share an edge. The activation target mapping will be well 

defined in subsection III-C. 

 By the node activation process just mentioned, all center 

nodes can be activated to transmit the packet to cover the 

entire network area. However, since two center nodes 

cannot communicate with each other directly, we need 

intermediate nodes between them for relaying the packet. 

OBP chooses vertex nodes (i.e., the node nearest to a 

hexagon vertex) as the intermediate nodes to take the 

advantage that a vertex node can reach two center nodes 

(e.g., V1,0 can reach C1,0 and C1,1). In OBP, S takes 3 vertex 

nodes associated with V1,0, V1,1, and V1,2 as intermediate 

nodes, while the other center node associated with Ck,i takes 

only 1 (or 0) vertex node associated with Vk+1,i. The relative 

location LVk,i of Vk,i, k>1, relative to S can be derived by 

computing the location of the center of Ck-1,i, Ck,w, and Ck,w+1 

if Ck-1,i should activate Ck,w and Ck,w+1 (i.e., T(Ck-1,i)={Ck,w, 

Ck,w+1}). Note that for k=1, LV1,i is the location of the center 

of S, C1,2i, and C1,2i+1 for i=0,1,2. 

The broadcast packet of OBP is of the format P(LS, F), 

where LS is the absolute location of the source node, and F 

is the set of relative locations of intended forwarding nodes 

in the next-level ring. Note that each packet is sent along 

with a unique packet ID so that a node can decide if the 

packet has ever been received. Also note that the relative 

locations are sent along with the indexes of center nodes or 

vertex nodes. That is, when a location LCk,i or LVk,i is sent, 

the indexes k and i are also sent in the packet. Those indexes 

are very important for a node to calculate the relative 

locations of intended forwarding nodes by the activation 

target mapping and the geometric mapping. 

 

Below, we present the proposed protocol OBP. 

Optimized Broadcast Protocol (OBP)    

The step for the source node S to broadcast a packet P: 

1. S sends the packet P(LS, F) with F={LV1,0, LV1,1, LV1,2}. 

Steps for other node X receiving P(LS, F): 

1.  If X receives P at the first time, it registers P. Otherwise, 

it drops P and stops.  

2.  If X is not a node nearest to a location in F, it stops. 

3. If X is nearest to a center node associated with Ck,i of a 

location in F and T(Ck,i), then X sends P(LS, F) and stops, 

where F={LVk,i}. 

4. If X is nearest to a vertex node associated with Vk,i of a 

location in F, then X derives {Ck,w, Ck,w+1} by calling 

T(Ck1,i), sets F={LCk,w, LCk,w+1}, sends P(LS, F) and stops. 

 ________________________________________________                                                                                                        

Note that the paper [10] proposes two mechanisms to 
determine whether a node X is the one nearest to a given 
location. The first mechanism is to make nodes periodically 
exchange location information with neighboring nodes so 
that each node can properly elect the node nearest to the 
given location. The second mechanism is to enforce a 
backoff timer which is inversely proportional to the distance 
between a node’s location and the given location. The node 
nearest to the given location thus has the shortest backoff 
timer and will earliest issue a response, which in turn 
prohibits other nodes from responding. 



 
Figure 6.  Transmissions of OBP in hexagon rings 

 

B. Geometric Mapping 

In this subsection we present the geometric mapping 
M(Ck,i) that maps a hexagon center node Ck,i to a location Lk,i 
relative to the source node S. As shown in Fig. 7, each 
hexagon ring can be partitioned into six sectors, indexed by 
0,..,5, with each sector having k hexagon centers in the level-
k ring. Let Zk,q denote the location relative to S of the first 
hexagon center in the sector q of the level-k hexagon ring 
(e.g., Z2,0 is the location of the hexagon center on the 
horizontal line from S towards  right). We have  Z𝑘 ,𝑞 =

(𝑘 3R ∙ cos 𝑞 ∙ 60° , 𝑘 3R ∙ sin(𝑞 ∙ 60°))  for q=0,..,5, 
where R is the transmission range or the hexagon side length. 
Since each sector has k hexagon centers, we can figure out 
that hexagon center Ck,i is within sector q, where q =⌊i/k⌋. 
Now we can define the geometric mapping M(Ck,i) as 
follows. (Note that “+” represents the vector addition 
operator in the mapping and the following location 
calculations.) 
 

Let 𝑞 = ⌊𝑖 𝑘 ⌋.  If 𝑖 is a mutiple of 𝑘, M C𝑘 ,𝑖 = Z𝑘 ,𝑞  . 
 
Otherwise, M(C𝑘 ,𝑖) =

 
 
 
 
 
 

 
 
 
 
 𝑍𝑘 ,0 + (−𝑖

 3R

2
, 𝑖

3R

2
), if 𝑞 = 0

𝑍𝑘 ,1 + ((𝑘 − 𝑖) 3R, 0), if 𝑞 = 1

𝑍𝑘 ,2 + ((𝑞 ·𝑘 − 𝑖)
 3R

2
, (𝑞 ·𝑘 − 𝑖)

3R

2
), if 𝑞 = 2

𝑍𝑘 ,3 + ((𝑖 − 𝑞 ·𝑘)
 3R

2
, (𝑞 ·𝑘 − 𝑖)

3R

2
), if 𝑞 = 3

𝑍𝑘 ,4 + ((𝑖 − 𝑞 ·𝑘) 3R, 0), if 𝑞 = 4

𝑍𝑘 ,5 +   𝑖 − 𝑞 ·𝑘 
 3R

2
,  𝑖 − 𝑞 ·𝑘 

3R

2
 , if 𝑞 = 5

             (1) 

 

In Fig. 7, we illustrate the above mapping by two 

examples. The first example is about M(C2,1). Since 

q=⌊1/2⌋=0, we calculate Z2,0 =  2 3R ∙ cos 0 , 2 3R ∙

sin 0  = (2 3R, 0) . We then have M(C2,1) = Z2,0 +

 −
 3R

2
,

3R

2
 . The second example is about M(C2,7). 

Since 𝑞 = ⌊7/2⌋ = 3 , we calculate Z2,3 =  2 3R ∙

cos 180° , 2 3R ∙ sin 180°  = (−2 3R, 0) . We then 

have M(C2,7)= Z2,3 +  
 3R

2
,−

3R

2
 . 

 
Figure 7.  The illurstartion of geometric mapping 

C. Activation Target Mapping 

In this subsection we present the activation target 
mapping T(Ck,i). The input of T(Ck,i) is a center node Ck,i for 

k1. (Ck,i) is to find two next-level neighboring center 
nodes Ck+1,w and Ck+1,w+1 of Ck,i, where w is even. If such 
neighboring nodes exit, the output of T(Ck,i) is {Ck+1,w, 
Ck+1,w+1}; otherwise, the output is an empty set. For example, 
T(C1,0)={C2,0, C2,1} since Ck+1,w is C2,0 and Ck+1,w+1 is C2,1 

with w=0. For another example, T(C2,1)=, since the index w 
of the neighboring center nodes C3,1 and C3,2 of C2,1 is odd.  

As shown in Fig. 8, each hexagon ring can be partitioned 
into six sectors, indexed by 0,..,5, each having a starting axis 
(i.e., A0, ,…, A5). Let q=⌊i/k⌋ denote the index of the sector 
in which Ck,i resides.  T(Ck,i) is defined as follows. 

T C𝑘 ,𝑖 =

 
 
 
 
 
 
 

 
 
 
 
 
 

 C𝑘+1,i , C𝑘+1,𝑖+1 , if 𝑞 = 0 and  𝑖 is even

 C𝑘+1,𝑖+1, C𝑘+1,𝑖+2 , if 𝑞 = 1 and  𝑖 is odd

 C𝑘+1,𝑖 , C𝑘+1,𝑖+1 , if 𝑞 = 1,  𝑖 mod 𝑘 = 0 and  𝑖 is even

 C𝑘+1,𝑖+2 , C𝑘+1,𝑖+3 , if 𝑞 = 2 and 𝑖 is even

 C𝑘+1,𝑖+3 , C𝑘+1,𝑖+4 , if 𝑞 = 3 and 𝑖 is odd

 C𝑘+1,𝑖+2 , C𝑘+1,𝑖+3 , if 𝑞 = 3,  𝑖 mod 𝑘 = 0 and 𝑖 is even

 C𝑘+1,𝑖+4 , C𝑘+1,𝑖+5 , if 𝑞 = 4 and 𝑖 is even

 C𝑘+1,𝑖+5 , C𝑘+1,𝑖+6 , if 𝑞 = 5 and 𝑖 is odd

 C𝑘+1,𝑖+4, C𝑘+1,𝑖+5 ,    if 𝑞 = 5,  𝑖 mod 𝑘 = 0 and 𝑖 is even

∅, otherwise
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The definition of T(Ck,i) contains 10 cases of different 

conditions. The first case (q=0 and i is even) drives the 

center node Ck,i to activate two neighboring center nodes 

Ck+1,i and Ck+1,i+1 in the next level, only if Ck,i is in sector 0 

and i is even. The second case (q=1 and i is odd) drives Ck,i 

to activate Ck+1,i+1 and Ck+1,i+2, only if Ck,i is in sector 1 and i 

is odd. The third case (q=1, (i mod k)=0 and i is even) drives 

Ck,i to activate Ck+1,i and Ck+1,i+1, only if Ck,i is in sector 1, 

Ck,i is on the starting axis of sector 1 (i.e. A1), and i is even. 

Similarly, the fourth, ..., and the ninth cases drive Ck,i in the 

sectors 2, …, and 5 to activate two center nodes for specific 

conditions. The last case drives Ck,i not to active any node, 

only if none of the first nine conditions is satisfied. 

In Fig. 8, we illustrate T(Ck,i) by three examples. The 

first example is about T(C2,0). Let q=⌊0/2⌋=0. Since q is 0 

and i (=0) is even, we have T(C2,0)={C3,0,C3,1}. The second 

example is about T(C2,5). Let q=⌊5/2⌋=2. Since q is 2 and i 

(=5) is not even, we have T(C2,5)= , which means the node 

C2,5 needs not to activate any node. The third example is 

about T(C2,2). Let q=⌊2/2⌋=1. Since q is 1, i (=2) is even, 

and i is a multiple of k (=2), we have T(C2,2)={C3,2,C3,3}. 

 

 

 
Figure 8.  The illurstartion of the activation target mapping with six 

sectors (sector 0, …, sector 5), each having one starting axis (i.e. A0, … A5) 

to indicate the starting center nodes in the sector 

IV. PERFORMANCE ANALYSIS 

In this section, we analyze the upper bound of 
transmission efficiency of the proposed protocol OBP. As 
defined in [11], the transmission efficiency η is the ratio of 
the effective area to the total summation of nodes’ 
broadcasting areas. That is, 

 𝜂 =
TA

NT AR
=

TA

NTπR2 

In Eq. (2), TA is the total effective area, NT is the number of 
transmitting nodes involved in broadcasting, and AR is the 
transmission area of the value πR

2
. In OBP, NT equals to the 

number NC of center nodes plus the number NV of selected 
vertex nodes; i.e. NT=NC+NV. The broadcasting in OBP is 
performed from the source node S to the center or vertex 
nodes of outer hexagon rings level by level. As shown earlier, 
there are 6k hexagons in the level-k hexagon ring. If the 
entire network area is of the shape of a level-h hexagon ring 
with all inner hexagon rings (rings of level 0, level 1,…, to 

level (h1)) included, we have 

 NC = 1 +  6𝑘ℎ
𝑘=1 = 1 + 3ℎ(ℎ + 1) 

In OBP, two center nodes require one vertex node for the 
purpose of relaying the broadcast packet. We thus have

 NV =  6𝑘/2ℎ
𝑘=1 = 3ℎ(ℎ + 1)/2 

Since TA is the summation of all hexagon areas. We have

 TA = NC(3 3R2/2) 

With Eqs. (3), (4), (5), and (6), if h is large enough, the 
transmission efficiency upper bound ηOBP of OBP can be 
derived as follows.

 𝜂OBP = limℎ→∞

T𝐴

NTπR2 =
 3

π
≈ 0.55 

As shown in [7], the theoretical upper bound ηU of 
transmission efficiency is 0.61. We have that OBP 
approximates the theoretical upper bound of transmission 
efficiency by a ratio of ηOBP/ηU  90%. 

V. PERFORMANCE COMPARISON 

Since OBP is a geometry-based protocol, in this section 
we compare its performance with that of OFP, the 
geometry-based protocol with the highest transmission 
efficiency so far. First, we compare the protocols by 
analysis in terms of the upper bound of the number of 
transmissions for broadcasting a packet. Since OBP and 
OFP are hexagon based approaches, we evaluate them with 
the assumption that the entire network area is of the shape of 
a hexagon ring with all inner rings included. In Fig. 9, we 
show the number of required transmissions for the 2-, 3-, 4-, 
and 5-level hexagon rings with all inner rings included. The 
results show that OBP requires fewer transmissions than 
OFP. This is because OFP requires all vertex nodes to 
retransmit the broadcast packet, while OBP requires all 
center nodes plus specific vertex nodes to transmit the 
packet. The fact that OFP has transmission efficiency of 
0.41 and OBP has transmission efficiency of 0.55 also 
accounts for the results. 
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Figure 9.  Comparisons of required transmissions for OFP and OBP 

 
Figure 10.  Reachability of OFP and OBP for various node densities 

Second, we compare by simulation experiments the 
protocols’ reachability, the ratio of the number of the nodes 
receiving the packet over the total number of reachable 
nodes, for different node densities. In the simulation, we 
assume the entire network area is a level-3 hexagon ring with 
all inner rings included, and assume nodes are uniformly 
deployed with different densities from 10/R

2
 (nodes per 

transmission area), 12/R
2
,…, to 20/R

2
. We also assume that 

nodes exchange location information to decide the best node 
responsible for rebroadcasting. As shown in Fig. 10, OFP is 
better than OBP in terms of reachability. The reachability of 
OFP is 100% for all node densities, while the reachability of 
OBP is larger than 95% for all node densities, and 
approximates 99% for the 16/R

2
, 18/R

2
, and 20/R

2
 densities. 

Theoretically, both protocols have 100% reachability when 
the node density is sufficiently high. However, when the 
node density is low, retransmitting nodes may be away from 
center locations or vertex locations. Therefore, the network 
area may not be fully covered for some cases. This accounts 
for the reason why OBP does not maintain 100% reachability 
for all cases. Since OFP has more retransmitting nodes, the 
reachability is still 100% even for low node density. 

VI. CONCLUSION 

We have proposed an optimized broadcast protocol (OBP) 
for the wireless network to disseminate a packet throughout 

the network. The key idea of OBP is to select nodes based on 
a hexagon ring pattern to minimize the number of 
retransmissions for better transmission efficiency. The 
analysis result shows that OBP’s transmission efficiency is 
over 90% of the theoretical upper bound. However, we have 
observed the OBP may fail to reach all nodes in networks of 
low node densities. Fortunately, we have an adaptive 
solution shown below to solve the problem. We make the 
source node set adaptively the hexagon side length to be a 

ratio , 0<1, of the transmission range R according to the 
node density. When a node finds that the node density is low, 

it sets a small  value. On the other hand, a node sets a large 

 value when it detects node density is high. We can easily 

see that a smaller  value causes more retransmitting nodes, 
which in turn lead to higher reachability. In this way, OBP 
can keep high reachability and high transmission efficiency 
at the same time. In the future, we plan to investigate how to 
measure the node density accurately and to investigate the 

relationship between the node density and the value of  to 
render OBP with the best performance. 
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